
Performance implications of multiple pointer sizes

Jeffrey C. Mogul, Joel F. Bartlett, Robert N. Mayo, Amitabh Srivastava
Digital Equipment Corporation Western Research Laboratory

An increase in address size is a discontinuity: theAbstract
fraction of ‘‘interesting’’ bits in a pointer shrinks a
lot. Programs that were pushing the limits of the oldMany users need 64-bit architectures: 32-bit sys-
address space consume almost none of the new ad-tems cannot support the largest applications, and 64-
dress space.bit systems perform better for some applications.

However, performance on some other applications While some programs will soon grow to need the
can suffer from the use of large pointers; large new address space, many (if not most) will not. A
pointers can also constrain feasible problem size. large fraction of the storage used for pointers often
Such applications are best served by a 64-bit machine goes to waste. A program that needs 33 bits of ad-
that supports the use of both 32-bit and 64-bit pointer dress space will not run at all on a 32-bit system, but
variables. a program that runs happily on a 32-bit system will

‘‘waste’’ more than half of the bits in every 64-bitThis paper analyzes several programs and pro-
pointer.gramming techniques to understand the performance

implications of different pointer sizes. Many (but not Does this hurt performance? In this paper, we
all) programs show small but definite performance examine a number of ways in which pointer size af-
consequences, primarily due to cache and paging ef- fects performance for programs that do not need ad-
fects. dresses larger than 32 bits. We will show that the

effects depend on many variables, including problem
size, intensity of pointer use, memory system design,1. Introduction
and luck. In many (perhaps most) cases, perfor-

There is only one mistake that can be made in
mance is independent of pointer size, but sometimes,computer design that is difficult to recover from--
using too-large pointers can result in extra cachenot having enough address bits for memory ad-

dressing and memory management [4] (p. 2). misses, TLB faults, and paging.
Smaller is faster [11] (p. 18). 64-bit systems not only support larger addresses;

they also support larger integer data types (most 32-Whenever someone has declared that a computer
bit systems already support 64-bit floating-pointhas more than enough addressing bits, time (and not
types). Large integers are clearly useful; for ex-much of it) has proven otherwise. Just when systems
ample, a 32-bit unsigned counter that incrementswith 32-bit addresses have become commonplace,
every microsecond will overflow in about one hour.many users have found this inadequate; their
We will not, in this paper, examine the performanceproblems are too large to conveniently implement
consequences of large integers, because programmersusing 32-bit pointers. While one can sometimes ex-
have understood this issue for many years and be-tend a 32-bit architecture with tricks such as segmen-
cause all 32-bit and 64-bit systems allow program-tation, ultimately the only efficient and clean solution
mers to control the size of integer variables.is to use a large, flat address space. Experience sug-

gests that only power-of-two pointer sizes make Many programs really do need addresses larger
sense, and indeed most major vendors are either ship- than 32 bits, so 64-bit systems are essential and in-
ping or planning 64-bit systems. evitable. We argue, on the evidence of the experi-

ments reported on this paper, that the best system current systems cannot support enough real memory
design gives programmers a choice between 32-bit to exhaust a 32-bit address space, the aggregate
and 64-bit pointers, on a program-by-program or memory of a large number of such systems could
even variable-by-variable basis. easily exceed the range of a 32-bit address, especially

if segmented for convenience in allocation and
management.2. Related work

Microsoft’s Windows system supports several
3. Technical contextdifferent kinds of pointer, because the underlying

In this section, we discuss computer system tech-Intel 80286 memory architecture does not directly
nology as it relates to pointer sizes. We use Digital’ssupport a 32-bit flat address space [15]. (Windows
Alpha AXP architecture [23, 24], and implemen-also runs on the Intel 80386, which has a flat 32-bit
tations thereof, as a specific example. In addition toaddressing model, but applications meant to be port-
architecture, we look at issues in hardware im-able must be compiled to use the more restrictive
plementation and program compilation. (Operating80286 model.) 80286 addresses use a 16-bit segment
system features affect the cost of translation buffernumber and a 16-bit offset, and Windows cannot
and page faults, but those issues are beyond the scopeguarantee that data segments are contiguous. Thus,
of this paper.)when a program uses a 32-bit pointer, the compiler

generates code to extract the segment number and
offset, loads the segment register, and then uses the 3.1. Architecture
offset to reference the memory object. This makes The Alpha AXP architecture is a load-store design
32-bit pointers far more expensive than 16-bit with flat (unsegmented) 64-bit byte addresses. The
pointers, but for reasons unrelated to the issues dis- architecture does single-instruction loads and stores
cussed in this paper. (Programs compiled for the of properly aligned 64-bit and 32-bit values; other
Win32s interface use the 80386 addressing model, values are accessed with multi-instruction sequences.
and so run more efficiently but cannot be used on All instructions are 32 bits wide; load/store in-
80286 systems.) structions specify memory addresses using a general-

Our comparison of applications using 32-bit and purpose (64-bit) register and a 16-bit signed displace-
64-bit pointers presupposes that one has the option of ment.
using small pointers on a 64-bit system. Some ap- The architecture does not specify a single
plications do use larger data sets than can be ad- memory-system page size, but rather allows an
dressed using 32-bit pointers. Moreover, some implementation’s basic page size to be 8 KB, 16 KB,
research projects into operating system design are 32 KB, or 64 KB. Page table entries may use
using 64-bit addresses to accomplish other goals; this ‘‘granularity hints’’ to inform the Translation Buffer
means that even the smallest application must use (TB, sometimes known as a Translation Lookaside
64-bit addresses. Such systems rely on large ad- Buffer or TLB) that a block of pages can be mapped
dresses; 32-bit pointers simply would not suffice. with a single TB entry; however, in the experiments

Several research groups are examining the use of described in this paper, this feature is not used.
64-bit architectures to build single-address-space
protected operating systems [6, 7, 27]. In such sys- 3.2. Hardware implementation
tems, all protected objects (processes, in particular) We did the experiments reported on in this paper
share a single address space. The system prevents on several workstations of relatively similar design.
unauthorized access not by modifying the virtual Common elements include:
memory map on each context switch, but by hiding • DECchip 21064-AA CPU [8]
each object at a randomly chosen location in a large, • 8 KB on-chip separate instruction and data
sparsely populated address space. An object’s ad- caches

• Physically addressed, direct-mapped,dress acts as a capability, since the full address space
write-throughis too large for a malicious or buggy program to

• 32-byte blockssearch for an object whose location has not been ob-
tained by proper means. • 4-entry 32-byte/entry on-chip write buffer

• 8 KB page sizeCarter et al. have proposed building a distributed
• 32-entry on-chip fully-associative data TLBshared memory (DSM) system using a large address

space to give a process direct access to memory ob- • 8-entry on-chip fully-associative instruction
TLBjects spread across many nodes [5]. Although most

Note that the compiler used in these tests• 2 MB board-level cache
• generates essentially the same type and number ofDirect-mapped, write-back
• instructions for both 32-bit and 64-bit pointers. The32-byte blocks

only difference is that loads and stores of pointerThe specific systems differ in CPU clock rate,
variables read or write 32 bits of memory instead ofmain memory size, and disk access time. For the
64 bits. One could do somewhat better than this fortests reported in this paper, we used three different
some uses of 32-bit pointers, so our measurementssystems:
may not reflect the entire potential effect of their use.• System A, a DECstation 3000/600 (175 MHz

clock, SPECint92 = 114.1), with 128 MB of Because the programs we tested execute essen-
main memory. tially the same instruction stream regardless of

• System I, a DECstation 3000/800 (200 MHz pointer size, all of the performance effects shown in
clock, SPECint92 = 130.2), with 1024 MB of this paper reflect aspects of the memory system
main memory. (caches, RAM, TLB, and disk).

• System N, a DECstation 3000/500 (150 MHz
clock, SPECint92 = 84.4), with 64 MB of main

4. Results for a contrived programmemory. (This system has a 512 KB board-
What aspects of system design interact withlevel cache.)

pointer size to affect performance? We wrote a
simple, contrived program (figure 4-1) to illustrate3.3. Compilation system
several of these aspects. We designed the program toAll the programs described in this paper are coded
emphasize the worst-case effects of using largein C, run on the DEC OSF/1 operating system, and
pointers; it most certainly does not represent realwere compiled using the standard DEC OSF/1 V3.0
programs, and almost any other program will showcompilers.
smaller effects.

The compiler supports several integer data types:
The program simply constructs a circular queue‘‘short’’ (16 bits), ‘‘int’’ (32 bits), and ‘‘long’’ (64

and then follows the pointer chain around the queue.bits). By default, pointers are 64 bits wide. The
It takes three arguments: N, the number of queue ele-compiler supports a #pragma statement that allows
ments; M, the number of iterations (pointerthe programmer to select 32-bit pointers. The
dereferences); and P, the number of references be-programmer can choose a pointer size for an entire
tween random ‘‘seeks’’ to a different part of themodule, or for specific declarations within that
queue. If P = M, then no random seeks are donemodule. The programmer also specifies at compile
(after the first one); if P = 1, then every reference istime whether the pragma should be interpreted or ig-
to a randomly-chosen element.nored, so the modified program source can optionally

The program can be compiled to use either 32-bitbe compiled to use only 64-bit pointers.
pointers or 64-bit pointers. We ran each version withFor example, this program:
a pseudo-logarithmic series of values for N, largechar *lp;

#pragma pointer_size (short) values of M (at least 10,000,000), and two values of
char *sp; P (P = M, effectively sequential access, and P = 10,
main() {

almost random access). We measured the user-modeprintf(
"sizeof(sp) = %d, sizeof(lp) = %d\n", and kernel-mode CPU time, and the elapsed time, for
sizeof(sp), sizeof(lp)); each run.}

We plotted the ratios of the times taken by theproduces
32-bit version to the times taken by the 64-bit ver-

sizeof(sp) = 4, sizeof(lp) = 8
sion; this is more useful than a plot of the actual

Normally, the linker arranges programs to start times, which vary widely. Figure 4-2 shows the
32above address 2 ; this means that any attempt to ratios of user-mode CPU times; figure 4-3 shows the

dereference a 32-bit value causes an addressing trap, ratios of kernel CPU times; figure 4-4 shows the
which aids in the detection of portability problems. elapsed-time ratios.
A program that uses 32-bit pointers clearly cannot be

From figure 4-2 one can see that for small work-32located above 2 , so at compile time the program-
ing sets, the pointer size has little or no effect onmer must tell the linker to use its ‘‘truncated address
performance. Once the entire data set no longer fitsspace option,’’ which forces all program addresses to
in the 8 KB on-chip cache, however, the cost of alie below that limit. Of course, this cannot be used
memory reference increases significantly. Because32with programs requiring more than 2 bytes of vir-

tual address space.

1 #include <stdio.h> 31
2 32 qp = qpstore;
3 #pragma pointer_size (short) 33
4 34 qp->forward = qp;
5 struct QueueElement { 35 qp->backward = qp;
6 struct QueueElement *forward; 36
7 struct QueueElement *backward; 37 /* make queue elements */
8 }; 38 for (i = 0; i < N; i++) {
9 39 /* Insert next element

10 main(argc, argv) 40 after head of queue */
11 int argc; 41 qp[i].forward = qp[0].forward;
12 char **argv; 42 qp[i].backward = &qp[0];
13 { 43 qp[i].backward->forward = &qp[i];
14 long N = atoi(argv[1]); 44 qp[i].forward->backward = &qp[i];
15 long M = atoi(argv[2]); 45 }
16 long P = 1000; 46
17 int rval; 47 for (i = 0; i < M/P; i++) {
18 int i, j; 48 rval = random() % N;
19 struct QueueElement *qp; 49 qp = &(qpstore[rval]);
20 struct QueueElement *qpstore; 50 for (j = 0; j < P; j++) {
21 51 /* follow pointer */
22 if (argc > 3) 52 qp = qp->forward;
23 P = atoi(argv[3]); 53 }
24 54 }
25 qpstore = (struct QueueElement *) 55 }
26 malloc(sizeof(*qp)*N);
27 if (qpstore == NULL) {
28 perror("malloc");
29 exit(1);
30 }

Figure 4-1: Contrived test program

100 1e+08
Number of queue elements

1000 10000 100000 1e+06 1e+07
0

1.2

0.2

0.4

0.6

0.8

1

R
at

io
 o

f
us

er
-m

od
e

C
PU

 ti
m

e

Sequential

Random, P = 10

Sequential, random overhead

Ratios are 32-bit pointer time/64-bit pointer time

Figure 4-2: Ratios of user-mode CPU times for contrived program

2000 32-bit pointers (1000 queue elements) fit in 8 For the random-access case (P = 10), the cost of
KB, but only 1000 64-bit pointers (500 queue ele- frequently generating random numbers partially
ments) fit, the user-time ratio drops precipitously at N evens out the ratio of user-mode CPU times. To
= 500. It recovers somewhat at N = 2000 (where show this effect, we include the curve in figure 4-2
even with 32-bit pointers the on-chip cache is too marked ‘‘Sequential, random overhead’’. This is for
small), but because a cache block holds four queue a version of the program that calculates a new ran-
elements with 32-bit pointers, and only two queue dom value every 10th iteration, as in the P = 10 case,
elements with 64-bit pointers, in the sequential case but then ignores this value and runs through the
the 64-bit version cache-misses about twice as often. queue sequentially.

The next obvious dip in the user-mode CPU time one call), showed essentially no difference between
ratio comes when the working set no longer fits into the 32-bit and 64-bit versions. On this system,
the 2 MB off-chip cache. This cache holds about malloc(x) always consumes at least 32 bytes of
256K queue elements with 32-bit pointers, but only memory for any x <= 24, so both the 32-bit and 64-
128K elements with 64-bit pointers. bit versions of the first-attempt program consumed

the same amount of space, and both versions put ex-Figure 4-3 shows the ratios of kernel-mode CPU
actly one queue element in each cache block.times, which are rather ‘‘noisy’’ because they include

extraneous system activity. These ratios generally
4.3. Dependence on code schedulingtrack the user-mode ratios until the 64-bit version

The contrived programs described above do noth-starts paging, because both programs incur relatively
1 ing but follow pointers, and occasionally generateconstant kernel-mode overheads of about 1%-2% .

random numbers. Even the simplest real programOnce paging begins, the (kernel-mode) CPU cost of
usually does some computation on the objects it findshandling page faults becomes comparable to the user-
while following pointers. We modified the programmode CPU time. When the problem size is large
in figure 4-1 by adding a float data field to theenough that both programs are paging, the kernel-
QueueElement structure; this increased the size ofmode ratio returns to about 50%, since the 32-bit ver-
the structure by 50%, for both 32-bit and 64-bitsion page-faults half as often.
pointers. We modified the inner loop (lines 50-53 inThe elapsed time ratios, plotted in figure 4-4 on a
figure 4-1) in two slightly different ways. Version Alog-log scale, show that cache-miss effects dominate
is:until the problem size exceeds the memory size, at

for (j = 0; j < P; j++) {which point paging latency becomes the bottleneck. qp->data = (i + j + 3.3)/(j + 1.0);
The ratio drops when the 64-bit version starts to qp = qp->forward;

}page, then recovers (to approximately 0.55) once the
Version B is:32-bit version starts paging.

for (j = 0; j < P; j++) {
struct QueueElement *qpn;

4.1. TLB effects qpn = qp->forward;
qp->data = (i + j + 3.3)/(j + 1.0);Each TLB miss causes invocation of a handler
qp = qpn;that runs with interrupts disabled, and thus does not

}
directly appear in the CPU time statistics sampled by

We then ran a set of trials of each program (with P =
the interrupt clock. We would expect to see TLB

10), and plotted the total CPU time (user and kernel
miss costs reflected as an increase in the apparent

combined) in figure 4-5.
user-mode CPU time. This should appear as the

The performance of either version of theworking set exceeds the span of the data TLB (32
compute-intensive shows much less dependence onentries mapping a total of 256 KB), increasing the
pointer size than does the original, pointer-intensiveTLB fault rate (simulations confirm this). The ratio
program (note that the vertical scale in figure 4-5curves should show a change at 16K queue elements,
does not start at zero). This should not be a surprise,but there is no such dip in the sequential-case curve
since the compute-bound program spends a smallerin either of figures 4-2 or 4-3. The random-case
fraction of its time doing pointer operations.curve in figure 4-2 does show a small dip. Ap-

This only explains part of the difference,parently, the cost of extra TLB misses is insignificant
however, since version B of the compute-boundeven for this rather stressful program.
program shows a generally closer ratio than does ver-
sion A (and version B is slightly faster, in absolute4.2. Dependence on data layout
terms). Version B manages to bury some of theThe results we measured for this program depend
latency of loading qp->forward, because it can doentirely on how its data structures are laid out. In
the arithmetic computation before it needs to use thefact, our first attempt at a test program, which al-
loaded value. The CPU thus avoids some of thelocated a separate chunk of memory for each queue
pipeline stall that would otherwise occur. Even forelement (that is, made N calls to malloc() instead of
version A the compiler manages to bury much of the
load latency; the use of the auxiliary variable qpn
simply increases this effect slightly.1We believe this overhead is due to device interrupts in

So, a real program may not see some or all of theprogress when the interrupt clock samples the CPU state.
This does not necessarily mean that the system spends additional load latency imposed by using larger
1%-2% of its time fielding interrupts [14].

100 1e+08
Number of queue elements

1000 10000 100000 1e+06 1e+07
0

1.2

0.2

0.4

0.6

0.8

1
R

at
io

 o
f

ke
rn

el
-m

od
e

C
PU

 ti
m

e

Sequential

Random, P = 10

Ratios are 32-bit pointer time/64-bit pointer time

Figure 4-3: Ratios of kernel-mode CPU times for contrived program

100 1e+08
Number of queue elements

1000 10000 100000 1e+06 1e+07
0.0001

10

R
at

io
 o

f
el

ap
se

d
tim

e

0.001

0.01

0.1

1

10

Sequential

Random

Ratios are 32-bit pointer time/64-bit pointer time

Figure 4-4: Ratios of elapsed times for contrived program

pointers. This depends on the application, the quality 4.4. Summary: contrived programs
of the compiler, and the architecture and implemen- To summarize what we learned from our con-
tation of the CPU. The trend in compiler and CPU trived programs, with larger pointers:

• Cache misses may increase, as the same numbertechnology is toward greater tolerance of load
of data items can require more cache lines.latency [9], so one should expect the pointer-size ef-

• TLB faults may increase, but probably notfects to diminish over time. (Store latencies usually
enough to worry about.do not affect program performance, because modern

• Page faults may increase, as the working set in-CPUs and caches can perform stores asynchronously,
creases.using mechanisms such as write-buffers and write-

Nevertheless, it is actually rather hard to contrive aback caches.)
program that displays any significant performance
dependence on pointer size. Accidents of memory
layout, and compiler or CPU techniques to hide load
latencies, can reduce or eliminate the cache-related

100 1e+07
Number of queue elements

1000 10000 100000 1e+06
0.7

1.05

0.75

0.8

0.85

0.9

0.95

1
R

at
io

 o
f

to
ta

l C
PU

 ti
m

e

CPU-intensive, version A

CPU-intensive, version B

Ratios are 32-bit pointer time/64-bit pointer time

Figure 4-5: Ratios of total CPU times for compute-intensive program

performance effects. The remaining effect of larger • li: Lisp interpreter running a recursive back-
pointers, the earlier onset of paging, afflicts only tracking algorithm to solve the ‘‘nine queens’’

problem.rather large programs, but may be harder to
ameliorate. • sc: A spread sheet program, calculating several

different problems.
Table 5-1 reports our results, expressed as the ratio of5. Results for real programs
times for the 32-bit version to times for the 64-bit

Because the results for our contrived program
version. These timings include a little overhead for

may not represent what happens in real programs, in
execution of measurement scripts, so the actual ratios

this section we present measurements for a variety of
might be slightly larger than the reported ratios (the

more-or-less real programs. All tests were run on
overhead is less than 1% of the user-mode CPU time,

System A, except where noted.
and somewhat larger for kernel-mode CPU time and
elapsed time). We report the mean times for at least

5.1. Selected SPEC integer benchmarks 10 trials of each benchmark; in some cases, we had to
The programs in the SPECint92 benchmark suite run many more trials, to get run times long enough

were intended to be reasonably realistic examples of for accurate measurement.
programs that actual users run. For most of the C-

We include in figure 5-2 a few additionallanguage programs in this suite, we compiled and
measurements of compress and uncompress (versionmeasured versions using both 32-bit pointers and 64-
4.0) operating on a larger file than the 1 MB inputbit pointers. We did not measure gcc, because this
used in the SPECint92 benchmark. Note that the useprogram cannot easily be ported to use true 64-bit
of 32-bit pointers slightly hurts performance onpointers. Also, we made no attempt to recreate the
eqntott, uncompress and the SPEC-related trials ofcompiler flags and measurement conditions used for
compress, but improves the performance of compressthe official SPEC reports; one should not take our
applied to a larger file. We ascribe this to cachemeasurements as actual SPEC benchmark values.
access patterns, but have not yet confirmed that.

The SPECint92 C-language programs are [20]:
• compress: A file compression program using

5.2. Late code modificationLempel-Ziv coding. The same binary is also
Compilers typically perform optimizations whenused to uncompress files.

compiling individual modules of a large program.• eqntott: Translates a boolean equation into a
One can do certain additional optimizations only ontruth table.
the entire program as a whole. A technique called• espresso: Generates and optimizes Programm-
‘‘late code modification’’ performs these further op-able Logic Arrays.
timizations at program link time.

Application Number User-mode CPU Kernel-mode CPU Elapsed time
of trials time ratio time ratio ratio

compress 150 1.008 1.01 1.01

uncompress 150 1.005 1.00 1.01

eqntott 10 1.001 0.98 1.00

espresso 10 0.95 0.98 0.96

li 10 0.96 0.96 0.96

sc 10 0.98 0.98 0.98

Ratios are mean of 32-bit pointer time/64-bit pointer time

Table 5-1: Performance ratios for selected SPECInt92 programs

Application Input bytes Output bytes Number User-mode CPU Elapsed time
of trials time ratio ratio

compress 3397159 1488027 10 0.993 0.98

uncompress 1488027 3397159 10 1.008 1.05

Ratios are mean of 32-bit pointer time/64-bit pointer time
All output directed to /dev/null

Table 5-2: Performance ratios for compression of larger files

OM [25, 26] is an optimizing linker that does late Table 5-4 shows how much space OM requires to
code modification. OM translates the object code of process each target program. In general, the elapsed
the entire program into symbolic form, recovering the time ratios in table 5-3 mirror the size ratios in table
original structure of loops, conditionals, case- 5-4, except in one case. Why, for vcr on System A,
statements, and procedures. It then analyzes this do 32-bit pointers outperform 64-bit pointers by so
symbolic form and transforms it by instrumenting or much, in terms of elapsed time? System A has just
optimizing it, and generates executable object code under 128 MB of real memory; OM’s processing of
from the result. OM makes heavy use of pointers, vcr requires just a bit more than that using 32-bit
because its internal representation of a program cap- pointers, but quite a lot more using 64-bit pointers.
tures the many relationships between program objects The 32-bit pointer version does far less paging, and
such as procedures, variables, basic blocks, etc. so completes much sooner. For both pointer sizes,

System A does not page when processing scixl, andWe ran OM on a number of input programs:
pages heavily when processing fea, so for these• scixl, a Scheme interpreter with X-library stubs
programs the elapsed-time ratios correspond to the(see section 5.4).
size ratios (although for fea, System A is too slow to• fea, a finite element analysis tool.
be feasible with either pointer size).• vcr, a VLSI circuit router.

These results confirm the lessons of section 4, thatThe fea and vcr programs are pseudonyms for real
smaller pointers usually perform slightly better (andprograms with substantial market share; for contrac-
more generally, that performance ratios correspond totual reasons, we cannot give their actual names.
size ratios). However, when larger pointers push theTable 5-3 shows our measurements. We ran trials
working set beyond the size of a cache or realboth on System I, which has a lot of memory, and
memory, small pointers may show a dramatic advan-System A, on which OM’s processing of fea and vcr
tage.exceed the available memory. This causes System A

to page. (It also increases the elapsed times from
5.3. Corner-stitching in the Magic CADminutes to hours, and so we could not run many trials

systemon System A.) The kernel-CPU and elapsed time
Many VLSI designers employ the Magic CADratios in this table may be somewhat inaccurate, since

system [18] to lay out and process their chips. Mostwe could not easily eliminate other activity during
VLSI designs can be expressed as a set of rectangles;these trials.
Magic represents these rectangles and their positions
using an algorithm called ‘‘corner-stitching’’ [17].

Program Test Number User-mode CPU Kernel-mode CPU Elapsed time
system of trials time ratio time ratio ratio

fea System I 10 0.94 0.90 0.93

System A 3 0.92 0.84 0.84

scixl System I 10 0.95 1.00 0.91

System A 3 0.96 0.85 0.87

vcr System I 10 0.93 1.00 0.89

System A 3 0.91 0.45 0.38

Ratios are mean of 32-bit pointer time/64-bit pointer time

Table 5-3: Performance ratios for OM-optimization of selected programs

Program Total object Space required Space required Space ratio Page-in ratio
file size using 32b pointers using 64b pointers

fea 48080 KB 242360 KB 289264 KB 0.84 0.83

scixl 7792 KB 33448 KB 40488 KB 0.83 None

vcr 27184 KB 128328 KB 155800 KB 0.83 0.34

Table 5-4: OM’s space requirements for selected target programs

A Tile, the basic object in the corner-stitching al- Magic actually adds two pointers, rather than one
gorithm, has this structure: integer, to the coordinates and stitches, for a total of

two integers and six pointers. Therefore, in Magic a
Tile requires 32 bytes using 32-bit pointers, and 56
bytes using 64-bit pointers, for a net increase of 75%.

It takes many Tiles to represent a modern VLSI
design. For example, BIPS-0, a 32-bit MIPS proces-
sor without floating point or virtual memory
support [12], required about 3.6 million Tiles. This
would need about 112 MB for Tile storage using 32-
bit pointers, and 197 MB using 64-bit pointers.

We measured Magic performance on three much
smaller designs, a communications interface for a
multiprocessor [22], a memory chip [1], and a mesh

(x,y)

L,X

L,Y

H,X

H,Y

router chip [10].The data structure for a Tile stores the (x, y) coor-
We ‘‘flattened’’ the cell hierarchy of the com-dinates of its lower left corner, and four ‘‘corner

munications interface before running it throughstitches’’: (L,X), (L,Y), (H,X), and (H,Y). The
Magic; the flattened version requires 208801 Tiles.‘‘stitches’’ point to neighboring Tiles. For example,
These Tiles should occupy 6525 KB using 32-bitthe (H,Y) stitch points to the rightmost top neighbor
pointers, and 11419 KB using 64-bit pointers. Inof the Tile. The data structure must also store some
fact, to represent and process this design using 32-bitinformation about the nature of the Tile (for example,
pointers, Magic allocates 9408 KB in addition to itsits layer in the VLSI design).
initial memory requirements; using 64-bit pointers, itThe minimal representation for a Tile requires
allocates 13392 KB. Thus, the design-specificfour pointers and three integers. Since all coordinates
memory use increases by only 42%, because Magicare integral, the integers easily fit into 32 bits. Using
allocates quite a bit of non-Tile storage. (Most of the32-bit pointers, a minimal Tile takes 28 bytes; using
rest of this storage is not actually design-specific, but64-bit pointers, a minimal Tile takes 44 bytes, al-
technology-specific: for example, design rules for thethough a C compiler would normally pad this to 48
specific CMOS process with which the chip will bebytes, to naturally align the 64-bit fields within the
fabricated.) The total memory use increases by onlystructure. Thus, the use of 64-bit pointers increases
26%, because Magic’s other memory use is essen-the minimal Tile size by about 70%.
tially independent of pointer size.

We used Magic to do a ‘‘design-rule check’’ complex structures, since it obviates the need to
(DRC) on these three chips. (Design rules specify maintain reference counts or to call explicit dealloca-
things such as minimums for rectangle width, spac- tion routines. Here we examine the performance of
ing, and overlaps.) A DRC spends much of its time garbage collection in an implementation of the
following corner-stitch pointers, and doing simple Scheme programming language [2, 19].
geometric calculations; it should exhibit moderately Garbage collection complicates the performance
good locality of reference. In each trial, we had picture. (For a full discussion of the cache-related
Magic do 50 DRCs of the chip. Table 5-5 shows the effects of garbage collection, see Reinhold [21].)
mean results over 10 trials, expressed as the ratio of This implementation uses a ‘‘mostly-copying’’
times for the 32-bit version to times for the 64-bit algorithm [3], which requires that a pool of free space
version. The table also shows relative space require- be kept available. The total size of the garbage-
ments for all three chips. collected address space, including live storage and

For the communications interface chip, the use of the overhead, is called the ‘‘heap.’’ When the heap
64-bit pointers appears to reduce performance (both gets too small, the cost of garbage collection becomes
user-mode CPU time, and elapsed time) by about 5%. excessive. Even with enough headroom to work in,
Kernel-mode CPU time shows an even larger change, garbage collection has a run-time cost, which
but has little effect on the elapsed time because it depends somewhat on the size of objects used.
represents only 1.5% of the total CPU time. For the Use of larger pointers can affect the performance
memory chip, pointer size has a smaller effect on of garbage collection:
user-mode CPU time, probably because far fewer 1. It increases the storage-allocation rate (the
Tiles are used. Kernel-mode CPU time represents a rate at which address space is consumed).
larger fraction (about 5%) of the total CPU time on This, in turn, increases the frequency of gar-

bage collection.this problem, so it contributes slightly more to the
change in elapsed time. 2. It increases the cost of each garbage collec-

tion phase, since this cost is proportional toWe believe that the additional kernel-mode time
the amount of live storage.comes mostly from the additional page faults. Al-

3. It reduces the number of structures that fitmost none of these page faults involve the backing
into a given amount of real memory, and thusstore, because we had plenty of main memory on the
may cause the garbage collector to run out of

test machine. Most are ‘‘zero-fill’’ faults used to add headroom.
new pages to the address space, and the 64-bit ver- In the worst case, the first and second effects would
sion does about 22% more of these for the com- each increase run-time linearly with the increase in
munications chip, and about 6% more for the structure size. That is, if a change in pointer size
memory chip. adds 50% to the size of a garbage-collected structure,

The use of 64-bit pointers appears to impose a one would expect the rate of address space consump-
relatively small CPU-time cost on Magic. However, tion to increase by 50%. Assuming that the number
for the BIPS-0 design, Magic with 64-bit pointers of live structures does not change, the amount of data
needs almost 100 MB of additional memory. Put copied during the collection phase would also in-
another way, on a workstation with 128 MB of main crease by 50%.
memory, it would be feasible to design-rule check In practice, run-time costs increase less than
BIPS-0 only using a 32-bit pointer version of Magic; linearly with pointer size. Programs do things be-
with 64-bit pointers, the system would page exces- sides consume address space. During garbage collec-
sively. The most important effect of larger pointers tion, the cost of copying an object includes fixed
is not the slight increase in CPU time, but the much overheads not dependent on object size. Larger ob-
stricter constraint on feasible problem size. jects may show better locality of reference during

copying.
5.4. Garbage collection in Scheme

The third effect, the loss of headroom available toSome modern programming languages support
the garbage collector, cannot be analyzed so easily.‘‘garbage collection’’ instead of explicit deallocation
For any given application working on a specificof dynamic storage. Garbage collection makes
problem, some minimum amount of memory is suf-programs much simpler to write (one no longer has to
ficient to support the garbage collector without exces-worry about forgetting to free a data item, or freeing
sive overhead. When the available memory is lessit too many times, or at the wrong time). It also may
than that amount, garbage-collection costs increaseimprove the performance of code that manipulates
dramatically, and may become effectively infinite.

Design Total space Number Tile space User-mode CPU Kernel-mode CPU Elapsed time Page-fault
ratio of tiles ratio time ratio time ratio ratio ratio

Communications 0.79 208801 0.70 0.95 0.93 0.95 0.83
interface

Memory 0.83 55904 0.73 0.96 0.96 0.96 0.87

Mesh router 0.85 25046 0.85 0.96 0.96 0.96 0.90

Ratios are mean of 32-bit pointer value/64-bit pointer value

Table 5-5: Performance ratios for design-rule checking in Magic

(Normally, the garbage collector expands its heap as lection minimally affects elapsed time, and because
necessary, but the user can limit the expansion to the application does some I/O, the elapsed time ratio
keep it from overflowing real memory; this would approaches unity.
cause the entire program to page excessively.) In summary, for this application we found that the

We measured the performance of our Scheme sys- use of larger pointers increases the amount of heap
tem compiled to use either 64-bit pointers or 32-bit (main memory) required for reasonable performance,
pointers for its primary data type (we kept all other and slightly increases application CPU time. Large
pointers at 64 bits). To maintain the required 64-bit pointers do not significantly affect the running time
alignment for some data objects, the 32-bit version of the application if sufficient RAM is available for
must in some cases pad the pointer fields in its data the garbage collector; otherwise, they seriously in-
objects to a 64-bit boundary. crease elapsed time.

For a sample application, we ran the Scheme->C
5.5. Sortingcompiler [2], a Scheme implementation that achieves

Unnecessarily large pointers could also hurt thehigh portability by using C as its intermediate lan-
performance of pointer-based sorting on large dataguage, and used it to compile the largest source file in
sets. A sort program spends a large part of its timean application called ezd. Figure 5-1 shows the ratios
exchanging the order of records. It can do this byof 32-bit times to 64-bit times for elapsed time, gar-
exchanging the records themselves, by exchangingbage collection CPU time, and application (non-GC)
the keys along with pointers to the full records, or byCPU time. These tests were run on System N.
exchanging just the pointers. Pointer sort may be theOne can see from figure 5-1 that the application
most efficient technique if the keys are large, espe-CPU time depends somewhat on pointer size (use of
cially if the full array of pointers can fit into the CPU64-bit pointers costs about 5%), probably because
board-level data cache. For keys of moderate size, itScheme programs manipulate pointers heavily. The
might be more efficient to use a key sort, whichapplication CPU time varies little with heap size, be-
keeps the keys and the pointers together (and so in-cause the heap size does not really affect the nature
creases locality) [16]. Some phases of a key-basedof pointer references made during application execu-
QuickSort can run entirely in a small, on-chiption.
cache [13].

The garbage-collection CPU time depends
If one is sorting less than a few billion bytes, astrongly on heap size, for heap sizes below a

sort program has no need for 64-bit pointers. Use ofthreshold: about 7 MB for 32-bit pointers, and about
larger pointers than necessary will probably reduce12 MB for 64-bit pointers. In other words, the use of
the number of keys (or pointers) that can fit into thelarger pointers reduces the garbage-collection
CPU’s caches, and so reduces the size of the problemheadroom. Even for heap sizes large enough to
that can be sorted without excessive cache-miss over-reduce the cost of garbage collection below one per
heads.cent of the total CPU time, the use of larger pointers

In an environment that provides only 64-bitseems to add at least 23% to the cost of garbage
pointers, one could implement a pointer-based sortcollection. We believe this results from the increased
using 32-bit record indices. This requires the execu-size of ‘‘live’’ data copied during a garbage collec-
tion of several additional instructions each time antion.
index is converted to a pointer, but could be lessThe total elapsed time depends mostly on garbage
costly than incurring the extra cache misses imposedcollection time, for heap sizes below the headroom
by use of 64-bit pointers. It would also require one tothreshold. For sufficiently large heaps, garbage col-
maintain separate source-code versions of the sorting
program for 32-bit and 64-bit machines.

10 1812 14 16
Heap size (MB)

0

1.2

0.2

0.4

0.6

0.8

1
T

im
e

ra
tio

 (
32

 b
it:

64
 b

it)

Elapsed time

Application CPU time

Garbage-collection CPU time

Ratios are 32-bit pointer time/64-bit pointer time

Figure 5-1: Time ratios for Scheme application

We do not have access to a state-of-the-art sorting modern computers, however, but we believe that they
program, but we did measure the performance of the could be at least as large, if not larger than, the ef-
UNIX sort command applied to several large files. fects of pointer size.
This sort program manipulates pointers rather than Given that pointer (and scalar numeric variable)
the actual key values. Table 5-6 shows the results; size can effect performance, must the programmer
the performance differences of about 5% are consis- make the choice? Compilers (and optimizers) have
tent with results from other programs. freed programmers from many other performance-

related decisions. One could imagine a compilation
environment (perhaps including link-time optimiza-6. Future work
tion) in which the choice of pointer size was deferredThe results we presented in section 5 suggest a
until the compiler could determine the necessaryminor but consistent advantage to the use of smaller
range of each pointer variable. For some pointerpointers, in those programs that heavily use pointers
variables, the compiler might not be able to conser-but do not need to address a huge data set. However,
vatively infer the necessary size without help fromwe would not want to conclude from these results
the programmer (in the form of an assertion pragma);that small pointers are inherently faster. We suggest
in others (for example, a program with constant-sizedthat future studies should include:
buffers), the inference might be fairly easy (espe-• A wider set of large benchmark applications; the
cially in a type-safe programming language).SPEC benchmarks are relatively small, and most

of the other applications we measured are not
easily suited for use as benchmarks.

7. Summary and conclusions• Additional architectures and CPU implemen-
We have shown that pointer size can affect ap-tations; we only measured a single CPU im-

plication performance. The effects depend onplementation of a single architecture, and some
pointer-use frequency, address reference patterns,of our results may depend on those particulars.
memory system design, memory allocation policy,• Multiprocessor and perhaps distributed applica-
and other aspects of both program and system, buttions; pointer size could have significantly dif-
our results for real programs are consistent with whatferent implications in such environments.
we learned from a contrived program: larger pointersProgrammers have understood for decades that
put greater stress on the memory system, and cantheir choice of integer and real variable size can af-
greatly affect cache-hit ratios and paging frequency.fect performance, and most modern programming

Since some applications really do need largelanguages allow such choices. We do not know of
pointers, and the performance of other applicationsany careful studies quantifying these effects on

File size Number User-mode CPU Elapsed time
of trials time ratio ratio

9589500 bytes 10 0.975 0.96

95895000 bytes 1 0.948 0.95

Ratios are mean of 32-bit pointer time/64-bit pointer time
All output directed to /dev/null

Table 5-6: Performance ratios for sort program

does not depend on pointer size, we draw the lesson [6] Nicholas P. Carter, Stephen W. Keckler, and Wil-
liam J. Dally. Hardware Support for Fast Capability-that programmers should use the ‘‘right’’ pointer size
based Addressing. In Proc. 6th International Con-for the job. On a 64-bit system, the compiler should
ference on Architectural Support for Programminggive the programmer a choice of pointer size, just as
Languages and Operating Systems, pages 319-327.programmers have always had a choice of numeric
San Jose, CA, October, 1994.variable size.
[7] Jeff Chase, Mike Feeley, and Hank Levy. Some
Issues for Single Address Space Systems. InAcknowledgements
Proceedings of the Fourth Workshop on WorkstationWe thank Jeremy Dion, Alan Eustace, Jon Hall,
Operating Systems, pages 150-154. IEEE Computer

Norm Jouppi, and Stefanos Sidiropoulos for their Society, Napa, CA, October, 1993.
help in preparing this paper. Jim Gray and Chris

[8] Daniel W. Dobberpuhl, Richard T. Witek, et al.Nyberg contributed to the section on sorting. Russell
A 200-MHz 64-bit Dual-Issue CMOS Microproces-Kao, Louis Monier, and David Wall assisted on an
sor. IEEE Journal of Solid-State Circuitsearlier draft.
27(11):1555-1567, November, 1992.

[9] Keith I. Farkas and Norman P. Jouppi.References
Complexity/Performance Tradeoffs with Non-

[1] Bharadwaj S. Amrutur and Mark A. Horowitz. Blocking Loads. In Proc. 21st International Sym-
Techniques To Reduce Power In Fast Wide posium on Computer Architecture, pages 211-222.
Memories. In Proceedings of the 1994 Symposium April, 1994.
On Low Power Electronics, pages 92-93. San Diego,

[10] C. Flaig. VLSI Mesh Routing Systems. TROctober, 1994.
35241/87, California Institute of Technology, May,

[2] Joel F. Bartlett. SCHEME->C: a Portable 1987.
Scheme-to-C Compiler. WRL Research Report 89/1,

[11] John L. Hennessy and David A. Patterson.Digital Equipment Corp. Western Research Lab.,
Computer Architecture: A Quantitative Approach.January, 1989.
Morgan Kaufmann, San Mateo, CA, 1990.

[3] Joel F. Bartlett. Mostly-Copying Garbage Collec-
[12] Norman P. Jouppi, et. al. A 300Mhz 115W 32btion Picks Up Generations and C++. Technical Note
Bipolar ECL Microprocessor. IEEE Journal ofTN-12, Digital Equipment Corp. Western Research
Solid-State Circuits 28(11):1152-1166, November,Lab., October, 1989.
1993.

[4] C. G. Bell and W. D. Strecker. Computer struc-
[13] Harold Lorin. Sorting and Sort Systems.tures: What have we learned from the PDP-11? In
Addison-Wesley, Reading, MA, 1975.Proc. Third Annual Symposium on Computer

Architecture, pages 1-14. Pittsburgh, PA, January, [14] Steven McCanne and Chris Torek. A Ran-
1976. domized Sampling Clock for CPU Utilization Es-

timation and Code Profiling. In Proc. Winter 1993[5] John B. Carter, Alan L. Cox, David B. Johnson,
USENIX Conference, pages 387-394. San Diego,and Willy Zwaenepoel. Distributed Operating Sys-
CA, January, 1993.tems Based on a Protected Global Virtual Address

Space. In Proceedings of the Third Workshop on [15] Microsoft Corporation. Guide to Programming
Workstation Operating Systems, pages 75-79. IEEE for the Microsoft Windows Operating System Version
Computer Society, Key Biscayne, FL, April, 1992. 3.1 edition, Redmond, WA, 1992.

[16] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, OSF/1 is a registered trademark of the Open Software
Jim Gray, and Dave Lomet. AlphaSort: A RISC Foundation, Inc. UNIX is a registered trademark
Machine Sort. In Proc. SIGMOD ’94, pages licensed exclusively by X/Open Company Ltd. Al-
233-242. Minneapolis, MN, May, 1994. pha, AXP, DECchip, and DECstation are trademarks

of Digital Equipment Corporation.[17] John Ousterhout. Corner Stitching: A Data
Structuring Technique for VLSI Layout Tools. IEEE
Trans. on Computer-Aided Design CAD-3(1):87-100, Jeffrey Mogul received an S.B. from the Massa-
January, 1984. chusetts Institute of Technology in 1979, and his

M.S. and Ph.D. degrees from Stanford University in[18] John K. Ousterhout, Gordon T. Hamachi, Robert
1980 and 1986. Since 1986, he has been a researcherN. Mayo, Walter S. Scott, and George S. Taylor. The
at the Digital Equipment Corporation WesternMagic VLSI Layout System. IEEE Design & Test of
Research Laboratory, working on network andComputers 2(1):19-30, February, 1985.
operating systems issues for high-performance com-

[19] Jonathan Rees and William Clinger (Editors). puter systems. He is a member of ACM, Sigma Xi,3Revised Report on the Algorithmic Language
ISOC, and CPSR, the author or co-author of severalScheme. SIGPLAN Notices 21(12):37-79, December,
Internet Standards, an associate editor of1986.
Internetworking: Research and Experience, and was

[20] Answers to Frequently Asked Questions about Program Committee Chair for the Winter 1994
SPEC Benchmarks. URL USENIX Technical Conference.
news:2vptki$kvs@inews.intel.com. June, 1994.

Joel Bartlett received his B.S. and M.S. degrees
[21] Mark B. Reinhold. Cache Performance of from Stanford University in 1972. In 1986 he joined
Garbage-Collected Programs. In Proc. SIGPLAN ’94 Digital Equipment Corporation Western Research
Conference on Programming Language Design and Laboratory, working in garbage collection, Scheme,
Implementation, pages 206-217. Orlando, FL, June, graphics, and PDA’s. He is the author of Scheme->C
1994. and ezd.
[22] Stefanos Sidiropoulos, Chih-Kong Ken Yang, Robert Mayo received his B.S. degree from
and Mark Horowitz. A CMOS 500 Mbps/pin Washington University in St. Louis, in 1981, and the
synchronous point to point link interface. In 1994 M.S. and Ph.D. degrees from the University of Cali-
Symposium on VLSI Circuits Digest of Technical fornia at Berkeley in 1983 and 1987, all in computer
Papers, pages 43-44. Honolulu, HA, June, 1994. science. During 1988 he was an Assistant Professor

at the University of Wisconsin, but quickly dis-[23] Richard L. Sites (editor). Alpha Architecture
Reference Manual. Digital Press, Burlington, MA, covered there was no good chinese food in Madison.
1992. In 1989 he moved back to the bay area to join Digital

Equipment Corporation’s Western Research[24] Richard L. Sites. Alpha AXP Architecture.
Laboratory. Dr. Mayo’s interests include late codeCommunications of the ACM 36(2):33-44, February,
modification, computer-aided design tools for VLSI,1993.
kung pao chicken, and mongolian beef.

[25] Amitabh Srivastava and David W. Wall. A
Amitabh Srivastava received a B.Tech. inPractical System for Intermodule Code Optimization

Electrical Engineering from Indian Institute of Tech-at Link-Time. Journal of Programming Languages
nology, Kanpur, and his M.S. in Computer Science1(1):1-18, March, 1993.
from Pennsylvania State University. Since 1991, he

[26] Amitabh Srivastava and David W. Wall. Link- has been a researcher at the Digital Equipment Cor-
Time Optimization of Address Calculation on a 64- poration Western Research Laboratory, working in
bit Architecture. In Proc. SIGPLAN ’94 Conference compilers and link-time code modification. He is the
on Programming Language Design and

architect of the OM link-time technology which heImplementation, pages 49-60. Orlando, FL, June,
used to build OM and ATOM systems. Prior to that1994.
he was researcher at the Texas Instruments Central

[27] Curtis Yarvin, Richard Bukowski, and Thomas Research Labs working on Lisp machines, compilers
Anderson. Anonymous RPC: Low-Latency Protec- and object-oriented programming extensions to
tion in a 64-Bit Address Space. In Proc. Summer Scheme. He is the author of the SCOOPS system.
1993 USENIX Conference, pages 175-186. Cincin-

Address for correspondence: Digital Equipmentnati, OH, June, 1993.
Corporation Western Research Laboratory, 250
University Avenue, Palo Alto, California, 94301
({mogul,bartlett,mayo,amitabh}@wrl.dec.com)

