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Abstract

In this paper, we present surplus fair scheduling (SFS),
a proportional-share CPU scheduler designed for sym-
metric multiprocessors. We first show that the infeasibil-
ity of certain weight assignments in multiprocessor envi-
ronments results in unfairness or starvation in many ex-
isting proportional-share schedulers. We present a novel
weight readjustment algorithm to translate infeasible
weight assignments to a set of feasible weights. We show
that weight readjustment enables existing proportional-
share schedulers to significantly reduce, but not elimi-
nate, the unfairness in their allocations. We then present
surplus fair scheduling, a proportional-share scheduler
that is designed explicitly for multiprocessor environ-
ments. We implement our scheduler in the Linux ker-
nel and demonstrate its efficacy through an experimen-
tal evaluation. Our results show that SFS can achieve
proportionate allocation, application isolation and good
interactive performance, albeit at a slight increase in
scheduling overhead. We conclude from our results that
a proportional-share scheduler such as SFS is not only
practical but also desirable for server operating sys-
tems.

1 Introduction

1.1 Motivation

The growing popularity of multimedia and web applica-
tions has spurred research in the design of large multi-
processor servers that can run a variety of demanding ap-
plications. To illustrate, many commercial web sites to-
day employ multiprocessor servers to run a mix of HTTP
applications (to service web requests), database applica-
tions (to store product and customer information), and
streaming media applications (to deliver audio and video
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content). Moreover, Internet service providers that host
third party web sites typically do so by mapping mul-
tiple web domains onto a single physical server, with
each domain running a mix of these applications. These
example scenarios illustrate the need for designing re-
source management mechanisms that multiplex server
resources among diverse applications in a predictable
manner.

Resource management mechanisms employed by a
server operating system should have several desirable
properties. First, these mechanisms should allow users
to specify the fraction of the resource that should be al-
located to each application. In the web hosting exam-
ple, for instance, it should be possible to allocate a cer-
tain fraction of the processor and network bandwidth to
each web domain [2]. The operating system should then
allocate resources to applications based on these user-
specified shares. It has been argued that such allocation
should be both fine-grained and fair [3, 9, 15, 17, 20].
Another desirable property is application isolation—the
resource management mechanisms employed by an op-
erating system should effectively isolate applications
from one another so that misbehaving or overloaded ap-
plications do not prevent other applications from receiv-
ing their specified shares. Finally, these mechanisms
should be computationally efficient so as to minimize
scheduling overheads. Thus, efficient, predictable and
fair allocation of resources is key to designing server op-
erating systems. The design of a CPU scheduling algo-
rithm for symmetric multiprocessor servers that meets
these objectives is the subject matter of this paper.

1.2 Relation to Previous Work

In the recent past, a number of resource management
mechanisms have been developed for predictable allo-
cation of processor bandwidth [2, 7, 11, 12, 14, 16, 18,
24, 28]. Many of these CPU scheduling mechanisms as
well as their counterparts in the network packet schedul-
ing domain [4, 5, 19, 23] associate an intrinsic rate with



each application and allocate resource bandwidth in pro-
portion to this rate. For instance, many recently pro-
posed algorithms such as start-time fair queuing (SFQ)
[9], borrowed virtual time (BVT) [7], and SMART [16]
are based on the concept of generalized processor shar-
ing (GPS). GPS is an idealized algorithm that assigns
a weight to each application and allocates bandwidth
fairly to applications in proportion to their weights. GPS
assumes that threads can be scheduled using infinitesi-
mally small quanta to achieve weighted fairness. Practi-
cal instantiations, such as SFQ, emulate GPS using finite
duration quanta. While GPS-based algorithms can pro-
vide strong fairness guarantees in uniprocessor environ-
ments, they can result in unbounded unfairness or star-
vation when employed in multiprocessor environments
as illustrated by the following example.

Example 1 Consider a server that employs the start-
time fair queueing (SFQ) algorithm [9] to schedule
threads. SFQ is a GPS-based fair scheduling algorithm
that assigns a weight wi to each thread and allocates
bandwidth in proportion to these weights. To do so, SFQ
maintains a counterSi for each application that is incre-
mented by q

wi
every time the thread is scheduled (q is the

quantum duration). At each scheduling instance, SFQ
schedules the thread with the minimum Si on a proces-
sor. Assume that the server has two processors and runs
two compute-bound threads that are assigned weights
w1 = 1 and w2 = 10, respectively. Let the quantum
duration be q = 1ms. Since both threads are compute-
bound and SFQ is work-conserving,1 each thread gets to
continuously run on a processor. After 1000 quantums,
we have S1 = 1000

1
= 1000 and S2 = 1000

10
= 100.

Assume that a third cpu-bound thread arrives at this
instant with a weight w3 = 1. The counter for this
thread is initialized to S3 = 100 (newly arriving threads
are assigned the minimum value of Si over all runnable
threads). From this point on, threads 2 and 3 get con-
tinuously scheduled until S2 and S3 “catch up” with S1.
Thus, although thread 1 has the same weight as thread
3, it starves for 900 quanta leading to unfairness in the
scheduling algorithm. Figure 1 depicts this scenario.

Many recently proposed GPS-based algorithms such as
stride scheduling [28], weighted fair queuing (WFQ)
[18] and borrowed virtual time (BVT) [7] also suffer
from this drawback when employed for multiprocessors
(like SFQ, stride scheduling and WFQ are instantiations
of GPS, while BVT is a derivative of SFQ with an ad-
ditional latency parameter; BVT reduces to SFQ when
the latency parameter is set to zero). The primary reason
for this inadequacy is that while any arbitrary weight
assignment is feasible for uniprocessors, only certain

1A scheduling algorithm is said to be work-conserving if it never
lets a processor idle so long as there are runnable threads in the system.

weight assignments are feasible for multiprocessors. In
particular, those weight assignments in which the band-
width assigned to a single thread exceeds the capacity
of a processor are infeasible (since an individual thread
cannot consume more than the bandwidth of a single
processor). In the above example, the second thread was

assigned 10

11

th
of the total bandwidth on a dual-processor

server, whereas it can consume no more than half the to-
tal bandwidth. Since GPS-based work-conserving algo-
rithms do not distinguish between feasible and infeasible
weight assignments, unfairness can result when a weight
assignment is infeasible. In fact, even when the ini-
tial weights are carefully chosen to be feasible, blocking
events can cause the weights of the remaining threads to
become infeasible. For instance, a feasible weight as-
signment of 1:1:2 on a dual-processor server becomes
infeasible when one of the threads with weight 1 blocks.
Even when all weights are feasible, an orthogonal prob-
lem occurs when frequent arrivals and departures pre-
vent a GPS-based scheduler such as SFQ from achieving
proportionate allocation. Consider the following exam-
ple:

Example 2 Consider a dual-processor server that
runs a thread with weight 10,000 and 10,000 threads
with weight 1. Assume that short-lived threads with
weight 100 arrive every 100 quantums and run for 100
quantums each. Note that the weight assignment is al-
ways feasible. If SFQ is used to schedule these threads,
then it will assign the current minimum value of Si in
the system to each newly arriving thread. Hence, each
short-lived thread is initialized with the lowest value of
Si and gets to run continuously on a processor until it
departs. The thread with weight 10,000 runs on the other
processor; all threads with weight 1 run infrequently.
Thus, each short-lived thread with weight 100 gets as
much processor bandwidth as the thread with weight
10,000 (instead of 1

100
of the bandwidth). Note that this

problem does not occur in uniprocessor environments.

The inability to distinguish between feasible and in-
feasible weight assignments as well as to achieve pro-
portionate allocation in the presence of frequent ar-
rivals and departures are fundamental limitations of a
proportional-share scheduler such as SFQ. Whereas ran-
domized schedulers such as lottery scheduling [27] do
not suffer from starvation problems due to infeasible
weights, such weight assignments can, nevertheless,
cause small inaccuracies in proportionate allocation for
such schedulers. Several techniques can be employed
to address the problem of infeasible bandwidth assign-
ments. In the simplest case, processor bandwidth could
be assigned to applications in absolute terms instead of
using a relative mechanism such as weights (e.g., assign
20% of the bandwidth on a processor to a thread). A
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Figure 1: The Infeasible Weights Problem: an infeasible weight assignment can lead to unfairness in allocated shares
in multiprocessor environments.

potential limitation of such absolute allocations is that
bandwidth unused by an application is wasted, resulting
in poor resource utilization. To overcome this drawback,
most modern schedulers that employ this method reallo-
cate unused processor bandwidth to needy applications
in a fair-share manner [10, 14]. In fact, it has been shown
that relative allocations using weights and absolute allo-
cations with fine-grained reassignment of unused band-
width are duals of each other [22]. A more promising ap-
proach is to employ a GPS-based scheduler for each pro-
cessor and partition the set of threads among processors
such that each processor is load balanced. Such an ap-
proach has two advantages: (i) it can provide strong fair-
ness guarantees on a per-processor basis, and (ii) binding
a thread to a processor allows the scheduler to exploit
processor cache locality. A limitation of the approach is
that periodic repartitioning of threads may be necessary
since blocked/terminated threads can cause imbalances
across processors, which can be expensive. Neverthe-
less, such an approach has been successfully employed
to isolate applications from one another [1, 8, 26].

In summary, GPS-based fair scheduling algorithms or
simple modifications thereof are unsuitable for fair allo-
cation of resources in multiprocessor environments. To
overcome this limitation, we propose a CPU scheduling
algorithm for multiprocessors that: (i) explicitly distin-
guishes between feasible and infeasible weight assign-
ments and (ii) achieves proportionate allocation of pro-
cessor bandwidth to applications.

1.3 Research Contributions of this Paper

In this paper, we present surplus fair scheduling (SFS),
a predictable CPU scheduling algorithm for symmetric
multiprocessors. The design of this algorithm has led to
several key contributions.

First, we have developed a weight readjustment al-
gorithm to explicitly deal with the problem of infeasi-

ble weight assignments; our algorithm translates a set
of infeasible weights to the “closest” feasible weight as-
signment, thereby enabling all scheduling decisions to
be based on feasible weights. Our weight readjustment
algorithm is a novel approach for dealing with infeasible
weights and one that can be combined with most exist-
ing GPS-based scheduling algorithms; doing so enables
these algorithms to vastly reduce the unfairness in their
allocations for multiprocessor environments. However,
even with the readjustment algorithm, many GPS-based
algorithms show unfairness in their allocations, espe-
cially in the presence of frequent arrival and departures
of threads. To overcome this drawback, we develop the
surplus fair scheduling algorithm for proportionate allo-
cation of bandwidth in multiprocessor environments. A
key feature of our algorithm is that it does not require
the quantum length to be known a priori, and hence can
handle quantums of variable length.

We have implemented the surplus fair scheduling al-
gorithm in the Linux kernel and have made the source
code available to the research community. We have ex-
perimentally demonstrated the benefits of our algorithm
over a GPS-based scheduler such as SFQ using sam-
ple applications and benchmarks. Our experimental re-
sults show that surplus fair scheduling can achieve pro-
portionate allocation, application isolation and good in-
teractive performance for typical application mixes, al-
beit at the expense of a slight increase in the schedul-
ing overhead. Together these results demonstrate that
a proportional-share CPU scheduling algorithm such as
surplus fair scheduling is not only practical but also de-
sirable for server operating systems.

The rest of this paper is structured as follows. Section
2 presents the surplus fair scheduling algorithm. Sec-
tion 3 discusses the implementation of our scheduling
algorithm in Linux. Section 4 presents the results of our
experimental evaluation. Section 5 presents some limi-
tations of our approach and directions for future work.



Finally, Section 6 presents some concluding remarks.

2 Proportional-Share CPU Scheduling
for Multiprocessor Environments

Consider a multiprocessor server with p processors that
runs t threads. Let us assume that a user can assign any
arbitrary weight to a thread. In such a scenario, a thread
with weight wi should be allocated (wi=

P
j wj) frac-

tion of the total processor bandwidth. Since weights
can be arbitrary, it is possible that a thread may re-
quest more bandwidth than it can consume (this occurs
when the requested fraction wiP

j
wj

> 1

p
). The CPU

scheduler must somehow reconcile the presence of such
infeasible weights. To do so, we present an optimal
weight readjustment algorithm that can efficiently trans-
late a set of infeasible weights to the “closest” feasi-
ble weight assignment. By running this algorithm ev-
ery time the weight assignment becomes infeasible, the
CPU scheduler can ensure that all scheduling decisions
are always based on a set of feasible weights. Given such
a weight readjustment algorithm, we then present gener-
alized multiprocessor sharing (GMS)—an idealized al-
gorithm for fair, proportionate bandwidth allocation that
is an analogue of GPS in the multiprocessor domain. We
use the insights provided by GMS to design the surplus
fair scheduling (SFS) algorithm. SFS is a practical in-
stantiation of GMS that has lower implementation over-
heads.

In what follows, we first present our weight readjust-
ment algorithm in Section 2.1. We present generalized
multiprocessor sharing in Section 2.2 and then present
the surplus fair scheduling algorithm in Section 2.3.

2.1 Efficient, Optimal Weight Readjust-
ment

As illustrated in Section 1.2, weight assignments in
which a thread requests a bandwidth share that ex-
ceeds the capacity of a processor are infeasible. More-
over, a feasible weight assignment may become infeasi-
ble or vice versa whenever a thread blocks or becomes
runnable. To address these problems, we have developed
a weight readjustment algorithm that is invoked every
time a thread blocks or becomes runnable. The algo-
rithm examines the set of runnable threads to determine
if the weight assignment is feasible. A weight assigned
to a thread is said to be feasible if

wiP
j wj

�
1

p
(1)

We refer to Equation 1 as the feasibility constraint. If
a thread violates the feasibility constraint (i.e., requests
a fraction that exceeds 1=p), then it is assigned a new

weight so that its requested share reduces to 1=p (which
is the maximum share an individual thread can con-
sume). Doing so for each thread with infeasible weight
ensures that the new weight assignment is feasible.

Conceptually, the weight readjustment algorithm pro-
ceeds by examining each thread in descending order of
weights to see if it violates the feasibility constraint.
Each thread that does so is assigned the bandwidth
of an entire processor, which is the maximum band-
width a thread can consume. The problem then re-
duces to checking the feasibility of scheduling the re-
maining threads on the remaining processors. In prac-
tice, the readjustment algorithm is implemented us-
ing recursion—the algorithm recursively examines each
thread to see if it violates the constraint; the recursion
terminates when a thread that satisfies the constraint is
found. The algorithm then assigns a new weight to each
thread that violates the constraint such that its requested
fraction equals 1=p. This is achieved by computing the
average weight of all feasible threads over the remain-
ing processors and assigning it to the current thread (i.e.,

wi =

P
t

j=i+1
wj

p�i
). Figure 2 illustrates the complete

weight readjustment algorithm.
Our weight readjustment algorithm has the following

salient features:

� The algorithm is optimal in the sense that it changes
the weights of the minimum number of threads
and the new weights are the “closest” weights that
reflect the original assignment. This is because
threads with infeasible weights are assigned the
nearest feasible weight, and weights of threads that
satisfy the feasibility constraint never change (and
hence, they continue to receive bandwidth in their
requested proportions).

� The algorithm has an efficient implementation. To
see why, observe that in a p-processor system,
no more than (p � 1) threads can have infeasible
weights (since the sum of the requested fractions is
1, no more than (p� 1) threads can request a frac-
tion that exceeds 1

p
). Thus, the number of threads

with infeasible weights depends solely on the num-
ber of processors and is independent of the total
number of threads in the system. By maintain-
ing a list of threads sorted in descending order of
their weights, the algorithm needs to examine no
more than the first (p � 1) threads with the largest
weights. In fact, the algorithm can stop scanning
the sorted list at the first point where the feasibility
constraint is satisfied (subsequent threads have even
smaller weights and hence, request smaller and fea-
sible fractions). Since the number of processors is
typically much smaller than the number of threads



readjust(array w[1::t], int i, int p)
begin

if( w[i]P
t

j=i
w[j]

> 1
p

)

begin
readjust(w[1::t],i + 1,p� 1)
sum =

Pt

j=i+1
w[j]

w[i] = sum
p�1

end
end.

Figure 2: The weight readjustment algorithm: The al-
gorithm is invoked with an array of weights sorted in
decreasing order. Initially, i = 1; p denotes the num-
ber of processors, and t denotes the number of runnable
threads. If a thread violates the feasibility constraint,
then the algorithm is recursively invoked for the remain-
ing threads and the remaining processors. Each infeasi-
ble weight is then adjusted by setting its requested pro-
cessor share to 1=p.

(p << t), the overhead imposed by the readjust-
ment algorithm is small.

� Our weight readjustment algorithm can be em-
ployed with most existing GPS-based scheduling
algorithms to deal with the problem of infeasible
weights. We experimentally demonstrate in Section
4.2 that doing so enables these schedulers to signif-
icantly reduce (but not eliminate) the unfairness in
their allocations for multiprocessor environments.

The weight readjustment algorithm can also
be employed in conjunction with a random-
ized proportional-share scheduler such as lottery
scheduling [27]. Although such a scheduler does
not suffer from starvation problems due to infeasi-
ble weights, a set of feasible weights can help such
a randomized scheduler in making more accurate
scheduling decisions.

Given our weight readjustment algorithm, we now
present an idealized algorithm for proportional-share
scheduling in multiprocessor environments.

2.2 Generalized Multiprocessor Sharing

Consider a server with p processors each with capacity C
that runs t threads. Let the threads be assigned weights
w1, w2, w3, : : :, wt. Let �i denote the instantaneous
weight of a thread as computed by the readjustment
algorithm. At any instant, depending on whether the
thread satisfies or violates the feasibility constraint, �i
is either the original weight wi or the readjusted weight.
From the definition of �i, it follows that �iP

j
�j

� 1

p

at all times (our weight readjustment algorithm ensures
this property). Assume that threads can be scheduled
for infinitesimally small quanta and let Ai(t1; t2) de-
note the CPU service received by thread i in the inter-
val [t1; t2). Then the generalized multiprocessor shar-
ing (GMS) algorithm has the following property: for any
interval [t1; t2), the amount of CPU service received by
thread i satisfies

Ai(t1; t2)

Aj(t1; t2)
�

�i
�j

(2)

provided that (i) thread i is continuously runnable in the
entire interval, and (ii) both �i and �j remain fixed in
that interval. Note that the instantaneous weight � re-
mains fixed in an interval if the thread either satisfies the
feasibility constraint in the entire interval, or continu-
ously violates the constraint in the entire interval. It is
easy to show that Equation 2 implies proportionate allo-
cation of processor bandwidth.2

Intuitively, GMS is similar to a weighted round-robin
algorithm in which threads are scheduled in round-robin
order (p at a time); each thread is assigned an infinites-
imally small CPU quantum and the number of quanta
assigned to a thread is proportional to its weight. In
practice, however, threads must be scheduled using fi-
nite duration quanta so as to amortize context switch
overheads. Consequently, in what follows, we present a
CPU scheduling algorithm that employs finite duration
quanta and is a practical approximation of GMS.

2.3 Surplus Fair Scheduling

Consider a GMS-based CPU scheduling algorithm that
schedules threads in terms of finite duration quanta. To
clearly understand how such an algorithm works, we
first present the intuition behind the algorithm and then
provide precise details. Let us assume that thread i is
assigned a weight wi and that the weight readjustment
algorithm is employed to ensure that weights are feasi-
ble at all times. Let �i denote the instantaneous weight
of thread i. Let Ai(t1; t2) denote the amount of CPU
service received by thread i in the duration [t1; t2), and
let AGMS

i (t1; t2) denote the amount of service that the
thread would have received if it were scheduled using
GMS. Then, the quantity

�i = Ai(t1; t2)�AGMS
i (t1; t2) (3)

2This can be observed by summing Equation 2 over all runnable
threads j, which yields Ai(t1; t2) �

P
j
�j � �i �

P
j
Aj(t1; t2).

Since
P

j
Aj(t1; t2) is the total processor bandwidth allocated to all

threads in the interval, we can substitute it by the quantity p�C�(t2�t1)

Hence, we get Ai(t1; t2) �
�iP
j
�j

� p � C � (t2 � t1). Thus each

thread receives processor bandwidth in proportion to its instantaneous
weight �i .



represents the extra service (i.e., surplus) received by
thread i when compared to GMS. To closely emulate
GMS, a scheduling algorithm should schedule threads
such that the surplus �i for each thread is as close to
zero as possible. Given a p-processor system, a simple
approach for doing so is to actually compute � i for each
thread and schedule the p threads with the least surplus
values. If the net surplus is negative, doing so allows a
thread to catch up with its allocation in GMS. Even when
the net surplus of a thread is positive, picking threads
with the least positive surplus values enables the algo-
rithm to ensure that the overall deviation from GMS is
as small as possible (picking a thread with a larger �i

would cause a larger deviation from GMS).
A scheduling algorithm that actually uses Equation 3

to compute surplus values is impractical since it re-
quires the scheduler to compute AGMS

i (which in turn
requires a simulation of GMS). Consequently, we de-
rive an approximation of Equation 3 that enables effi-
cient computation of the surplus values for each thread.
Let S1; S2; : : : ; St denote the weighted CPU service re-
ceived by each thread so far. If thread i runs in a quan-
tum, then Si is incremented as Si = Si +

q
�i

, where
q denotes the duration for which the thread ran in that
quantum. Since Si is the weighted CPU service received
by thread i, �i � Si represents the total service received
by thread i so far. Let v denote the minimum value of
Si over all runnable threads. Intuitively, v represents the
processor allocation of the thread that has received the
minimum service so far. Then the surplus service re-
ceived by thread i is defined to be

�i = �i � (Si � v) (4)

The first term �i � Si approximates Ai(0; t), which is
the service received by thread i so far. The second term
�i � v approximates the quantity AGMS

i in Equation 3.
Thus, �i measures the surplus service received by thread
i when compared to the thread that has received the least
service so far (i.e., v). It follows from this definition
of �i that �i � 0 for all runnable threads. Scheduling
a thread with the smallest value of �i ensures that the
scheduler approximates GMS and each thread receives
processor bandwidth in proportion to its weight. Since a
thread is chosen based on its surplus value, we refer to
the algorithm as surplus fair scheduling (SFS).

Having provided the intuition for our algorithm, the
precise SFS algorithm is as follows:

� Each thread in the system is associated with a
weight wi, a start tag Si and a finish tag Fi. Let �i
denote the instantaneous weight of a thread as com-
puted by the readjustment algorithm. When a new
thread arrives, its start tag is initialized as Si = v,
where v is the virtual time of the system (defined

below). When a thread runs on a processor, its fin-
ish tag at the end of the quantum is updated as

Fi = Si +
q

�i
(5)

where q is the duration for which the thread ran in
that quantum and �i is its instantaneous weight at
the end of the quantum. Observe that q can vary
depending on whether the thread utilizes its entire
allocated quantum or relinquishes the processor be-
fore the quantum ends due to a blocking event. The
start tag of a runnable thread is computed as

Si =

(
max(Fi; v) if the thread just woke up
Fi if the thread is continuously

runnable
(6)

� Initially, the virtual time of the system is zero. At
any instant, the virtual time is defined to be the min-
imum of the start tags over all runnable threads.
The virtual time remains unchanged if all proces-
sors are idle and is set to the finish tag of the thread
that ran last.

� At each scheduling instance, SFS computes the sur-
plus values of all runnable threads as �i = �i �(Si�
v) and schedules the thread with the least �i; ties
are broken arbitrarily.

Our surplus fair scheduling algorithm has the following
salient features. First, like most GPS-based algorithms,
SFS is work-conserving in nature—the algorithm en-
sures that a processor will not idle so long as there are
runnable threads in the system. Second, since the sur-
plus �i of a thread depends only on its start tag and not
the finish tag, SFS does not require the quantum length
to be known at the time of scheduling (the quantum du-
ration q is required to compute the finish tag only after
the quantum ends). This is a desirable feature since the
duration of a quantum can vary if a thread blocks before
it is preempted. Third, SFS ensures that blocked threads
do not accumulate credit for the processor shares they
do not utilize while sleeping—this is ensured by setting
the start tag of a newly woken-up thread to at least the
virtual time (this prevents a thread from accumulating
credit by sleeping for a long duration and then starving
other threads upon waking up). Finally, from the defini-
tion of �i and the virtual time, it follows that at any in-
stant there is always at least one thread with �i = 0 (this
is the thread with the minimum start tag, i.e., Si = v
and also has the least surplus value). Since the thread
with the minimum surplus value is also the one with
the minimum start tag, surplus fair scheduling reduces
to start-time fair queuing (SFQ) [9] in a uniprocessor
system. Thus, SFS can be viewed as a generalization of



SFQ for multiprocessor environments. We experimen-
tally demonstrate in Section 4.3 that SFS addresses the
problem of proportionate allocation in the presence of
frequent arrivals and departures described in Example 2
of Section 1.2.

2.4 Fair Allocation versus Processor
Affinities

SFS as defined in the previous section achieves pure fair-
share allocation but does not take processor affinities
[25] into account while making scheduling decisions.
Scheduling a thread on the same processor enables it to
benefit from data cached from previous scheduling in-
stances and improves the effectiveness of a processor
cache. SFS can be modified to account for processor
affinities as follows. Instead of scheduling the thread
with the least surplus value on a processor, SFS can
instead examine the first B threads with the least sur-
plus values and pick one which was previously sched-
uled on that processor. If no such thread exists, then
the scheduler simply picks the thread with the least sur-
plus value for execution. The quantity B is a tunable pa-
rameter and is referred to as the processor affinity bias.
Using B = 1 reduces to pure fair-share scheduling; a
large value of B increases the probability of finding a
thread with an affinity for a particular processor. Ob-
serve that processor-affinity based scheduling and fair-
share scheduling can be conflicting goals. Using a large
processor affinity bias can cause SFS to deviate from
GMS-based fair allocation but allows the scheduler to
improve performance by exploiting cache locality. In
contrast, a small value of the bias enables SFS to provide
better fairness guarantees but can degrade cache perfor-
mance.

3 Implementation Considerations

We have implemented surplus fair scheduling in the
Linux kernel and have made the source code publicly
available to the research community.3 The entire im-
plementation effort took less than three weeks and was
around 1500 lines of code. In the rest of this section,
we present the details of our kernel implementation and
explain some of our key design decisions.

3.1 SFS Data Structures and Implementa-
tion

The implementation of surplus fair scheduling was done
in version 2.2.14 of the Linux kernel. Our imple-
mentation replaces the standard time sharing sched-
uler in Linux; the modified kernel schedules all

3The source code for our implementation is available from
http://www.cs.umass.edu/˜lass/software/gms.

threads/processes using SFS. Each thread in the system
is assigned a default weight of 1; the weight assigned
to a thread can be modified (or queried) using two new
system calls—setweight and getweight. The pa-
rameters expected by these system calls are similar to the
setpriority and getpriority system calls em-
ployed by the Linux time sharing scheduler. SFS allows
the weight assigned to a thread to be modified at any
time (just as the Linux time sharing scheduler allows the
priority of a thread to be changed on-the-fly).

Our implementation of SFS maintains three queues.
The first queue consists of all runnable threads in de-
scending order of their weights. The other two queues
consist of all runnable threads in increasing order of
start tags and surplus values, respectively. The first
queue is employed by the readjustment algorithm to de-
termine the feasibility of the assigned weights (recall
from Section 2.1 that maintaining a list of threads sorted
by their weights enables the weight readjustment algo-
rithm to be implemented efficiently). The second queue
is employed by the scheduler to compute the virtual
time; since the queue is sorted on start tags, the virtual
time at any instant is simply the start tag of the thread
at the head of the queue. The third queue is used to
determine which thread to schedule next—maintaining
threads sorted by their surplus values enables the sched-
uler to make scheduling decisions efficiently.

Given these data structures, the actual scheduling is
performed as follows. Whenever a quantum expires or
one of the currently running threads blocks, the Linux
kernel invokes the SFS scheduler. The SFS scheduler
first updates the finish tag of the thread relinquishing the
processor and then computes its start tag (if the thread
is still runnable). The scheduler then computes the new
virtual time; if the virtual time changes from the pre-
vious scheduling instance, then the scheduler must up-
date the surplus values of all runnable threads (since � i

is a function of v) and re-sort the queue. The sched-
uler then picks the thread with the minimum surplus and
schedules it for execution. Note that since a running
thread may not utilize its entire allocated quantum due
to blocking events, quantums on different processors are
not synchronized; hence, each processor independently
invokes the SFS scheduler when its currently running
thread blocks or is preempted. Finally, the readjust-
ment algorithm is invoked every time the set of runnable
threads changes (i.e., after each arrival, departure, block-
ing event or wakeup event), or if the user changes the
weight of a thread.

3.2 Implementation Complexity and Opti-
mizations

The implementation complexity of the SFS algorithm is
as follows:



� New arrival or a wakeup event: The newly ar-
rived/woken up thread must be inserted at the ap-
propriate position in the three run queues. Since
the queues are in sorted order, using a linear search
for insertions takes O(t), where t is the number of
runnable threads. The complexity can be further
reduced to O(log t) if binary search is used to de-
termine the insert position. The readjustment al-
gorithm is invoked after the insertion, which has a
complexity of O(p). Hence, the total complexity is
O(t+ p).

� Departure or a blocking event: The termi-
nated/blocked thread must be deleted from the run
queue, which is O(1) since our queues are doubly
linked lists. The readjustment algorithm is then in-
voked for the new run queue, which takes O(p).
Hence, the total complexity is O(p).

� Scheduling decisions: The scheduler first updates
finish and start tags of the thread relinquishing the
processor and computes the new virtual time, all
of which are constant time operations. If the vir-
tual time is unchanged, the scheduler only needs
to pick the thread with minimum surplus (which
takes O(1) time). If the virtual time increases
from the previous scheduling instance, then the
scheduler must first update the surplus values of
all runnable threads and re-sort the queue. Sorting
is an O(t log t) operation, while updating surplus
values takes O(t). Hence, the total complexity is
O(t log t). The run time performance, in the aver-
age case, can be improved by observing the follow-
ing. Since the queue was in sorted order prior to the
updates, in practice, the queue remains mostly in
sorted order after the new surplus values are com-
puted. Hence, we employ insertion sort to re-sort
the queue, since it has good run time performance
on mostly-sorted lists. Moreover, updates and sort-
ing are required only when the virtual time changes.
The virtual time is defined to be the minimum start
tag in the system, and hence, in a p-processor sys-
tem, typically only one of the p currently running
threads have this start tag. Consequently, on av-
erage, the virtual time changes only once every p
scheduling instances, which amortizes the schedul-
ing overhead over a larger number of scheduling
instances.

� Synchronization issues: Synchronization overheads
can become an issue in SMP servers if the schedul-
ing algorithm imposes a large overhead. Despite its
O(t log t) overhead, SFS can be implemented effi-
ciently due to the following reasons. First, we have
developed a scheduling heuristic (described next)
that reduces the scheduling overhead to a constant.

Second, although the readjustment algorithm needs
to lock the run queue while examining the feasi-
bility constraint for runnable threads, as explained
earlier, these checks can be done efficiently in O(p)
time (independent of the number of threads in the
system). Finally, the granularity of locks required
by SFS is identical to that in the Linux SMP sched-
uler. In fact, our implementation reuses that portion
of the code.

Since the scheduling overhead of SFS grows with the
number of runnable threads, we have developed a heuris-
tic to limit the scheduling overhead when the number of
runnable threads becomes large. Our heuristic is based
on the observation that �i = �i � (Si � v) and hence,
the thread with the minimum surplus typically has either
a small weight, a small start tag, or a small surplus in
the previous scheduling instance. Consequently, exam-
ining a few threads with small start tags, small weights,
or small prior surplus values, computing their new sur-
pluses and choosing the thread with minimum surplus
is a good heuristic in practice. Since our implemen-
tation already maintains three queues sorted by � i, Si
and �i, this can be trivially done by examining the first
few threads in each queue, computing their new sur-
plus values and picking the thread with the least surplus.
This obviates the need to update the surpluses and to
re-sort every time the virtual time changes; the sched-
uler needs to do so only every so often and can use the
heuristic between updates (infrequent updates and sort-
ing are still required to maintain a high accuracy of the
heuristic). Hence, the scheduling overhead reduces to
a constant and becomes independent of the number of
runnable threads in the system (updates to �i and sorting
continue to be O(t log t), but this overhead is amortized
over a large number of scheduling instances). Moreover,
since the heuristic examines multiple runnable threads,
it can be easily combined with the technique proposed in
Section 2.4 to account for processor affinities. We con-
ducted several simulation experiments to determine the
efficacy of this heuristic. Figure 3 plots the percentage
of the time our heuristic successfully picks the thread
with the minimum surplus (we omit detailed results due
to space constraints). The figure shows that, in a quad-
processor system, examining the first 20 threads in each
queue provides sufficient accuracy (> 99%) even when
the number of runnable threads is as large as 5000 (the
actual number of threads in the system is typically much
larger).

As a final caveat, the Linux kernel uses only integer
variables for efficiency reasons and avoids using float-
ing point variables as a data type. Since the computation
of start tags, finish tags and surplus values involves float-
ing point operations, we simulate floating point variables
using integer variables. To do so we scale each floating
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Figure 3: Efficacy of the scheduling heuristic: the fig-
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point operation in SFS by a constant factor. Employing
a scaling factor of 10n for each floating point operation
enables us to capture n places beyond the decimal point
in an integer variable (e.g., the finish tag is computed
as Fi = Si +

q�10n

�i
). The scaling factor is a compile

time parameter and can be chosen based on the desired
accuracy—we found a scaling factor of 104 to be ade-
quate for most purposes. Observe that a large scaling
factor can hasten the warp-around in the start and finish
tags of long running threads; we deal with wraparound
by adjusting all start and finish tags with respect to the
minimum start tag in the system and resetting the virtual
time.

4 Experimental Evaluation

In this section, we experimentally evaluate the surplus
fair scheduling algorithm and demonstrate its efficacy.
We conducted several experiments to (i) examine the
benefits of the readjustment algorithm, (ii) demonstrate
proportionate allocation of processor bandwidth in SFS,
and (iii) measure the scheduling overheads imposed by
SFS. We used SFQ and the Linux time sharing scheduler
as the baseline for our comparisons. In what follows, we
first describe the test-bed for our experiments and then
present the results of our experimental evaluation.

4.1 Experimental Setup

The test-bed for our experiments consisted of a 500
MHz Pentium III-based dual-processor PC with 128 MB
RAM, 13GB SCSI disk, and a 100 Mb/s 3-Com ethernet

card (model 3c595). The PC ran the default installa-
tion of Red Hat Linux 6.0. We used version 2.2.14 of
the Linux kernel for our experiments; depending on the
experiment, the kernel employed either SFS, SFQ or the
time sharing scheduler to schedule threads. In each case,
we used a quantum duration of 200 ms, which is the de-
fault quantum duration employed by the Linux kernel.
The Linux kernel (and hence, our SFS scheduler) can be
configured to employ finer-grain quanta; however, we do
not examine the implications of doing so in this paper.
All experiments were run when the system was lightly
loaded. Note that due to resource constraints, our exper-
iments were run on a system with only two processors;
we have verified the efficacy of SFS on a larger number
of processors via simulations (we omit these results due
to space constraints).

The workload for our experiments consisted of a
combination of real-world applications, benchmarks,
and sample applications that we wrote to demonstrate
specific features. These applications include: (i) Inf,
a compute-intensive application that performs computa-
tions in an infinite loop; (ii) Interact, an I/O bound inter-
active application; (iii) thttpd, a single-threaded event-
based web server, (iv) mpeg play, the Berkeley software
MPEG-1 decoder, (v) gcc, the GNU C compiler, (vi)
disksim, a publicly-available disk simulator, (vii) dhry-
stone, a compute-intensive benchmark for measuring in-
teger performance, and (viii) lmbench, a benchmark that
measures various aspects of operating system perfor-
mance. Next, we describe the experimental results ob-
tained using these applications and benchmarks.

4.2 Impact of the Weight Readjustment Al-
gorithm

To show that the weight readjustment algorithm can
be combined with existing GPS-based scheduling algo-
rithms to reduce the unfairness in their allocations, we
conducted the following experiment. At t=0, we started
two Inf applications (T1 and T2) with weights 1:10. At
t=15s, we started a third Inf application (T3) with a
weight of 1. Task T2 was then stopped at t=30s.We
measured the processor shares received by the three ap-
plications (in terms of number of loops executed) when
scheduled using SFQ; we then repeated the experiment
with SFQ coupled with the weight readjustment algo-
rithm. Observe that this experimental scenario corre-
sponds to the infeasible weights problem described in
Example 1 of Section 1.2. As expected, SFQ is unable
to distinguish between feasible and infeasible weight as-
signments, causing task T1 to starve upon the arrival of
task T3 at t=15s (see Figure 4(a)). In contrast, when cou-
pled with the readjustment algorithm, SFQ ensures that
all tasks receive bandwidth in proportion to their instan-
taneous weights (1:1 from t=0 through t=15, and 1:2:1
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Figure 4: Impact of the weight readjustment algorithm: use of the readjustment algorithm enables SFQ to prevent
starvation and reduces the unfairness in its allocations.

from t=15 through t=30, and 1:1 from then on). See Fig-
ure 4(b). This demonstrates that the weight readjustment
algorithm enables a GPS-based scheduler such as SFQ
to reduce the unfairness in its allocations in multipro-
cessor environments.

4.3 Comparing SFQ and SFS

In this section, we demonstrate that even with the weight
readjustment algorithm, SFQ can show unfairness in
multiprocessor environments, especially in the presence
of frequent arrivals and departures (as discussed in Ex-
ample 2 of Section 1.2). We also show that SFS does
not suffer from this limitation. To demonstrate this be-
havior, we started an Inf application (T1) with a weight
of 20, and 20 Inf applications (collectively referred to
as T2�21), each with weight of 1. To simulate frequent
arrivals and departures, we then introduced a sequence
of short Inf tasks (Tshort) into the system. Each of these
short tasks was assigned a weight of 5 and ran for 300ms
each; each short task was introduced only after the pre-
vious one finished. Observe that the weight assignment
is feasible at all times, and the weight readjustment al-
gorithm never modifies any weights. We measured the
processor share received by each application (in terms
of the cumulative number of loops executed). Since the
weights of T1, T2�21 and Tshort are in the ratio 20:20:5,
we expect T1 and T2�21 to receive an equal share of the
total bandwidth and this share to be four times the band-
width received by Tshort. However, as shown in Fig-
ure 5(a), SFQ is unable to allocate bandwidth in these
proportions (in fact, each set of tasks receives approx-
imately an equal share of the bandwidth). SFS, on the
other hand, is able to allocate bandwidth approximately
in the requested proportion of 4:4:1 (see Figure 5(b)).

The primary reason for this behavior is that SFQ
schedules threads in “spurts”—threads with larger

weights (and hence, smaller start tags) run continuously
for some number of quanta, then threads with smaller
weights run for a few quanta and the cycle repeats. In the
presence of frequent arrivals and departures, schedul-
ing in such “spurts” allows tasks with higher weights
(T1 and Tshort in our experiment) to run almost con-
tinuously on the two processors; T2�21 get to run infre-
quently. Thus, each Tshort task gets as much processor
share as the higher weight task T1; since each Tshort task
is short lived, SFQ is unable to account for the band-
width allocated to the previous task when the next one
arrives. SFS, on the other hand, schedules each appli-
cation based on its surplus. Consequently, no task can
run continuously and accumulate a large surplus without
allowing other tasks to run first; this finer interleaving
of tasks enables SFS to achieve proportionate allocation
even with frequent arrivals and departures.

4.4 Proportionate Allocation and Applica-
tion Isolation in SFS

Next, we demonstrate proportionate allocation and ap-
plication isolation of tasks in SFS. To demonstrate pro-
portionate allocation, we ran 20 background dhrystone
processes, each with a weight of 1. We then ran two
thttpd web servers and assigned them different weights
(1:1, 1:2, 1:4 and 1:7). A large number of requests were
then sent to each web server. In each case, we mea-
sured the average processor bandwidth allocated to each
web server (the background dhrystone processes were
necessary to ensure that all weights were feasible at all
times; without these processes, no weight assignment
other than 1:1 would be feasible in a dual-processor sys-
tem). As shown in Figure 6(a), the processor bandwidth
allocated by SFS to each web server is in proportion to
its weight.

To show that SFS can isolate applications from one
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another, we ran the mpeg play software decoder in the
presence of a background compilation workload. The
decoder was given a large weight and used to decode a 5
minute long MPEG-1 clip that had an average bit rate of
1.49 Mb/s. Simultaneously, we ran a varying number of
gcc compile jobs, each with a weight of 1. The scenario
represents video playback in the presence of background
compilations; running multiple compilations simultane-
ously corresponds to a parallel make job (i.e., make -j)
that spawns multiple independent compilations in paral-
lel. Observe that assigning a large weight to the decoder
ensures that the readjustment algorithm will effectively
assign it the bandwidth of one processor, and the compi-
lations jobs share the bandwidth of the other processor.

We varied the compilation workload and measured
the frame rate achieved by the software decoder. We
then repeated the experiment with the Linux time shar-
ing scheduler. As shown in Figure 6(b), SFS is able to
isolate the video decoder from the compilation work-

load, whereas the Linux time sharing scheduler causes
the processor share of the decoder to drop with increas-
ing load. We hypothesize that the slight decrease in the
frame rate in SFS is caused due to the increasing number
of intermediate files created and written by the gcc com-
piler, which interferes with the reading of the MPEG-1
file by the decoder.

Our final experiment consisted of an I/O-bound inter-
active application Interact that ran in the presence of a
background simulation workload (represented by some
number of disksim processes). Each application was as-
signed a weight of 1, and we measured the response time
of Interact for different background loads. As shown in
Figure 6(c), even in the presence of a compute-intensive
workload, SFS provides response times that are compa-
rable to the time sharing scheduler (which is designed to
give higher priority to I/O-bound applications).



Test Time sharing SFS
syscall overhead 0.7 �s 0.7 �s

fork() 400 �s 400 �s
exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 1 �s 4 �s
Context switch (8 proc/ 16KB) 15 �s 19 �s
Context switch (16 proc/ 64KB) 178 �s 179 �s

Table 1: Scheduling Overheads reported by lmbench

4.5 Benchmarking SFS: Scheduling Over-
heads

We used lmbench, a publicly available operating sys-
tem benchmark, to measure the overheads imposed by
the SFS scheduler. We ran lmbench on a lightly loaded
machine with SFS and repeated the experiment with the
Linux time sharing scheduler. In each case, we averaged
the statistics reported by Lmbench over several runs to
reduce experimental error. Note that the SFS code is
untuned, while the time sharing scheduler has benefited
from careful tuning by the Linux kernel developers. Ta-
ble 1 summarizes our results (we report only those lm-
bench statistics that are relevant to the CPU scheduler).
As shown in Table 1, the overhead of creating processes
(measured using the fork and exec system calls) is
comparable in both schedulers. The context switch over-
head, however, increases from 1 �s to 4 �s for two 0KB
processes (the size associated with a process is the size
of the array manipulated by each process and has impli-
cations on processor cache performance [13]). Although
the overhead imposed by SFS is higher, it is still consid-
erably smaller than the 200 ms quantum duration em-
ployed by Linux. The context switch overheads increase
in both schedulers with increasing number of processes
and increasing process sizes. SFS continues to have a
slightly higher overhead, but the percentage difference
between the two schedulers decreases with increasing
process sizes (since the restoration of the cache state be-
comes the dominating factor in context switches).

Figure 7 plots the context switch overhead imposed
by the two schedulers for varying number of 0 KB pro-
cesses (the array sizes manipulated by each process was
set to zero to eliminate caching overheads from the con-
text switch times). As shown in the figure, the context
switch overhead increases sharply as the number of pro-
cesses increases from 0 to 5, and then grows with the
number of processes. The initial increase is due to the
increased book-keeping overheads incurred with a larger
number of runnable processes (scheduling decisions are
trivial when there is only one runnable process and re-
quire minimal updates to kernel data structures). The
increase in scheduling overhead thereafter is consistent
with the complexity of SFS reported in Section 3.2 (the
scheduling heuristic presented in that section was not
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Figure 7: Scheduling overheads reported by lmbench
with varying number of processes.

used in this experiment). Interestingly, the Linux time
sharing scheduler also imposes an overhead that grows
with the number of processes.

5 Limitations and Directions for Fu-
ture Work

Whereas surplus fair scheduling achieves proportionate
allocation of bandwidth in multiprocessor environments,
it has certain limitations. In what follows, we discuss
some of the limitations of SFS and opportunities for fu-
ture work.

In SFS, the QoS requirements of an application are
distilled to a single dimension, namely its rate (which
is specified using a weight). That is, SFS is a pure
proportional-share CPU scheduler. Applications can
have requirements along other dimensions. For instance,
interactive applications tend to be more latency-sensitive
than batched applications, or a certain application may
need to have higher priority than other applications.
Recent research has extended GPS-based proportional-
share schedulers to account for these dimensions. For
instance, SMART [16] enhances a GPS-based sched-
uler with priorities, while BVT [7] extends a GPS-based
scheduler to handle latency requirements of threads. We
plan to explore similar extensions for GMS-based sched-
ulers such as SFS as part of our future work.

GPS-based schedulers such as SFQ can perform hi-
erarchical scheduling. This allows threads to be ag-
gregated into classes and CPU shares to be allocated
on a per-class basis. Consequently, hierarchical sched-
ulers can handle resource principals (e.g., processes)
consisting of multiple threads. Many hierarchical sched-
ulers also support class-specific schedulers, in which the
bandwidth allocated to a class is distributed among indi-
vidual threads using a class-specific scheduling policy.
SFS is a single-level scheduler and can only handle re-
source principals with a single thread. We are currently



enhancing SFS to overcome both limitations. To handle
resource principals with multiple threads, we are gener-
alizing our weight readjustment algorithm. Specifically,
a resource principal with � threads can be simultane-
ously scheduled on � processors. The feasibility con-
straint for such a resource principal is specified as

wiP
j wj

� min(
�

p
; 1) (7)

We are modifying the weight readjustment algorithm
to incorporate this constraint. To support hierarchical
scheduling, we are modifying SFS to allow independent
resource principals to be grouped into classes in a hier-
archical manner. Assuming that these groups are speci-
fied in the form of a tree, our enhanced algorithm allows
weights to be specified for each node (sub-class) in the
tree. Our weight readjustment algorithm then ensures
feasibility of the weights assigned to each node based
on the number of runnable threads in that sub-tree.

SMP-based time-sharing schedulers employed by
conventional operating systems take caching effects into
account while scheduling threads [25]. As explained in
Section 2.4, SFS can be modified to take such proces-
sor affinities into account while making scheduling deci-
sions. However, the implications of doing so on fairness
guarantees and cache performance need further investi-
gation.

Regardless of whether resources are allocated in rela-
tive or absolute terms, a predictable scheduler will need
to employ techniques to restrict the number of threads
in the system in order to provide performance guaran-
tees. While some schedulers integrate an admission con-
trol test with the scheduling algorithm, others implicitly
assume that such an admission control test will be em-
ployed but do not specify a particular test. SFS falls
into the latter category—the system will need to em-
ploy admission control if threads desire specific perfor-
mance guarantees. Assuming such a test is employed,
fair proportional-share schedulers have been shown to
provide bounds on the throughput received and the la-
tency incurred by threads [4, 9]. We are currently an-
alyzing SFS to determine the performance guarantees
that can be provided to a thread. Note, however, that
the scheduling heuristic and the processor affinity bias
can weaken the guarantees provided by SFS.

Finally, proportional-share schedulers such as SFS
need to be combined with tools that enable a user to
determine an application’s resource requirements. Such
tools should, for instance, allow a user to determine the
processing requirements of an application (for instance,
by application profiling), translate these requirements to
appropriate weights, and modify weights dynamically if
these resource requirements change [6, 21]. Translating
application requirements such as rate to an appropriate
set of weights is the subject of future research.

6 Concluding Remarks

In this paper, we argued that the infeasibility of cer-
tain weight assignments causes unfairness or starvation
in many existing proportional-share schedulers when
employed for multiprocessor servers. We presented a
novel weight readjustment algorithm to translate infea-
sible weight assignments to a feasible set of weights. We
showed that our algorithm enables existing proportional-
share schedulers such as SFQ to significantly reduce, but
not eliminate, the unfairness in their allocations. We
then presented the idealized generalized multiprocessor
sharing algorithm and derived surplus fair scheduling,
which is a practical instantiation of GMS. We imple-
mented SFS in the Linux kernel and demonstrated its
efficacy through an experimental evaluation. Our exper-
iments indicate that a proportional-share CPU scheduler
such as SFS is not only practical but also desirable for
general-purpose operating systems. As part of future
work, we plan to extend SFS to do hierarchical schedul-
ing as well as enhance proportional-share schedulers to
account for priorities and delay.
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