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ABSTRACT
The proliferation of hotspots based on IEEE 802.11 wireless
LANs brings the promise of seamless Internet access from a
large number of public locations. However, as the number of
users soars, so does the risk of possible misbehavior; to pro-
tect themselves, wireless ISPs already make use of a number
of security mechanisms, and require mobile stations to au-
thenticate themselves at the Access Points (APs). However,
IEEE 802.11 works properly only if the stations also respect
the MAC protocol. We show in this paper that a greedy
user can substantially increase his share of bandwidth, at
the expense of the other users, by slightly modifying the
driver of his network adapter. We explain how easily this
can be performed, in particular with the new generation of
adapters. We then present DOMINO (System for Detection
Of greedy behavior in the MAC layer of IEEE 802.11 public
NetwOrks), a piece of software to be installed in the Access
Point. DOMINO can detect and identify greedy stations,
without requiring any modification of the standard proto-
col at the AP and without revealing its own presence. We
illustrate these concepts by simulation results and by the
description of our prototype.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.3 [Computer-Communication
Networks]: Network Operations—Network monitoring, Pub-
lic networks; C.2.5 [Computer-Communication Networks]:
Local and Wide-Area Networks.
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1. INTRODUCTION
The last few years were marked by the widespread de-

ployment of IEEE 802.11 [3] hotspots that provide public
wireless access to the Internet. This trend will continue in
the near future, according to the predictions of the research
firm Allied Business Intelligence (ABI) [23] that estimate
that the revenue from hotspots will increase by up to 121%
in the next five years and the number of hotspots will jump
from 28,000 today to 160,000 by 2007. The commercial op-
eration of these networks has already revealed a set of prob-
lems, such as security and billing, which are typically less
important or even absent in corporate networks.
A major challenge, neglected so far by the research com-

munity, is MAC-layer greedy behavior: a station deliber-
ately misuses the MAC protocol to gain bandwidth at the
expense of other stations. The benefits of this misuse are
the following.

• It can result in significant bandwidth gains as it di-
rectly deals with the wireless medium; therefore, it is
more efficient than misbehavior at the network [11, 21]
and transport [4] layers.

• It is hidden and independent from upper layers and
hence cannot be detected by any mechanism designed
for those layers. Thus, it can be combined with upper
layer misbehavior to enhance it.

• It is always usable, since all the wireless stations use
the same IEEE 802.11 MAC protocol; in contrast,
for example, cheating with TCP [4] yields no benefits
against UDP competing sources.

In this paper, we explore this space of MAC-layer greedy
behavior. Rather than just presenting specific misbehavior
techniques (as it is often the case in previous research), we
propose a classification of the different MAC misbehavior
techniques and illustrate them with representative examples,
some of which are introduced for the first time. Then, we
present DOMINO, a system for detecting MAC misbehavior
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in a way that is transparent to the operation of the network.
The key features of DOMINO are its (1) seamless integration
in the AP1 without interfering with its normal functions
(this is achieved by means of a statistical passive approach
based on traffic monitoring), (2) compatibility with existing
networks, and (3) applicability to future versions of IEEE
802.11 with minor changes.
Based on the output of the detection system, the WISP

(Wireless ISP) can decide how to react to cheating users.
For example, the operator can charge a penalty bill, reduce
the service quality, or even completely stop the service, de-
pending on the extent of the observed cheating and the re-
sponsiveness of the cheater.
A major contribution of this work is that it goes beyond

the theoretical consideration of the problem and presents
the results of real experiments that demonstrate the ease of
cheating and the efficiency of DOMINO. We succeeded, by
means of minor changes to a driver for IEEE 802.11 com-
pliant cards, in obtaining higher throughput at the expense
of stations equipped with unmodified drivers. We also show
how monitoring frames on the wireless medium enables the
detection of greedy behavior.
This work is part of the Terminodes Project [15].
The rest of the paper is organized as follows: Section

2 overviews related work; Section 3 describes the system
model; Section 4 explores the misbehaving techniques; Sec-
tion 5 compares between different misbehavior metrics; Sec-
tion 6 presents the detection system; Section 7 studies the
proposed approach using simulations; Section 8 describes
our implementation of the cheating and detection mecha-
nisms; Section 9 discusses some relevant issues, and Section
10 concludes the paper.

2. RELATED WORK
The problem of MAC layer misbehavior is relatively new

and unexplored in the literature. Kyasanur and Vaidya [20]
have addressed the MAC layer misbehavior using detection
and correction mechanisms; their paper was an important
source of inspiration for our work. Their main idea is to let
the receiver assign and send backoff values to the sender in
CTS and ACK frames and then use them to detect potential
misbehavior. The latter is handled using a correction scheme
that adds to the next backoff a penalty that is a function of
the observed misbehavior. This solution is efficient, but at
the expense of the following issues.

• It requires a modification of the IEEE 802.11 MAC
protocol in a way that is incompatible with the current
standard. Such an approach is practically unfeasible.

• It gives control to the receiver over the sender, by mak-
ing the former assign backoff values to the latter in
both the detection and the correction schemes. Hence
the proposed approach opens the door to new misbe-
havior techniques, including misbehaving receivers and
collusion between sender and receiver.

1The actual hotspot component in which the system has to
be installed is the hotspot controller, which provides access
control and can control several APs [12]; nevertheless we
assume in the following, without loss of generality, that the
hotspot controller is incorporated in a single AP and thus
we refer, for simplicity, to both components as AP.
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Figure 1: The distributed coordination function
(DCF) of IEEE 802.11 operating in RTS/CTS mode.

• It creates communication and computation overhead.
The first is due to the addition of new frame header
fields and the second to the detection and correction
schemes that have to compute backoffs and, in some
cases, penalties for each individual frame of the send-
ing station (in the infrastructure case, all this load will
be centralized at the AP).

• It considers only stations with backlogged UDP traffic
to detect misbehavior. But if the misbehaving station
generates traffic with an interframe delay, the latter
may result in the measured backoff being larger than
the assigned one and hence leave the cheater unde-
tected; this problem will be addressed in later sections.

Konorski [18] considers an ad hoc network in which all sta-
tions hear each other and he proposes a misbehavior-resilient
backoff algorithm based on game theory. As it requires a new
backoff mechanism, different from the current standard, this
solution is not practical for current hotspots.
It is worth noting that none of the previous two works

include a real implementation of the proposed algorithms.
Intrusion detection systems [27] are also relevant to the

MAC layer, although they handle security flaws rather than
protocol misbehavior. A commercial example of these sys-
tems is AirDefense Guard [2], in which distributed sensors,
placed near APs, monitor the wireless medium and send re-
ports to a central server. Our system can be installed on
these sensors, hence integrating detection of intrusion and
of misbehavior.
Various solutions to routing layer misbehavior in wireless

ad hoc networks have been proposed in the literature (e.g.,
[9, 21]). However, the problem we consider in this paper
focusing on the MAC layer, is too different to make those
solutions eligible here.

3. SYSTEM MODEL
In the next sections, we use the following system model

and assumptions.

• The IEEE 802.11 WLAN (AP and stations) works in
the infrastructure mode using DCF (Distributed Coor-
dination Function), which is the operation mode usu-
ally deployed.

As shown in Fig. 1, DCF delays frame transmissions
right after the channel is sensed idle for DIFS (DCF In-
terFrame Spacing) time. It waits for an additional ran-
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dom time, backoff time, after which the frame is trans-
mitted. The backoff time is bounded by the contention
window size CW . This is applied to data frames in
the basic scheme, and to RTS frames in the RTS/CTS
scheme. The backoff time of each station is decreased
as long as the channel is idle. When the channel is
busy, the backoff time is frozen. When the backoff
time reaches zero, the station transmits its frame. If
the frame collides with another frame (or RTS), the
sender times out waiting for the ACK (or the CTS)
and computes a new random backoff time with a larger
CW to retransmit the frame with lower collision prob-
ability. When a frame is successfully transmitted, the
CW is reset to CWmin. The network allocation vector
(NAV) of all other stations is set to the frame duration
field value in RTS/CTS and DATA headers.

• We consider a single trusted AP operated by a WISP.

• Only user stations misbehave; if they do, they do so
in a rational way, meaning that misbehavior is mo-
tivated by a beneficial outcome in terms of obtained
throughput. Thus, we do not consider malicious mis-
behavior that aims at disrupting the functionality of
the network.

• The detection system is implemented only at the AP.
Thus, no modification nor reconfiguration of wireless
adapters have to be made at the user side. In addition,
the solution is under the full control of the AP and
hence, of the WISP.

4. MISBEHAVIOR TECHNIQUES
In this section we present a taxonomy of MAC layer mis-

behaviors, introducing several new techniques that do not
rely on security weaknesses of the standard and are sim-
pler and more efficient than known methods. We can divide
the MAC misbehavior space into two major dimensions as
follows.

4.1 MAC greedy behavior
This category of misbehavior relies on modifying the oper-

ation of the IEEE 802.11 protocol by failing to follow com-
munication procedures or changing parameters defined in
the standard. An example of each modification follows, re-
spectively.

• Selectively scramble frames sent by other stations in
order to increase their contention windows. The frames
to be targeted can be the following:

1. CTS frames. In this case the cheater hears an
RTS frame destined to another station and in-
tentionally causes collision and loss of the corre-
sponding CTS frame in order to prevent the sub-
sequent long frame exchange sequence (RTS/CTS
handshake is used for large frames). As a result,
the channel becomes idle after the corrupted CTS
and the cheater gets a chance to send its data.

2. ACK and DATA frames. Although this does not
result in saving the data frame transmission time,
it causes the contention window of the ACK des-
tination (i.e., the DATA source) station to be
doubled and consequently makes the latter select

larger backoffs. As before, the cheater increases
its chances to get access to the channel.

• Manipulate protocol parameters to increase bandwidth
share:

1. When the channel is idle, transmit after SIFS but
before DIFS.

2. When sending RTS or DATA frames, increase the
included NAV value in order to prevent the sta-
tions in range from contending during this time.
A DoS attack using the same principle was de-
scribed and evaluated in [8].

3. Reduce the backoff time. This can be done by
choosing a small fixed contention window; thus,
the backoff is always chosen from this small win-
dow.

A cheater may also combine several of the above tech-
niques or adaptively change its misbehavior to avoid
being detected. We will address this type of cheating
in Section 9.3.

4.2 Security attacks
This category of attacks (e.g., the deauthentication attack

[12]) exploits security weaknesses of the MAC protocol (such
as flaws in authentication or encryption mechanisms) and
targets the access control, confidentiality, or availability of
the network. They may be rational or malicious (as defined
in Section 3). An overview of these attacks can be found in
[12]. As this category has been extensively addressed before,
we will not consider it further in this paper.
In the rest of the paper, “misbehavior” means greedy be-

havior of stations and does not relate to the security aspects
of wireless networks.

5. MISBEHAVIOR METRICS
In order to detect misbehavior while reducing false posi-

tives, the AP has to gather enough statistical data and then
make decisions based notably on average values. Therefore,
it needs to measure one or more attributes of the transmit-
ting stations. In this section, we identify two such attributes,
namely throughput and backoff, and discuss the pros and
cons of each of them in order to choose the most suitable
one for the detection system (presented in the next section).

5.1 Throughput
Although throughput seems to be the most intuitive met-

ric for distinguishing stations using higher shares of the
channel bandwidth than other stations, this metric would
face several obstacles if used for detection.
If two stations have different data rates and delays, such

as VoIP versus streaming video sources, the throughput of
the latter will be naturally much larger than that of VoIP.
Hence, we cannot rely on throughput without knowing the
application running on each station (this would require each
station to declare its currently communicating applications
and the AP, which frequently implements only the physical
and MAC layers, to analyze information originating from
the application layers of the stations).
Experimental studies in [5] and [26] have shown that the

throughput of a UDP source in a wireless network is affected
by many factors, such as overhead, SNR, network and host
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hardware, device drivers, and network protocol implemen-
tations in the operating system. The authors of [14] prove
that the decrease of the bit rate of a single station (due
to a bad channel) decreases the bit rates of all the other
stations to values below that of the disadvantaged station.
The negative effect of SNR on channel capture is explored
in [25] (according to the authors, the results obtained in the
infrastructure mode are identical to those observed in the
ad hoc mode). All these factors lead to high differences in
throughput even among stations sending at equal rates.
The performance of TCP over wireless networks has been

studied experimentally in [26]. The authors explain that
TCP coupled with the IEEE 802.11 MAC protocol result
in performance degradation. Among the factors that con-
tribute to the degradation are the congestion window, re-
covery mechanism, packet size, and timeout values of TCP
as well as the acknowledgements, retransmission retry limit,
and backoff mechanism of IEEE 802.11 MAC.
Hence, although the fairness of wireless networks has been

evaluated [7, 17, 22] typically using Jain’s fairness index [16]
(which in turn uses channel bandwidth shares), throughput
is far from being the optimal misbehavior metric, in our
case.

5.2 Backoff
As we aim notably at detecting backoff manipulation,

backoff measurement is the most direct way to detect chea-
ters (the next section explains how the AP estimates the
backoff chosen by a station by monitoring the channel idle
time). It is less dependent than throughput on various fac-
tors, some of which have been discussed before. Neverthe-
less, it still has its own problems, discussed hereafter.

1. From the receiver point of view, a sender’s backoff is
the idle period that starts at the end of a DIFS after
the last transmission until the next transmission from
the sender, not including the transmission cycles (e.g.,
DATA-SIFS-ACK-DIFS) of other stations. This value
is undistinguishable from the delay of a low packet
rate source. This source can hence cheat while giving
the impression of a well-behaved station. Even if the
cheater increases its packet rate later, the previously
collected large delays would increase its observed aver-
age backoff, thus decreasing the responsiveness of the
system during a monitoring period (defined in the next
section).

2. The MAC header does not include any information
that can be used to compute the sender’s backoff at
the receiver. This leads to confusing conclusions af-
ter a collision, since the stations involved in the colli-
sion double their contention window and choose a new
backoff value, whereas the other stations do not.

3. If the receiver senses the channel busy while the sender
senses it idle, the latter will transmit after a short
backoff from the receiver’s point of view. This may
be caused for example by the hidden terminal prob-
lem.

The shortcomings of the backoff detection metric can be
more easily overcome than those related to throughput. In
order to show this, we have devised several different backoff
tests (discussed in the next section) that are complementary

Periodic monitoring

Node S is misbehaving

Actual
backoff

False

True

Shorter than
DIFS

True

Scrambled
frames

Consecutive
backoff

Maximum
backoff

False

True

False

False

False

True

True
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Oversized
NAV

False

True
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Figure 2: Components of DOMINO. Each test man-
ages its local counter of cheating; if this counter ex-
ceeds the corresponding threshold, the remaining
tests are aborted to save resources, and control is
transferred to the punishing mechanism. Otherwise,
the tests are repeated after the next monitoring pe-
riod.

in the sense that none of them is enough to make a complete
solution, but together they achieve the required detection
ability.

6. COMPONENTS OF DOMINO
In this section, we present the way to detect the misbe-

havior techniques described in Section 4.1. The complete
detection system is depicted in Fig. 2. As mentioned be-
fore, this system has to be implemented only at the AP. The
details of the system components are explained below.
Traffic traces of sending stations are collected periodically

during short intervals of time called monitoring periods (the
choice of their length is discussed in Section 9.4). The gath-
ered data are then passed to several tests within the encap-
sulating DOMINO algorithm:

loop
if monitoring period elapsed since last check then
for each active station Si do
for j = 1 to 6 do
execute Test j
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The tests described below make use of the following func-
tion where x indicates the test number.

checkx(Si, conditionx):

if conditionx is true then
cheat countx(Si) := cheat countx(Si) + 1
if cheat countx(Si) > Kx then

Si is misbehaving
call the punishing function

else if cheat countx(Si) > 0 then
cheat countx(Si) := cheat countx(Si)− 1

To decrease the number of false positives, a station should
be suspected at least Kx times (i.e., after at least Kx moni-
toring periods, as defined in Fig. 2) before being considered
a cheater. In addition, each time a station does not cheat, its
cheat countx is decremented (until it reaches zero) to reward
the correct behavior; this adaptivity also reduces the effect
of erroneous detection of well-behaved stations. Although
Kx slightly reduces the responsiveness of the system, it can
be small enough to prevent temporal but beneficial, i.e., long
enough misbehavior from escaping detection.
It should be noted that all the tests described below are

performed on each data sample successfully collected for a
station Si during the last monitoring period; if misbehavior
is detected, the checking on Si is interrupted as no further
analysis is needed. For clarity, we present the operation of
the tests on a single data sample.

6.1 “Scrambled frames”
In order to gain a significant share of the common wireless

bandwidth using CTS/ACK/DATA scrambling, the cheater
has to scramble a relatively large percentage of CTS, ACK,
or DATA frames sent by other stations. As a result, its aver-
age number of retransmissions will be less than that of other
stations, and it can be detected using Test 1. num rtx(S) is
the number of times station S retransmitted its last frame
successfully received by the AP; φ is a tolerance parameter
with a value between 0 and 1.

Test 1 Scrambled frames
condition1 := num rtx(Si) < φ× Ej �=i[num rtx(Sj)]
call check1(Si, condition1)

The punishing function depends on the policy of theWISP
as mentioned in Section 1.
The system can detect a retransmission by observing a

repeated sequence number in the header of RTS or DATA
frames when the corresponding CTS or ACK frames are
scrambled, respectively. In the case of DATA frames, one
might argue that the AP would not be able to distinguish
retransmissions because the DATA frames are scrambled.
However, the cheater cannot scramble the headers of these
frames, otherwise it cannot know if the frame is destined
to it. Hence the system can still detect retransmissions by
observing repeated sequence numbers in the MAC headers.

6.2 Detection of manipulated protocol
parameters

In the following paragraphs we address misbehavior tech-
niques that alter protocol parameters. We focus mainly on

backoff manipulation since it is the easiest to implement (as
we will show in Section 8) and the hardest to detect.

“Shorter than DIFS”

The AP can monitor the idle period after the last ACK
and distinguish any station that transmits before the re-
quired DIFS period. After having observed this misbehavior
repeatedly for several frames from the same station, the AP
can make a reliable decision (Test 2).

Test 2 Shorter than DIFS
condition2 := idle time after ACK(Si) < DIFS
call check2(Si, condition2)

“Oversized NAV”

By measuring the actual duration of a transmission (in-
cluding the DATA, ACK, and optional RTS/CTS) and com-
paring it with the NAV value in the RTS or DATA frame
headers, the AP can detect stations that regularly set the
NAV to very large values. In Test 3, the tolerance parameter
A (greater than 1) ensures that the AP does not mistakenly
catch well-behaved stations.

Test 3 Oversized NAV
condition3 := NAV (Si) > A× tx duration(Si)
call check3(Si, condition3)

Backoff manipulation

“Maximum backoff”

Since the IEEE 802.11 protocol selects backoffs randomly
from the range [0, CW − 1] (where CW depends on the
number of retransmissions), the maximum selected backoff
over a set of frames sent by a given station (without inter-
leaving collisions; otherwise the contention window will be
doubled) should be close to CWmin − 1, if the number of
samples is large enough. The maximum backoff test (Test
4) uses this property to suspect stations whose maximum
backoff over a set of samples is smaller than a threshold
value thresholdmaxbkf . Clearly, a tradeoff exists between
the number of samples and the threshold; if we increase the
threshold (its largest value is CWmin), we have to increase
the number of sampled backoffs to get more distinct values
and thus avoid false positives. In our simulations (Section 7),
we use a threshold equal to CWmin/2; thus, the test works
if the reduced contention window is in [0, CWmin/2− 1].

Test 4 Maximum backoff
condition4 := max bkf(Si) < thresholdmaxbkf

call check4(Si, condition4)

Unfortunately, this test may be easily tricked by a clever
cheater that succeeds at making the monitor observe in ev-
ery sample at least one backoff value larger than or equal
to the threshold; channel conditions can also yield a simi-
lar result and thus make the test fail. Thus, the maximum
backoff test is only auxiliary to the next tests.
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Figure 3: Measurement of the actual backoff. Trans-
missions from S are interleaved with one or more
transmissions from other nodes (including the AP).
The transmission includes in addition to the DATA
frame all the control frames, such as RTS, CTS,
and ACK, as well as the interleaving idle periods
of SIFS. The measured value is the sum of all idle
intervals (not including interframe spaces) between
two transmissions from S.

“Actual backoff”

This test (Test 5) consists in measuring the actual backoff
as shown in Fig. 3. The main procedures of the test can be
summarized as follows:

• If between two transmissions from a station S there
are no collisions, we assume that S spent all its idle
time backing off (although it may be just part of the
S’s interframe delay). Then we estimate this backoff
by computing the sum as illustrated in Fig. 3.

• If a collision happens, it is not possible to know the
identities of the senders of the colliding frames and
hence the stations whose measured actual backoff should
be updated. To avoid complexity, collisions are simply
not taken into account and both the current backoff
and the next one are not measured for any station.2

Test 5 Actual backoff
condition5 := Bac[Si] < αac ×Bacnom

call check5(Si, condition5)

In Test 5, Bac[Si] denotes the average actual backoff (ob-
served by the AP) of station Si. Bacnom is the nominal
backoff value, which is equal to the average backoff of the
AP if it has enough traffic to compute this value (according
to usage studies in [19] and [24], the inbound traffic from the
AP is usually larger than the outbound traffic). If the AP
does not have enough data to derive a nominal backoff value
from its own traffic, it uses an analytical value E[Bac] (de-
rived in the Appendix). We do not use the analytical value
in the first place since it depends on the number of active
stations and is computed assuming backlogged sources. In
a practical setting, this assumption might be wrong due to

2Stations that hear frame headers with wrong CRC, caused
by a collision, will defer their transmissions by EIFS (Ex-
tended InterFrame Spacing). This latter does not interfere
with the measurements since all deferrals of all nodes are
not taken into account after a collision.

Transmission from S Transmission from S

DIFS Consecutive
backoff

Figure 4: Measurement of the consecutive backoff.
Backoff values are taken only between consecutive
non-interleaved transmissions from S.

mobility and usage patterns (Tang and Baker [24] find that,
80% of the time, peak throughput is due to a single user and
application, which is typically a large file transfer).
The αac (0 < αac ≤ 1) parameter is configurable accord-

ing to the desired true positive (correct detection) and false
positive (wrong detection) percentages (e.g., we use αac =
90% in our simulations). To reduce false positives, we use
K5 = 3 (defined in the function checkx) in our simulations;
this shows that this value can be small enough to quickly
detect cheaters without accusing well-behaved stations.
As it collects no data during collisions, the actual back-

off test measures backoffs that are selected only from the
[0, CWmin − 1] range. Due to its mechanism, this test fails
to detect the misbehavior case when the cheater has inter-
frame delays (e.g., a TCP source using congestion control).
In fact, the test measures these delays instead of backoffs
because it adds up the idle periods between transmissions
from the same source (Fig. 3). Hence, although the chosen
backoffs may be subject to cheating, the monitor will not be
able to measure them correctly; the solution to this problem
is provided by the consecutive backoff test.

“Consecutive backoff”

Fig. 4 illustrates this test (Test 6), which works in the
case of sources with interframe delays. In practice, this is
mainly the case of TCP sources (in this case the delay is due
to the congestion control of TCP), which represent over 91%
of traffic in real networks [6, 19]. The actual backoff test for
these sources does not yield the correct values (as explained
in the previous paragraph), and consequently cannot detect
potential cheating.
Let us consider a station S sending TCP traffic and being

monitored by DOMINO. We assume that there is enough
traffic from other sources on the common channel such that,
between two frames sent by S and separated by a transport
layer delay, there is at least one interleaving frame from
another station. Hence, if the AP observes two consecutive
non-interleaved frames from S, it can consider the idle time
between them as only a backoff in addition to the mandatory
DIFS. These consecutive frames are the result of channel
contention that may force S to queue packets at the MAC
layer even if they were separated by a delay at upper layers.
In this situation, S would benefit from cheating with backoff
in order to free its MAC layer queue. Thus, the system can
collect significant samples of the backoff values chosen by S;
we call these samples consecutive backoffs.
The above assumption of traffic level is realistic. In fact,

if the traffic on the channel is low enough to invalidate this
assumption, i.e., if S can send consecutive non-interleaved
frames separated by a delay in addition to the backoff and
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AP

Figure 5: Simulation scenarios: 8 stations send UDP
or TCP data to the AP, which also generates traffic
similarly to one station. The distance between the
stations and the AP is 50m. All stations are within
range of each other.

DIFS, cheating would be pointless since reducing the backoff
does not affect the upper layer delay. Misbehavior detection
would not be needed in this case.

Test 6 Consecutive backoff
condition6 := Bco[Si] < αco ×Bconom

call check6(Si, condition6)

As with the previous test, the average of the collected
values Bco[Si] is compared to a fraction αco (we use αco

= 90% in our simulations) of the nominal value Bconom.
The latter is the average consecutive backoff of the AP if
enough data are available. Otherwise, it is an analytical
value E[Bco] (computed in the Appendix). As in the actual
backoff test, we use K6 = 3 in our simulations to decrease
the number of false positives.

7. SIMULATION RESULTS
In order to study the performance of the proposed solu-

tion, we have used ns-2 with the Monarch project extension
[13] to simulate our detection system. As the frame scram-
bling misbehavior is fairly easy to detect using the num-
ber of retransmissions, this section examines in detail only
the backoff manipulation tests and the complete detection
mechanism. Although these tests are capable of detecting
multiple cheaters, in the simulations we have focused on the
case of a single cheater to simplify the presentation of the
results.

7.1 Simulation topology
Following the discussion in the previous section about the

effect of traffic on Tests 5 and 6, we will study two cases (Fig.
5). Due to the lack of space, we cover only these scenarios
that represent the most common traffic types.

1. UDP traffic

Besides the cheater, there are 7 stations sending CBR
traffic (the nominal rate is 500 bytes/packet, 200 pack-
ets/s); the cheater is also a CBR source.

In any idle slot, there is at least one packet ready for
transmission by any of the competing stations. The
time elapsed between two transmissions from the same
station (interleaved with transmissions from other sta-

tions) is therefore due only to the backoff chosen by the
IEEE 802.11 protocol.

2. TCP traffic

Each of the 8 stations runs an FTP application; one
station is cheating.

This case illustrates the effect of interframe delays (due
to TCP congestion control) on backoff measurement.
This is the most realistic scenario.

In both cases the AP generates traffic similarly to one
station, i.e., CBR in the first case and FTP in the second.
To take into account the fading effects present in real

channels, we have used the shadowing channel model that
is represented by the following equation:[

Pr(d)

Pr(d0)

]
dB

= −10βlog

(
d

d0

)
+XdB

where Pr(d) is the mean received power at distance d, d0

is a reference distance, β is the path loss exponent, and XdB

is a Gaussian random variable with zero mean and standard
deviation σdB. We have used β = 2 (free space propagation)
and σdB = 4.
Results are averaged over 10 simulations, 110s each. The

monitoring period is set to 10s, which also corresponds to
one decision (cheater or well-behaved) by the AP regarding
each station. Thus, each point on the following graphs is
averaged over 100 samples with a 95% confidence interval;
the first 10s of each simulation is an initialization period.
In the following, the misbehavior coefficient represents the

amount of misbehavior. A misbehavior coefficient equal to
m means that the corresponding station uses a fixed con-
tention window equal to (1−m)×CWmin and then chooses
its backoff from this new window. Thus, m = 0 means no
misbehavior, and m = 1 means that the station transmits
without any backoff.

7.2 Impact of misbehavior on throughput
Before presenting the performance of the detection sys-

tem, we compare the throughput values of cheating and
well-behaved stations in both simulation scenarios.
Fig. 6 shows that MAC misbehavior results in through-

put3 benefits that are obtained at the expense of well-behaved
stations and that increase with the amount of misbehavior.
We can also notice that this increase is less significant in
the case of TCP sources. This is due to the TCP conges-
tion control mechanisms and the dependence of the TCP
throughput, including the cheater’s, on the rate of the TCP
ACKs, which are sent by the (well-behaved) AP.

7.3 Actual backoff
From the simulation graphs we can draw the following

observations:

• In the UDP traffic case, the test performs well, as
shown in Fig. 7, because there is always at least one
frame ready for transmission by each station. Hence
the channel idle time between two transmissions from
a station is the result of only the backoff mechanism
(in addition to the DIFS).

3The graphs also display confidence intervals, which are very
small in some cases.
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Figure 6: Throughput comparison between misbehaving and well-behaved stations.

 0

 20

 40

 60

 80

 100

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

A
c
c
u
r
a
c
y
 
(
%
)

Misbehavior coefficient

Detection
Misdetection

Figure 7: Actual backoff test in the UDP traffic case.

• In the TCP traffic case, the numbers of both correct
and wrong detections are very small (the curves are
practically superimposed with the x-axis; thus, the
corresponding figure does not provide any important
information and hence we omit it). The low correct-
detection accuracy can be explained by the fact that
the measured actual backoff is actually the idle period
(not including transmission cycles) between two inter-
leaved transmissions from the same station, which is
equal in this case to the delay between frame trans-
missions from the source. This delay is created by the
TCP congestion control mechanisms.

7.4 Consecutive backoff
The performance of this test differs from that of the pre-

vious one for the reasons mentioned in the description of the
test (Section 6.2) and confirmed by simulations.
In the UDP traffic case, the results of the test are of no use

(the curves are superimposed with the x-axis and therefore
we omit them). The reason is that in this case the measured
average consecutive backoff rapidly decreases with the num-
ber of stations (as the Appendix shows, the analytical av-
erage value steeply decreases with the number of stations).
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Figure 8: Consecutive backoff test in the TCP traffic
case.

The comparison of small values becomes inaccurate, thus
seriously affecting the test significance.
In the TCP traffic case, the test yields good results as

Fig. 8 shows. This is due to the presence of other sources
that do not allow the source with the interframe delay (in-
duced by congestion control) to transmit two frames con-
secutively without having queued the second one, i.e., the
delay does not affect the idle time between two consecutive
non-interleaved transmissions from the source. Otherwise,
if there is no frame ready in the queue, another source takes
control over the channel and transmits at least one frame
between two successive frames of the first source.

7.5 Complete mechanism
The descriptions of the actual backoff test and the con-

secutive backoff test in Section 6.2, as well as the simulation
graphs presented so far, have shown that each test performs
well in specific traffic scenarios. The complete mechanism is
thus a combination of both.

• The actual backoff test catches misbehavior with high
accuracy in the UDP traffic case and yields no detec-
tion nor misdetection in the TCP traffic case.
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• On the contrary, the consecutive backoff test detects
misbehavior in the TCP traffic case but does not work
in the UDP traffic case.

• Hence the full scheme uses both tests in order to detect
misbehavior in all traffic scenarios while keeping the
misdetection percentage very low.

It is worth noting that, as long as there is enough traffic
on the channel to satisfy the assumption in Test 6, only
the type of the sender traffic determines which test works
and hence misbehavior in mixed-traffic scenarios (TCP/high
rate UDP) can also be accurately detected. If the traffic on
the channel is low, misbehavior does not yield substantial
throughput benefits hence its detection is not necessary.

8. IMPLEMENTATION
To prove the need for and the efficiency of the proposed

detection system, we have implemented a prototype misbe-
havior scenario, including a prototype of DOMINO, which
we describe in this section.

8.1 Experimental setup and equipment
As Fig. 9 illustrates, the prototype consists of two senders

(user stations), one of which is cheating, a receiver (the
AP), and a monitor station. All 4 stations are laptops
equipped with Proxim’s ORiNOCO 11a/b/g Gold Combo-
Card wireless cards based on the Atheros AR5212 chipsets.
The MADWIFI (Multiband Atheros Driver for WiFi) driver
[1] provides full support for wireless adapters using Atheros
chipsets on Linux platforms (kernel 2.4.20 or higher; we used
version 2.4.20). It can be used as a loadable kernel module,
thus avoiding the recompilation of the kernel after making
changes to the driver. The numerous features of this driver
make the implementation of cheating and monitoring easy,
as we describe next. Although the same functionality may
not be available in products from other manufacturers, the
rising trend of shifting more firmware and hardware func-
tions to the software side will make cheating easily imple-
mentable on most chipsets.

AP DOMINO

Cheater Well-behaved

Figure 9: Experimental setup.

8.2 Misbehavior
To illustrate the feasibility of cheating with almost no

overhead, we have implemented one of the cheating meth-
ods described in Section 4; specifically, we have modified the

value of the contention window used in the backoff proce-
dure.
As CWmin and CWmax values are stored in the same reg-

ister4, all that has to be done to enable cheating is to write
to this register the desired CW values in the driver code.
We use the C function:

writel(value, register_address);

in the device initialization, reset, mode change (between
.a, .b, and .g modes), and scan functions since the register
values are reset in each of them.

8.3 Monitoring
The MADWIFI driver has a built-in MONITOR mode that

allows for the capturing of IEEE 802.11 beacon and control
frames. In addition, the driver adds a prism2 header to
the frames in order to support sniffing applications, such as
Ethereal and Kismet, that use the libpcap capture file for-
mat and can display the captured frames. Fig. 10 shows
a snapshot of wireless data collected in MONITOR mode and
displayed by Ethereal. Since a wireless card using the MAD-
WIFI driver can be in MONITOR mode exclusively, we use an
additional laptop to play the role of the monitor. Although
the monitoring function can also be implemented on the AP
itself, we have not addressed this issue as the driver is still
under development.

Figure 10: Snapshot of Ethereal displaying captured
wireless frames. The timestamps in column 2 can
be used to calculate backoff values as explained in
Section 8.3.

To observe the behavior of other stations, the monitoring
station should be placed near the AP, on which the mon-
itoring mechanism should be typically installed. We use
Ethereal to display the captured data and awk scripts to an-
alyze the corresponding trace files. Specifically, each frame
is associated with a timestamp indicating when its recep-
tion was completed. As described in Section 6, we measure
backoff values from the time elapsed between the end of an
ACK and the beginning of the next RTS or DATA frame;
therefore, we need to know when the reception of an RTS

4For deontological reasons, we refrain from publishing the
value of the register address. However, it is very easy to
obtain.
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Figure 11: Experimental results. The values correspond to the misbehavior coefficients 0, 0.53, 0.8, 0.93, and
1 as explained in Section 8.4.

or DATA frame starts. Since the AP knows the payload
size (after the whole frame has been received) and the used
bit rate, it can compute the transmission time of the DATA
frame and hence the beginning of this transmission. The
DIFS value being defined by the standard (e.g., it is 50µs in
IEEE 802.11b), the AP can compute the backoff values, as
Figures 3 and 4 illustrate.

8.4 Results
We have performed experiments corresponding to several

values of the cheater contention window, which should be of
the form (power of 2) - 1. Specifically, we have set both
CWmin and CWmax to 0, 1, 3, 7, 15 (the default value of
CWmin is 15 and that of CWmax is 1023 on the wireless
cards that we have used), which correspond to misbehavior
coefficients of 1, 0.93, 0.8, 0.53, and 0, respectively. We have
observed the resulting throughput (Fig. 11(a)) and backoff
(Fig. 11(b)) of the cheating and well-behaved stations.
In Fig. 11(a) we can see that the cheater obtains higher

throughput, at the expense of the well-behaved station, by
increasing its misbehavior. The corresponding observed back-
off values are shown in Fig. 11(b) along with the detec-
tion curve. When the misbehavior percentage increases,
the cheater’s average backoff decreases (thus increasing its
chances to grab the channel first and boosting its through-
put). This can be easily detected by our mechanisms as the
detection curve shows. In the meantime, the average backoff
of the well-behaved station increases with the misbehavior
percentage (due to collisions and the following increase of the
contention window); this explains its decreasing throughput.

8.5 From prototype to product
When transforming the prototype into a real product, sev-

eral implementation choices can be distinguished:

• DOMINO can be fully implemented in software (or
firmware, depending on the AP). The system, which
can run as a module of the AP software, will collect
information about frames, such as arrival time and
size, received and sent by the AP and periodically an-
alyze the collected data. We consider exploring this

approach once the MADWIFI driver reaches the pro-
duction stage.

The main disadvantage of a software implementation is
that upgrade and maintenance operations might create
time overhead by temporarily interrupting the service
offered by the AP.

• An alternative would be to install DOMINO on a wire-
less card separate from the AP, but physically close to
it in order to view the network from the AP perspec-
tive as much as possible. This approach is similar to
the AirDefense Guard intrusion detection system men-
tioned in Section 2.

While removing the time overhead and potential ser-
vice interruption associated with a pure software solu-
tion, the hardware option creates space and cost over-
head due to the additional equipment required to op-
erate the system.

The choice of the implementation option will depend on
several factors, such as service requirements (the downtime
of some heavily used hotspots may incur higher losses than
the cost of deployment of a hardware-implemented DOMINO
system), available equipment (it may be easier to deploy
hardware DOMINO sensors than modifying the firmware
of some existing APs) and infrastructure (hardware sensors
will require additional space and cabling). Thus, the WISP
and DOMINO system provider have to evaluate all the im-
portant factors in a particular network before choosing one
of the above options.

9. DISCUSSION
This section addresses some additional issues related to

the detection system.

9.1 Hidden terminals
Hidden terminals may have a negative effect on the de-

tection system. For example, if two stations A and B are
seen by the AP but hidden from each other, A may sense
the medium idle while the AP senses it busy because B
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transmits. As a result, A will keep decrementing its backoff
counter and then transmit a frame whose backoff measured
at the AP will appear smaller than the actual value. After
several repetitions of this scenario, the detection mechanism
will output a wrong suspicion of A. By choosing appropri-
ate values for detection thresholds (specifically, αac, αco, K5,
K6 defined in Section 6.2) in both simulation scenarios, i.e.,
by tolerating some misbehavior, we have managed to reduce
false positives in the presence of hidden terminals.

9.2 Security
It should be noted that DOMINO can be exploited to cre-

ate hybrid attacks, taking advantage of both security flaws
and MAC vulnerability. For example, a cheater may im-
personate a well-behaved station to provoke its punishment
and, possibly, its disconnection from the network by the op-
erator. But a deauthentication attack [12], which is easier
to perpetrate, would yield a similar effect without relying on
the punishment policy. In addition, the adoption of new se-
curity mechanisms, such as WPA (Wi-Fi Protected Access)
and IEEE 802.11i [12], would limit the efficiency of these
hybrid attacks. In fact, the cheater cannot transfer useful
data in the faked frames because it does not know the en-
cryption key of the impersonated host. As a result, such an
attack would incur on the cheater an overhead due to the
dummy frames it sends. The solution to these attacks lies
in the use of the enhanced security mechanisms jointly with
DOMINO. We will consider the details of this solution in
our future work.

9.3 Adaptive cheating
We call adaptive cheating the set of misbehavior tech-

niques that exploit some knowledge about the way DO-
MINO works. For example, a cheater may switch frequently
enough between several techniques described in Section 4.1,
in such a way that the system fails to collect enough data to
detect misbehavior. But as the cheater does not know the
detection parameters, such as the monitoring period and the
thresholds, it will be hard to adapt to the detection system
in order to avoid being caught.
Another way of tricking DOMINO would consist in em-

ploying techniques to disable some tests. For example, a
cheater might intentionally cause collisions between two of
its frames to fail the actual backoff test and never transmit
two consecutive non-interleaved frames to fail the consec-
utive backoff test. But such techniques obviously increase
the cheater’s overhead (e.g., in terms of interframe delay)
that might not be compensated by a compelling throughput
advantage over other stations.

9.4 Monitoring period
To avoid overloading the AP with per-frame computa-

tions, the data required for detection are collected during
configurable intervals of time; at the end of each interval,
the detection mechanism is run. Another advantage of this
method over a per-frame detection approach is the ability
to collect more statistical data and hence increase the ac-
curacy. In addition, it has been shown [7, 17, 22] that the
binary exponential backoff algorithm of IEEE 802.11 is un-
fair in the short term. This would result in false positives if
stations were monitored over short term periods even in the
absence of misbehavior. Therefore the monitoring period
has to be large enough to achieve long term backoff fairness.

Taking into account the typical bit rates, monitoring pe-
riods can be short enough (as was shown in the simulations)
to prevent the cheater from gaining large benefits before
being detected. For example, assuming 500 byte packets
and 7Mbps data rate (this is the maximum effective IEEE
802.11b rate) equally divided among 50 stations, the AP can
collect in 10 seconds 350 backoff values per station.

9.5 Implementation overhead
As DOMINO is passive, there is no communication over-

head in our solution. In addition, the required storage and
computation overhead is very small. As an example, we have
calculated rough upper bounds of the overhead of the backoff
tests. We need to record the average backoff values (specif-
ically, the maximum, consecutive and actual backoffs) over
the monitoring period for each transmitting station; thus,
the required storage is roughly proportional to the number
of transmitting stations.
For example, the AP needs 8 integer registers per station

to store the aggregated statistical values; thus the required
storage for 50 stations is a mere 1600 bytes (assuming 4 byte
registers). The processing of each frame received by the AP
requires at most 6 arithmetic instructions; if we assume that
the channel is used at full bandwidth (which can be trans-
lated to approximately 7Mbps effective data rate for IEEE
802.11b WLANs) and the packet size is 500 bytes, the com-
putation overhead is less than 10500 arithmetic instructions
or 0.021% of the CPU time (if we assume that an instruc-
tion takes 4 CPU clock cycles and the processor speed is
200MHz). Hence, a typical AP with a 200MHz processor
and 16MB RAM can run the detection system without a
noticeable performance difference.

10. CONCLUSION AND FUTURE WORK
MAC layer misbehavior in IEEE 802.11 networks can lead

to severe unfairness in bandwidth distribution. This can
become a serious problem in public Internet access hotspots
where individual users have to pay for network usage and
hence may be motivated to cheat in order to increase their
share of the medium.
In spite of its relevance, this topic is still relatively unex-

plored in the research community. In this paper, we have
classified MAC layer misbehaviors, presented some new tech-
niques, and provided the corresponding detection mecha-
nisms. In contrast with previous papers that have proposed
modifications to the MAC protocol, thus requiring a modi-
fication of existing wireless cards, we have developed a solu-
tion that can be completely integrated in the AP and uses
only statistical data analysis. An important feature is that a
cheater has no way of knowing whether an AP is DOMINO-
enabled.
Using simulations, we have shown that DOMINO achieves

high accuracy of detection in a variety of scenarios. The sys-
tem is resilient to several factors, such as traffic types, that
can affect the performance of other detection techniques.
Hence, the main features of the proposed solution are its
efficiency and applicability to real networks.
Another important contribution of this paper is the cheat-

ing and detection prototype that we have implemented and
that shows the ease of cheating, as well as the simplicity and
efficiency of the proposed detection system.
We believe that the scope of this paper goes beyond IEEE

802.11 networks; indeed, we provide a framework that can
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be adapted to the study of cheating and detection techniques
in any network based on shared spectrum.
For future work, we consider addressing in more detail the

case of adaptive cheating. We will also explore the effect of
mobility on the system. In regard to implementation, we
will introduce these and other enhanced features in the final
version of the MADWIFI driver.
It should also be noted that in this paper we have focused

on attacks aimed at the traffic outgoing from the stations.
In our future efforts we will expand the set of attacks to new
techniques that decrease the traffic incoming to the stations
from the AP, thus favoring the cheater’s incoming traffic.
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APPENDIX
As mentioned in the backoff tests in Section 6.2, the AP
uses the traffic it sends to derive the nominal backoff values
in order to compare them with the backoffs of user stations.
However, if the AP does not have enough traffic to com-
pute these nominal backoffs, it can use the analytical values
derived in this appendix.
Our aim is to compute the average actual backoff E[Bac]

and the average consecutive backoff E[Bco], as a function of
the number of contending nodes n (including the AP). We
first introduce the conditional access probability τ according
to Bianchi’s model [10], based on which the transmission
probability Ptr and the successful transmission probability
Ps are computed. This will help us to compute E[Bac] and
E[Bco] in sections A.1 and A.2, respectively.
The model described in [10] assumes a saturated channel

with all nodes sending CBR traffic.
Based on a two-dimensional Markov chain, Bianchi com-

putes the conditional probability, τ , that a given node ac-
cesses the channel at a given time slot:

τ =
2(1− 2p)

(1− 2p)(W + 1) + pW (1− (2p)m)
(1)

where p is the probability that the transmitted frame col-
lides, W is the minimum contention window size, and m
is the number of backoff levels. On the other hand, p is
expressed as:

p = 1− (1− τ )n−1 (2)

For a given n, (1) and (2) can be solved numerically (e.g.,
using Matlab).
Furthermore, the probability Ptr that there is at least one

transmission in a given time slot can be written as:

Ptr(n) = 1− (1− τ )n (3)

This transmission is successful with probability Ps:

Ps(n) =
nτ (1− τ )n−1

Ptr
=

nτ (1− τ )n−1

1− (1− τ )n
(4)

In the next sections we will use the following relations:

W−1∑
i=0

xi =
1− xW

1− x

W−1∑
i=0

i xi = x
δ

δx
(

W−1∑
i=0

xi)

= x
δ

δx
(
1− xW

1− x
)

= x
(W − 1)xW −WxW−1 + 1

(1− x)2
(5)

Assuming that p(i) = xi∑W−1
i=0 xi

we can write

W−1∑
i=0

i p(i) =

∑W−1
i=0 i xi

∑W−1
i=0 xi

=
(W − 1)xW+1 −WxW + x

(1− xW )(1− x)
(6)

A.1 Actual backoff Bac

The average actual backoff is

E[Bac] =

W−1∑
i=0

i p(i)

where p(i) is the probability that the actual backoff is equal
to i time slots, given that the contention window is W (since
all the measured actual backoffs are from the range [0,W−1]
as explained in Section 6.2).

p(i) =
pac(i)∑W−1

i=0 pac(i)

Now let us compute pac(i). As shown in Fig. 3, an actual
backoff of size i is observed when between two transmissions
from the same node S:

• we can count i idle time slots (not including DIFS nor
SIFS),

• if transmissions occur, they are collision-free.

Hence

pac(i) = [1− Ptr(n− 1) + Ptr(n− 1)Ps(n− 1)]i×
[1− Ptr(n− 1)]

= [(1− τ )n−1 + (n− 1)τ (1− τ )n−2]i(1− τ )n−1

(7)

The first factor in Equation (7) denotes the probability
that before any of the i slots, at most one transmission takes
place (no transmissions or only one successful transmission).
The second factor denotes that none of the n−1 nodes (other
than S) transmits in slot i+ 1.
Let

qac = (1− τ )n−1 + (n− 1)τ (1− τ )n−2

then

pac(i) = qi
ac(1− τ )n−1

and

p(i) =
qi

ac∑W−1
i=0 qi

ac

Therefore, from relation (6),

E[Bac] =
(W − 1)qW+1

ac −WqW
ac + qac

(1− qW
ac )(1− qac)

E[Bac] is compared to the ns-2 simulation results (all
nodes are in range of each other; W = 32) in Fig. 12.
Although both curves have the same shape, there is a differ-
ence between them, especially when n increases. The reason
is that the analytical model takes into account only collisions
due to contention, while simulations consider other causes
of collision, such as the shadowing channel model. Hence,
in the simulations the probability of observing a collision
while measuring a large backoff is higher. This in turn in-
creases the probability of discarding such measurements and
decreases the number of large backoff samples, thus result-
ing in a smaller average. The increasing number of collisions
similarly accounts for the decrease of the average value when
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Figure 12: Average actual backoff.

n increases. In the implementation of DOMINO, the differ-
ence between the analytical and simulation values obtained
from Fig. 12 can be subtracted from the analytical value in
order to get a closer estimate of the real average value.

A.2 Consecutive backoff Bco

Using similar reasoning to the one in the previous section,
the average consecutive backoff is:

E[Bco] =
W−1∑
i=0

i p(i)

where

p(i) =
pco(i)∑W−1

i=0 pco(i)

p(i) is the probability of the consecutive backoff being
equal to i time slots given that the contention window from
which this backoff is chosen is CWmin. pco(i) is the proba-
bility of a consecutive backoff of size i unconditioned on the
contention window size.
To compute pco(i), consider a successful frame transmis-

sion by a node S. We obtain a consecutive backoff of size i
if and only if none of the n−1 other nodes transmits during
any of the i time slots nor in the slot in which S transmits.
This occurs with probability:

pco(i) = [1− Ptr(n− 1)](i+1) = [(1− τ )n−1](i+1)

Let

qco = (1− τ )n−1

then

pco(i) = qi
co(1− τ )n−1

and

p(i) =
qi

co∑W−1
i=0 qi

co

Hence, using relation (6),

E[Bco] =
(W − 1)qW+1

co −WqW
co + qco

(1− qW
co )(1− qco)

These values are compared to the ns-2 simulation values
(with W = 32) in Fig. 13. In this case, the two curves are
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Figure 13: Average consecutive backoff.

closer than in the previous section. The reason is that con-
secutive backoffs are smaller than actual backoffs and hence
the probability of observing a collision while measuring the
former is also smaller than this probability while measur-
ing the latter. Therefore, collisions due to causes not taken
into account by the model (such as the channel model) have
less effect on the measurement of the average consecutive
backoff.
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