
Impromptu: Managing Networked Audio Applications for
Mobile Users

Chris Schmandt, Kwan Hong Lee, Jang Kim
∗

, Mark Ackerman
†

Speech Interface Group
MIT Media Laboratory

20 Ames Street, Room E15-327
Cambridge, MA 02139

{geek, kwan, jangkim, ack}@media.mit.edu

ABSTRACT
This paper discusses the software architecture of Impromptu,
a mobile IP-based audio computing platform, with an asso-
ciated set of network-based applications and services. Im-
promptu merges the communication properties and univer-
sal mobility of the telephone with the multi-tasking and
open protocol world of the handheld PC. Its supporting
architecture handles multiple streaming audio applications,
provides speech services for consistent audio user interfaces
across applications, and enables user management of these
varied applications running simultaneously.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems; H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems—Audio input/output

General Terms
Human Factors, Management, Performance, Design

Keywords
Multi tasking, audio interface, mobility, Voice over IP, WiFi,
audio applications, telephony, architecture, speech interface

1. INTRODUCTION
Impromptu is a mobile, IP-based audio device, with an

associated set of network based services and applications. It
supports multiple voice services, such as radio, news (text),
music (MP3), telephony (synchronous), chat (asynchronous)
and baby monitor (event triggered). Currently implemented
on an iPaq with an 802.11b wireless LAN card, Impromptu

∗Jang Kim is currently affiliated with Oracle Corporation
†Mark Ackerman is currently affiliated with University of
Michigan

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’04, June6–9, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-793-1/04/0006 ...$5.00.

is designed for highly mobile use. Its user interface does not
use the display; user input is by either speech recognition or
button presses. Both the Impromptu user interface as well
as its application architecture are designed to support, in the
audio domain, many interaction techniques of conventional
window systems.

Impromptu merges the communication properties and uni-
versal mobility of the telephone with the multi-tasking and
open protocol world of the handheld PC. The surge of mo-
bile telephone use has clearly shown that communication is
what counts for mobile users, and voice is where the ac-
tion is. Conventional telephony has the advantages of being
highly mobile, extremely connected, and usable in the midst
of other activities. However, the standard telephony model
is also extremely limited, since it is stuck in a single-tasking
model: only one application (generally, a telephone call) can
exist at a time. PC-style computers obviously are multi-
tasking and support more open networking protocols, but
lack the same level of mobility, ubiquity, and ease of use.
Existing “hybrid” products basically glue a mobile phone
onto a PDA. Impromptu draws on the features of both, and
here we examine the benefits, and limitations, of an audio-
oriented multi-application model based on mobile IP.

We hoped this would result in two advantages:

• This platform could allow one to run multiple audio
applications because of its use of IP and the stan-
dard capabilities of digital environments. This would
change the basic model of telephony that has existed
for the last 80 years, allowing one to simultaneously
run a variety of more sophisticated applications and
to create a new kind of audio environment.

• This platform would also allow us to examine the use of
audio in a mobile environment. Our work here extends
into even more hybrid environments that would allow
visual and audio interfaces simultaneously. However,
because of our interest in understanding how audio
might be of advantage in a mobile environment, we
pushed the audio interface in the work considered here.

This paper, then, discusses Impromptu, an audio-only
platform for ubiquitous computing. The paper describes
Impromptu’s hardware platform, sample applications, and
software architecture and services. We describe the sample
applications in order to show the power of creating a mobile
digital audio environment, and we describe the software ar-
chitecture to indicate the architectural changes required to

59

Figure 1: The iPaq Button Mapping.

support integrated audio and telephony. This architecture
must also support speech and audio in the user interface,
and, much like a desktop window manager, manage input
and output for multiple simultaneous audio applications.

2. IMPROMPTU
Impromptu is implemented on an iPaq PDA running Linux,

with an attached 802.11b wireless LAN card. Impromptu
consists of a number of audio-oriented applications, and it
does not use the display.1 User input is via speech recogni-
tion, using a network-based server running IBM’s Via Voice
recognizer, and the various buttons on the iPaq, as shown
in Figure 1.

Impromptu applications play sounds or text through speech
synthesis. Currently, Impromptu is an audio-only system;
applications do not have access to the display. Because of
speech’s constraints, only one application is active at a time.
However, a central theme of Impromptu is that users will
have access to many audio applications on a single device,
that some of these applications may run asynchronously in
the background, e.g. awaiting a phone call, and that the
display is not used for input or output. Therefore, an in-
active application can trigger an alert sound, such as when
an incoming phone call alerts over the radio or MP3 mu-
sic player. When an application alerts, the user must take
action to activate it if desired.

1The display is actually used for input only when entering
telephone numbers for conventional phone calls. For this
exception only, the input is interpreted by Impromptu com-
ponents as client button presses.

Users select an application by speaking its name, or by
using the “wheel” control in the center bottom of the iPaq
to scroll through the applications by pressing the left or right
buttons. As each application is selected in turn, it plays a
distinctive audio icon, a sound meant to evoke the concept
of that application. Although Impromptu includes a default
set of application sounds, users would most likely wish to
configure their own, so the sounds are specified by URL.

Several iPaq buttons have global meaning. Speech recog-
nition is initiated by pressing the push-to-talk button (which
immediately stops any application audio output). The ac-
tivate button allows for activation when a background ap-
plication alerts. The record button causes whatever audio
that is currently being played by Impromptu to be saved in
a file for the recorder application, without needing to bring
the recorder explicitly to the foreground.

Each application may have its own speech recognition vo-
cabulary, which is enabled while it is active (Figure 2), and
may use many of the iPaq buttons for functions of its own
choice. In general, each application uses “up” and “down”
on the wheel to mean “next” or “previous”, in a list of the
application-specific content it is providing.

The next section describes the current applications in or-
der to ground the later discussion of architecture and user
services.

3. APPLICATIONS
Central to the motivation behind Impromptu is that a

single mobile audio device can provide a number of differ-
ent applications. Each application has its own user interface
and functionality, but they share many characteristics. Im-
promptu applications can be divided into audio content ac-
cess, personal information management, and communication
channels. Exposing the reader to the range of these appli-
cations sets the stage for the architecture and user interface
management issues which form the core of this paper.

There are three types of applications, each discussed in
turn. The first group of applications provide different types
of audio content.

3.1 Audio Content
The music application is an MP3 music player. It sup-

ports sequential and random play, and the user can always
skip to the next or previous song in the user’s play list.
There is some support for requesting a particular genre or
artist, but not a full scale speech jukebox interface. The user
can ask about the current song; the artist and title spoken
using speech synthesis. The audio icon for the music player
is a short guitar riff.

Radio is exactly that. Currently a single channel is picked
up on a tuner and digitized to be streamed to Impromptu
users. There are a number of sources of streaming IP-
based radio but we have not incorporated them due to audio
transcoding issues. There is no memory in the radio appli-
cation, although previously the first author built a system,
Radio with a Memory, which allowed a user to jump between
two stations. This system would store the unattended chan-
nel and when the user switched back to it, play with rapid
time compression until the buffered audio was played out,
then slow down to real time. Its audio icon is the sound of
stations fading in and out as a tuner knob is turned.

AudioBook is a books-on-tape application. It accesses
digital audio from a variety of sources; a previous system

60

Speech
Recognition

call
Jang
...

Phone
Music
...

song
skip
...

record
delete
...

Phone Music Recorder

Global Phone Music Recorder

Active
Application

Enabled
Vocabularies

Distributed Applications

Figure 2: Recognition vocabularies. The recognition
engine stores each application’s vocabulary, and dy-
namically enables them when they are active. The
Music application vocabulary is active in this case.
The global vocabulary is always enabled.

also digitized and saved certain public radio programs. Au-
dioBook keeps “bookmarks” so when a user returns to a
recording, it restarts just before where the user last left off.
Its icon is the sound of pages turning.

News reads headline news stories scraped from the Yahoo
news web pages. Using speech synthesis, it reads headlines.
Using either voice or buttons, the user can skip to the next
headline, or ask to hear the entire story. Although we do not
think users will want to hear a large amount of news in this
manner, it does effectively demonstrate the speech synthesis
capability of the speech service. Its icon is a recording of a
person shouting “yahoo!”, to credit the source.

3.2 Personal Information Management
The second group of applications lets one manage one’s

own audio data. The recorder is a personal audio to-do
list, with a simple user interface and an additional function.
In normal use, one activates the recorder, and pushes the
record button to add an item to a single list. The list is
played using the “up” button on the iPaq wheel control, by
saying “play”, “next”, etc. We left this application simple

as our group previously demonstrated a much more sophis-
ticated handheld audio note taker [12] which used speech
recognition to create and navigate between lists and audio
time compression to play lists rapidly in browse mode.

In addition to this normal activation mode, the recorder
can be accessed at any time by pressing the leftmost of the
iPaq buttons, the record button, just as if recording while the
application is active. In this mode, any audio which is being
played by Impromptu is also forwarded to the recorder, so
it can save pieces of phone conversations, radio, etc. This
mode of operation might seem to violate our paradigm of a
single active application, but actually the recorder applica-
tion is actively recording audio received from the client in
the background, which reveals the utility of having multiple
applications running simultaneously. The audio icon for the
recorder is a sound like a snicker, somewhat in reference to
the privacy concerns about any digital audio recording.

Another application which may be considered “personal”
information management is BabyMon, a digital baby mon-
itor with some intelligence. BabyMon is designed to re-
place the analog radio baby monitors which are ubiquitous
in households of any affluence with a newborn. BabyMon
is software which runs on the normal Impromptu hardware
configuration; i.e. it is just another program which can run
on the platform. BabyMon detects baby cries, which are
identified 400 to 2000 milliseconds of loud sound punctuated
by 200 to 1000 milliseconds of relative quiet (while the baby
inhales for the next cry). The background noise threshold
for cry detection is allowed to slowly vary, to compensate
for background noise levels.

BabyMon is the first application described which runs in-
dependently in the background and can decide it has reason
to go active. When BabyMon has detected three cries, it
alerts with its audio icon, a sound of a baby crying. If
the user activates the application, a full duplex audio chan-
nel is established between Impromptu and the baby moni-
tor. Note that we always use the recorded cry as the alert
sound, because if the baby monitor falsely detected a cry
when there was none, or if the cry was soft, it might be con-
fusing to hear this unknown sound in the midst of whatever
audio was being played.

WatchDog is a burglar alarm which operates in a manner
similar to BabyMon. When a loud noise (above an adapt-
ing moving window threshold) is detected, WatchDog alerts
with (surprise!) the sound of a barking dog. When the
user activates the application, it first plays the stored audio
which triggered the alert, as a sudden brief sound could have
ended by the time the user activates, and then goes into full
duplex mode.

This could also be a function of a home intercom system,
such as described in [5], where the sudden noise could be
associated with someone falling or dropping a dish, and one
would wish to ask “Is everything OK?”. Again, this could
be a useful application for remotely monitoring home from
the office or car.

3.3 Communication Channels
From some points of view BabyMon and WatchDog can be

thought of as event-triggered communication channels, be-
cause they alert when their programmed event occurs and
then can become full duplex channels. Impromptu also sup-
ports normal and enhanced telephony, and an audio “chat”
application with a conversational log. The third group then

61

consists of these two rich applications. We left many details
omitted here; full discussion may be found in [8].

Garblephone is the Impromptu telephony application; it
operates as both conventional and enhanced telephone. As a
conventional telephone, the user enters a number (or receives
an incoming call on a pre-assigned number) and the Garble-
phone application, running on a remote PC, connects to the
public switched telephone network via an analog telephone
line interface unit (Computerfone, from Suncoast Systems).
Once the call is dialed, full duplex audio is streamed across
the IP network, converted to analog, and routed onto the
phone line. An incoming call works in a similar manner,
with the server generating an alert (the sound of a ringing
phone) and answering the call and connecting audio if the
Impromptu user activates.

Calls placed between Impromptu users demonstrate the
novel applications which can be developed when applications
are released from the limitations of conventional telephony.
Garblephone allows increased negotiation for both parties
while a call is set up. A known caller is announced by name
with the alert, and if on a list of trusted callers, the caller
can eavesdrop on the called party. The audio is garbled,
however, by an algorithm which randomizes the order of re-
cently recorded 100 millisecond blocks of sound. This algo-
rithm allows more intelligibility than that described in [11]
because we desire to reveal enough information about the
state of the called party to help the caller decide whether
to interrupt or go to voice mail; this includes the general
character of the conversation (serious, light, joking, etc.),
and possibly the identity of other conversants. The chosen
block sizes preserve enough syllables to allow some speaker
identification and to convey intonation.

The calling party may abort the call to voice mail, or the
called party may “move closer” (using the “up” button) to
hear the caller in the clear (Figure 3). This is to allow the
caller to state his or her reason for calling only if the called
party desires to hear it. If the called party does not send
the call to voice mail, the next stage of closeness is a full
duplex “telephone” connection, Impromptu-to-Impromptu.

A synchronous audio connection is the most demanding
for the network and is also very much a foreground activity
for the conversants. An alternative is an audio equivalent
of computer-mediated text “chat”. Our initial chat proto-
type modeled those applications closely; the user recorded
a contribution and then submitted it to the chat for others
to hear. A much more satisfying interaction uses a “walkie-
talkie” approach, a push-to-talk mode in which all parties in
the chat hear one person while he or she talks. This became
the core of the current chat application, TattleTrail.

Like its predecessor, a TattleTrail user joins a chat in
“catch up” mode, which allows for a quick scan of previous
chat content. Time compression using the SOLA algorithm
[6] allows the browsing user to interactively speed up and
slow down previous messages. All chat contributions are
clustered into “bursts” of back-to-back talk, for ease in nav-
igation. Once the user has caught up, he or she jumps into
synchronous mode, hearing others speak in real time. To
talk, the user presses a button, and hears either a beep or a
“no” chord (similar to the equivalent default sound in Win-
dows) which indicates whether the floor has been granted;
only one user may have the floor, i.e., transmit, at a time.

As the user enters and leaves the TattleTrail application,
he returns to catch up mode and then becomes synchronous

STATES AUDIO TRANSMITTED

ReceiverCaller

 Garbled Receiver Audio

Caller Alert

Caller Audio

Caller Audio

Receiver Audio

Caller Audio

 Garbled Receiver Audio

Call Placed

Calling

Monitoring

Voice Mail

Connected

Figure 3: Audio transmitted in Garblephone calling
states.

each time. Additionally, while TattleTrail is inactive, but
if it has been activated in the past, it uses as an alert a
portion of its own audio icon (a chime followed by the babble
of children’s voices) appended with the audio just sent by a
chat participant. These two modes are designed to allow the
Impromptu user to participate in the chat in the background
or from time-to-time. Figure 4 depicts a possible TattleTrail
usage scenario.

4. ARCHITECTURE AND NETWORKED
SERVICES

Impromptu is designed to consist of a thin mobile client
which communicates with network services, most impor-
tantly an application manager, speech recognition and syn-
thesis services, and a number of distributed applications
(Figure 5). Because the applications all involve either fetch-
ing audio or text content from the network or networked
storage, or communicating with other mobile clients, they
can reside only in the network. This forces the architecture
to manage streams of audio in multiple directions and be-
tween multiple software components, in real time. Because
audio has unique qualities, this also forced certain consider-
ations on the Impromptu architecture and capabilities.

The most important Impromptu component is the appli-
cation manager, which intervenes between client and ap-
plications. Although the application manager could reside
on the mobile client, its marshalling role argues strongly for
its implementation as at least a separate process. Being able
to run elsewhere offers many advantages when the client be-
comes disconnected, changes networks, or must respond to
differing network quality of service, e.g. by substituting in
codecs of higher compression ratios. As Litiu et al point out
in [3], such an application manager can “park” connections

62

Alice speaks

ChatUser

Alice speaks
Bob speaks

<Alice leaves>Hears Alice
Cindy speaks<Joins chat>

Hears Alice
Hears Bob

Hears Cindy

User speaksUser speaks
Bob speaksHears Bob

. . .

<Leaves chat>

Bob speaksHears alert
Cindy speaksHears alert

.

. . .

<Bob, Cindy leave>
<Joins chat>
Hears Cindy
Hears Bob

<Becomes synchronous>

<Becomes synchronous>

Figure 4: Sample TattleTrail chat activity displaying
different modes of user attention.

to keep them alive but only slightly active by controlling
them on behalf of a temporarily disconnected client.

The application manager (one per user) plays a crucial
role in management of Impromptu resources, and merits a
detailed look. The application manager functions in part as
the equivalent of a window manager, in terms of managing
input/output resources and changing focus between applica-
tions. When the application manager starts up, it currently
contacts a simple lookup service and registers its available
status. The lookup service stores all registration informa-
tion, and is the initial point of contact for Impromptu com-
ponents. When an application starts up (generally not one
per user), it consults the lookup service to find the addresses
of all running application managers (i.e., those which are
currently engaged with Impromptu clients), and then regis-
ters its online status with each application manager. During
registration (Figure 6) the application specifies the location
(URLs) of its distinctive audio icon (to be played when it
goes active) and its specific speech recognition vocabulary to
the application manager. The application manager uses the
speech service to load the application’s vocabulary into
the speech recognition engine, and notifies the client about
the new application so that socket connections between the
two can be established for streaming audio.

The speech service handles all speech recognition and text-
to-speech services for the client over the network. These
services could be implemented on the iPaq, and in fact the

Distributed
Applications

Chat

Music

News

Text to
Speech

Application
Manager

Speech
Recognition

Lookup
Service

Presence
Service

Profiler
Service

Phone

Speech Service

Control Message
Audio
Text

Figure 5: The Impromptu architecture. Note that
different types of connections are made for audio,
text, and control channels

Client Application
Manager Application Lookup

Service

Register

Addresses of all
online

Application
Managers

Notify all managers

Register new
application

Establish
audio sockets

Speech
Service

Load app vocab,
add app name
to global vocab

Figure 6: Application registration.

current iPaq product supports both, but at the time this
project began speech recognition was not available. Because
it is important to separate the concern of details of speech
recognition from each application, the speech services should
be separate processes wherever they reside. Since mobile
processing is still significantly more expensive than server
based, and speech services can be shared by multiple clients,
providing these services in networked servers is a cost effec-
tive solution.

When a new Impromptu client starts up (Figure 7), it
registers with the lookup service and uses it to find an avail-
able application manager process. Once a message channel
is established between the client and application manager,
resource allocation begins. The application manager reg-
isters with the presence, profiler, and speech services for
the client. The presence service keeps track of the user’s
subscribed “buddies”, while the profiler service profiles
the user’s activities by monitoring application usage. Once
the services have been activated, the application manager
passes the client information for establishing an audio socket
to the speech service. Additionally, in a process similar to
that described above, the application manager contacts the
lookup service to obtain addresses for registered applications

63

Client Application
Manager

Speech
Service

Lookup
Service

Register

Establish
message channel

Register services
for client

Establish
audio sockets

Applications

 Address of an available Application Manager

Query client's
applications

Register

Client's applications

Notify applications

Speech, application
info

Establish
audio sockets

Figure 7: Client registration.

to which that particular Impromptu user subscribes.
While a user is running Impromptu, the application man-

ager collects user input and either acts on it (for example,
the user requests to change application) or forwards the user
input to the active application. If the user changes applica-
tions, a deactivate message is sent to the current application
and an activate message is sent to the new application. The
push-to-talk button is special; when it is pressed the client
stops playing audio and a message is sent to the speech ser-
vice, to cause it to start reading audio from Impromptu (Fig-
ure 8). The speech service performs recognition and returns
the result either to the client or to the application, depend-
ing on which vocabulary contains the recognized word.

Note that although the application manager (with the
help of the speech service) acts as a dispatch mechanism
for user input, this architecture does not interpose it in the
audio paths. To do so would add delay to the audio, and
possibly greater chance for lost packets; this would have a
particularly negative impact on the synchronous telephony
application. Instead, each application is expected to be well
behaved, and not transmit audio when it is inactive. In any
case, the client will read from (and play) the audio only
from the appropriate socket, but if the deactivated applica-
tion continued to send audio it would consume network and
client resources.

5. USER INTERFACE ISSUES
The previous section described an architecture with some

similarity to a window system to manage multiple applica-
tions. This includes activating applications, notification and
registration when new applications come online, redirecting
user input to the active application, managing audio out-
put from the applications, and a mechanism for an inactive
application to alert the user via audio. In this section we de-
scribe the Impromptu user interface, which was designed to
allow the user to keep track of all this activity without a dis-
play. Note that we are concerned here with the Impromptu
system more than the user interface of any particular ap-
plication, much as one might speak of the “MacIntosh user
interface.” The application manager really acts like a win-
dow manager, with separation of content (audio) and control

Client Application
Manager

Speech
ServiceUser

Start reading
network

Music

Push-to-talk
pressed

Activate Music app

Activate

Stream music

Send text: "Music"

Push-to-talk
pressed

Say "Music" Send audio
Push-to-talk
released

Push-to-talk
released

Stop reading
network

Start reading
network

Push-to-talk
pressed

Push-to-talk
pressed

Say "next"

Send audio
Push-to-talk
released

Push-to-talk
released

Stop reading
network

Send text: "next"

Stream next song

Figure 8: Using push-to-talk.

(button presses and recognized speech).
The first point of note is that we have chosen to have only

a single active application, so in general only a single source
of audio plays at a time (with the exception of the chat
application, which tries to maintain a presence while inac-
tive through creative alerting). Multiple applications could
be active if we were to mix their output, which is tech-
nically straightforward but not very intelligible or useful.
Other techniques could be used. One is to present multiple
channels in different spatial locations and allow the user to
selectively attend to any one of them, as was done in Au-
dioStreamer [9]. Another is to use various audio processing
techniques, including reverb and equalization, to make one
audio source “stand out” over the others, as was proposed by
Ludwig [4]. Neither of these techniques will work well with
the built in low-quality iPaq speaker, however. Although
some users tolerate headphones (especially those who pre-
fer to listen to music) each of these techniques places added
cognitive load on the user, who must manage to differentiate
the sound sources while continuing to function in the real
world. Therefore our current design has limited output to a
single active application, except for short periods.

Because of this, there must be some alerting mechanism,
which in Impromptu must be audio-oriented. We have al-
ready discussed why only one Impromptu application can
be updating, or playing an audio stream, at a time. How-
ever, much as a window system sometimes decorates, or in-
dicates graphically, which application is active, Impromptu
does this by sound, or audio icon. The purpose of the audio
icon is to allow the user to track which application is active

64

or seeking attention in lieu of any visual cues. This sound
plays when a user selects the application, when an appli-
cation becomes active, when an application terminates (in
this case, accompanied by the sound of a slamming door)
or when an inactive application alerts, or requests user at-
tention. Alerting is similar to the window system function
in which an application pops up a dialog box on top of the
rest of the windows to gain user attention.2

User input (key and mouse presses, for a conventional
window manager) needs to be dispatched to the active ap-
plication. Impromptu’s application manager does a service
similar to a window manager, using a combination of speech
and button input, with almost all commands enabled by ei-
ther modality. Some functions, such as selecting an applica-
tion, are naturally easier with one modality. By voice, one
simply speaks its name. But by button, one must use the
“left” and “right” buttons to scroll through the applications
until the desired one is found, much like a telephone user in-
terface which says “Press any key when you hear the choice
you wish.” and then starts reciting a list of options. But a
function such as skipping music tracks is performed rapidly
and reliably by pressing “next” and “previous” buttons than
by saying the same words [12].

Buttons are likely to be preferred to speech input in a
noisy environment, despite their sometimes inconvenient lo-
cations, because speech recognition accuracy is likely to be
the leading factor in user satisfaction [14]. The user may
be more likely to remember a command word than which
of four or five poorly labeled, or reused, buttons to select
a function. But most important is that multimodal input
is particularly suited for error management; the most suc-
cessful error strategy, in general, is when an error occurs
on one modality, to switch to the alternate [13]. In other
words, when a speech recognizer has difficulty understand-
ing a word the first time, it is quite likely to have the same
difficulty the second time, if it is repeated.

This raises the issue of user interface feedback. When
the user speaks a word, the recognizer may detect the cor-
rect word, a different word, or nothing. Our initial user
interface did not respond when a word was not recognized;
if an application name was recognized, a “correct recogni-
tion” sound was played, followed by the audio icon for the
particular application (see below), followed by sound from
the application itself. This was incorrect. The user needs
feedback when the recognizer detects no word in response
to input, in order to know to try something else. And it is
not necessary to play a “correct recognition” sound, because
the correct audio in response to the speech command will
be played immediately if the command was recognized. If
the speech command was to activate an application, play-
ing the audio icon of the invoked application is unnecessary
as well, because it will quickly become apparent whether
the ensuing audio being played is the desired sound or not.
It may, however, be useful to play the icon repeatedly to
help new users learn to map the icon to the application.3

2These dialog boxes or pop-up windows may be modal, and
grab user input so no other window is active, or they may
allow the user to ignore them. Impromptu supports only
the latter, which is appropriate for audio-only interfaces
3Any such sound mapping should be configurable by users,
who may be sensitive about which sounds are used. Users
who configure are likely to recall the mapping more readily
than with the default sounds.

It is necessary to play that sound when scrolling by but-
ton press, however, as multiple presses in quick succession
are usually necessary, and it is important to hear distinctive
sounds quickly to know if the desired application has been
reached.

In order to provide consistent feedback behavior, some
user interaction components are provided in the application
manager and speech service. The analogy from window sys-
tems is that the applications are written using a consistent
widget set, or user interface interactors. Although there is
no mechanism provided for an application to override these
behaviors, it can modify them. TattleTrail provides an inno-
vative alert, by mixing its icon sound with the actual audio
from the alerting piece of conversation, and then substitutes
this for its normal alert. When it sends an updated alert
message to the application manger, the appropriate sound
is played.

These user interface capabilities are required for a multi-
application audio platform. The next section discusses the
advantages and liabilities involved in streaming audio over
IP.

6. WHY IP?
Mobile telephones are ubiquitous in many parts of the

world; why not just use this network for an Impromptu-
style collection of audio applications? There are many rea-
sons. The telephone network offers few options in terms of
call control or setup; a call is either answered, left ringing,
or sent to voice mail. There are no options for “partial”
connections, such as Garblephone’s. Because it is a circuit
switched network, usage charges are by the minute, making
applications such as radio, music, or books-on-tape expen-
sive. When playing recorded speech, many minutes of audio
data are ready to be sent in any sudden period of network
availability, making a packet-based network more efficient
under some circumstances. Additionally it takes some sec-
onds to set up a call; when calls are minutes long this may
not matter but for the rapid exchange of messages in an
audio chat session this overhead affects performance.4

Most importantly, IP is a widely accepted transport proto-
col upon which it is easy to build application-specific control
messages and multiple higher layer protocols that can run si-
multaneously. Similarly, its addressing modes allow multiple
simultaneous data channels to be open without setting up a
connection for each one each time it is needed. Unlike tele-
phones, with IP it is easy to integrate with network-based
services such as storage, audio processing, speech recogni-
tion, and text-to-speech synthesis. Additionally, except for
firewall issues, IP is a global networking scheme; a user could
equally well listen to the baby monitor or his or her per-
sonal music collection at home or in the office. Similarly
we have demonstrated Impromptu at other sites, using the
local wireless LAN to connect to servers and resources back
at the MIT campus.

IP is not, however, ideally suited to synchronous audio,
i.e., telephony. Telephones use circuit switched networks
with guaranteed quality of service; in other words, they en-
sure some bandwidth for audio with defined limitations on
latency. When the audio is broken into packets and sent on a

4The usual Voice over IP telephony protocol, H.323, also
has non-negotiable call setup, which is why we chose not to
use it.

65

network along with packets from many other addresses, net-
work usage may be more efficient or flexible, but problems
may result for an inability to guarantee reliability. Stream-
ing media on IP networks face limitations in the form of
latency, or delay, and jitter, variations in the delay time,
and also lost packets, which never arrive at their destina-
tion (infinite latency).

In a full duplex audio connection, increased latency means
that when the other party talks, the receiver does not hear
that until some time after. This quickly affects one’s ability
to interrupt, and seriously degrades conversational quality
once latency increases beyond about 250 milliseconds (as
was the case when trans-oceanic telephone calls were carried
by high orbit geostationary satellites) [2, 7]. Jitter affects
how much buffering is required at the receiver, unless we
are willing to tolerate breaks in the continuity of the audio
stream (i.e., it is time to play a packet, but it has not yet ar-
rived). More buffering effectively increases the delay before
one party hears another.

Lost packets may occur because of collisions between pack-
ets on the network or other causes. A protocol such as TCP,
a layer on top of IP, assigns sequence numbers to packets,
assembles them in sequence at the receiver, and can request
retransmission when gaps are detected; this makes TCP
suitable for moving files, for example. If TCP is applied
to a streaming audio connection, however, retransmission
will result in momentary silences, and it is generally more
acceptable to just play the next packet and keep going. For
streaming media, a protocol such as UDP, in which packets
are just sent once and presented in the order received, or
RTP, which is UDP plus some control information [10], are
usually used. If a packet is lost, it is just skipped and the
next packet is played, with an audible glitch at the bound-
ary. Some error correction protocols for speech allow for par-
tial error recovery at gaps; the Robust Audio Tool (RAT) is
an example [1]. Packet loss error can be particularly prob-
lematic for speech recognition.

This argues that applications built for Impromptu should
be suitable for IP, as they tolerate some buffering. The baby,
for example, is hardly bothered if a parent is listening to her
cries with a 500 millisecond delay, since each cry lasts longer
than a second. Listening to radio with a similar delay is
an issue only if one encounters someone else listening to the
same program with a different delay. Push-to-talk with floor
control avoids speech interruption difficulties encountered in
telephony; even successful commercial implementations of
push-to-talk, such as Nextel Direct (a walkie-talkie service
overlaid on a digital telephone network) exhibit delays which
would interfere with telephone conversation.

It is also possible to use multiple protocols, as well as to
cover delays by buffering, because of the temporal nature of
an audio user interface. For example, when the user presses
the push-to-talk button for speech recognition, Impromptu
sends audio to the recognizer using TCP. This means recog-
nition cannot begin until the user releases the button, but
there will be no glitches when the audio is processed at the
speech server, and hence better speech recognition. And
whenever the user switches context and hears an audio cue,
the few seconds which elapse while the cue plays is time in
which application audio may be streamed over the network
and buffered locally.

Impromptu runs reliably in our laboratory, including mul-
tiple clients and iPaqs running monitor applications sharing

the same 802.11b cell. We have also run mobile clients at
remote sites, with applications and services running in the
laboratory; except for the highest quality audio applications,
performance has been adequate. It remains to be seen how
wireless IP will be deployed by commercial carriers. 802.11b,
the de facto standard for campus or home wireless network-
ing, is increasingly found in public places like coffee shops or
hotel lobbies, and we hear anecdotes of surreptitious access
to unprotected corporate networks in many urban business
districts. For practical deployment, Impromptu may switch
between private and public networks depending on the user’s
location. Because it is IP-based, this could be accomplished
with minimal modification to the application manager.

In the short term commercial carriers are deploying GPRS,
but other forms of wireless IP are competitors. We are likely
to find performance and bandwidth varying between urban
core and suburban or rural locations. Full deployment of Im-
promptu would require speech compression, but note that
each application could employ its own codec. We are al-
ready used to intelligible but low quality speech over mobile
phones. MP3 is itself a compression scheme. Radio and
books-on-tape applications probably require high bit rate
codecs, but are more amenable to larger amounts of buffer-
ing.

7. PERFORMANCE AND SCALABILITY
In this section we address issues of performance, mostly in

terms of the user interface, and scalability of the underlying
architecture.

7.1 Performance
Our primary concern with Impromptu was to demonstrate

the viability of an audio-only user interface to an array of
audio applications, and show how features of a visual user in-
terface (such as multiple windows, input focus, window dec-
oration, and non-modal dialog boxes) could be supported.
Of course any user interface needs to be responsive enough
to not interfere with the user’s selection of and interaction
with a particular application. Hence we were concerned with
performance at several levels.

7.1.1 Voice over WiFi
There are of course questions as to the viability of trans-

porting rich media, such as audio or video, over wireless IP
networks. While we built and tested Impromptu, we were
able to stream audio over WiFi using IP networking quite
well. Synchronous phone conversations occurred with la-
tency on the order of 100 milliseconds (150 is acceptable ac-
cording to CCITT standards), and our applications in gen-
eral ran with only small amounts of buffering. As network
congestion increases, we expect more lost packets, of course,
and we have seen this on heavily loaded networks. How-
ever part of our initial design imagined Impromptu being
used on a home WiFi network to access audio around the
house (hence our inclusion of the baby monitor) including
music collections, listening to the radio, and switching to
the phone to take a call. In such an environment it is highly
likely that adequate wireless bandwidth exists to support
streaming audio.

As network congestion increases, several steps can be taken.
One is to introduce more buffering, and hence latency, as this
allows more time for stray packets to arrive (or for a retrans-
mission scheme). For most of the Impromptu applications,

66

a bit more latency is quite tolerable. Another scheme is to
back off to a lower quality codec. Depending on the audio
material, this may or may not be acceptable; it is not clear
that one would wish to listen to the radio with the quality
of a mobile phone. But there certainly is a range of audio
quality that can be moved up and down.

In a seriously overloaded network, multiple media streams
may not be possible without causing so much network con-
tention that no traffic gets through satisfactorily. In this
case it would be up to the application manager, in concert
with another network management service, to generate busy
signals and prevent some audio applications from running at
all. Another possible approach is to use audio time scaling
to slow down the speech output a bit; this can be done so
that it is barely noticeable and allows considerable buffering
to be invisibly built up, as long as the application is not full
duplex and interactive.

7.2 User Interaction
Our concerns for performance were much more centered

around the ability for such a distributed system to maintain
an adequately responsive user interface. Here the primary
concern was the separation of the application manager from
the client hardware itself. Although initially done for the
sake of rapid software development, this scheme also allowed
services such as speech recognition to be performed much
more effectively on faster processors found in desktop com-
puters. But the separation also raises performance issues in
that round trips are required to perform user actions. Specif-
ically, when the user does push-to-talk, the audio for recog-
nition is recorded, then sent using TCP, as losing blocks of
audio data seriously degrades speech recognition. Recogni-
tion cannot begin until the whole utterance has been spoken
and transmitted from the handheld device.

In fact, given how relatively slowly people speak (180
words per minute is typical) the lag for speech recognition
was generally not a factor. When it increased, however, the
user interface became difficult, as it was not clear whether
a word had not been recognized, or was still in transit. The
crispness of the user interface was increased noticeably when
we instituted a simple protocol of stopping any audio out-
put the moment the user presses the “talk” button; this can
be done entirely locally and gives the user confidence that
s/he is being heard. The second step was to locally gener-
ate a “not recognized” sound after a timeout, so the user
would try again. If a recognition result is in transit, it will
arrive before the user finishes speaking for the second time,
and interaction can proceed normally; of course this breaks
down if the delayed first recognition arrives while the user
is speaking a different command.

So what happens in actual use is, the user presses the talk
button, and audio output stops. If the spoken command is
internal to the active application, nothing happens until that
application receives the recognition result (which does not
require a round trip back to the client; it is sent directly
to the application by the speech service); since users are
used to some delay when using applications, this is usually
tolerable.

If the user selects a different application, then the audio
cue (audio icon) for the new application plays before the
application starts. Currently this is accomplished by send-
ing audio for this cue from the application manager, and
this usually is adequate. However, interaction could be im-

proved slightly by caching these audio cues on the handheld
(they are short, and played repeatedly).

7.3 Audio Mixing
Another issue with the thin client is audio mixing. Al-

though our initial design rationale was that only a single
application at a time would play, we changed this late in the
project. Applications such as audio chat (voice IM) need to
run in the background, as there is usually little activity on
these channels. But if the user does not hear fresh activity,
s/he does not know to attend to the channel. So with the
chat running in the background, a new chat sound would be
preceded by the chat audio icon, followed by the recorded
audio from the remote chat user, mixed in at about 40% of
full volume. This provides “background listening”.

This mixing was done on the client. The price for mixing
on the client is that double the WiFi bandwidth is being
used during the duration of the mix. However, if the mixing
were done on the server-side, since we make no assumption
that applications run on the same processor, an additional
end-to-end network delay would be incurred, and we chose
to avoid this.

7.4 Scalability
Scalability becomes an issue in situations in which there

are a number of clients and/or services running on the same
network simultaneously. Of course in the domestic use sce-
nario much of the content would be local to the home PC,
and remote content could be streamed into the home via
broadband connections with relative ease (at least for audio,
given the considerations above about buffering). However,
even in the home there may be multiple users and multiple
handheld devices in use.

7.4.1 Speech Recognition
We chose to put the recognition service with the applica-

tion manager and use the client as a thin user interface to
these. Centralized speech recognition allows the most effec-
tive use of processor cycles. Since recognition only occurs
when a user pushes the talk button, and users listen a much
greater portion of the time than they issue commands, it
would in fact be very easy to deploy multiple clients around
a single recognition server; this would have required minor
changes to our software. Such techniques are already used
in interactive telephone-based voice response systems in call
centers, where DSP channels for recognition are routinely
switched between multiple calls, as they are the most ex-
pensive resource.

However PDAs are now emerging which have enough pro-
cessing to perform small vocabulary recognition locally, and
this would be the first feature to push back into the client.
It allows recognition to be performed at constant speed even
in high collision networks, and with the caching of the audio
icon cues, a more robust and reliable user interface could be
provided.

7.4.2 Network Congestion and Disconnected
Operation

As the network becomes increasingly congested, rather
than offer poor service to all, it is better to block some
channels; the user interface might provide an auditory “busy
signal” sound. Alternatively, buffering can be increased
and/or different codecs may be employed. Measurement of

67

network congestion, and collaborative distribution of band-
width among applications and individuals, requires coordi-
nation between a number of processes. In the architecture
in which the application manager is not on the client, it is
probably on the wired portion of the network, which typ-
ically has significantly higher bandwidth than the wireless
network. Thus this split architecture would allow for bet-
ter negotiation between entities and decisions to be made
by and communicated from a network management service
without added traffic on the wireless network, which could
already be taxed.

Separating clients from the applications allows applica-
tions to reside on different computers, and hence could ulti-
mately lead to efficiency by organizing content appropriately
on these servers, such as multiple layers of caching using lo-
cal memory and local disk, all of which is likely to be greater
than on a handheld device. Some services, such as the radio
service, would also benefit from the use of multicast; only
the chat application was multicast in Impromptu.

Finally, placing the application manager within the wired
network allows for mobility of the client across multiple wire-
less networks. For example, it may go WiFi at home, GPRS
while driving in to work, and back to WiFi (maybe at a
higher bandwidth) in the office. Rather than set up and
tear down the many connections and associated state of
each application to which the client is connected, all that
is necessary is for the client to re-authenticate itself to the
application manager, and open a new set of audio sockets
to each application to carry traffic on the new network, and
the user can simply pick up where s/he left off.

Impromptu does not, however, support any disconnected
operation. Clearly some caching is possible, especially since
audio can be transmitted much more quickly than it is con-
sumed at ordinary listening speeds. So a book on tape, for
example, could be largely downloaded in a relatively short
period of time, and listened to while out of network range.
For another example, storing music as large numbers of MP3
files on a portable device has become commonplace since we
started working on Impromptu.

8. CONCLUSIONS
This paper has discussed the design issues of software ar-

chitecture and user interface services for a mobile audio-
only platform, Impromptu. Impromptu attempts to move
the networked PC into the world of mobile audio applica-
tions, which have up till now been the domain of telephony
or dedicated devices. On PCs we are used to running mul-
tiple applications simultaneously, and easily switching our
typing and viewing between them. IP-based networks have
provided low level flexible routing while allowing multiple
applications to support higher level protocols.

In the open architecture world of the Internet, a wide
variety of applications and communication protocols have
evolved, such as email, text chats, and instant messaging,
and users are free to select among them. But text based
messaging and visual user interfaces detract from mobility.

We seek to encompass the popularity of mobile telephony,
and augment it with a variety of related applications which
have to date required separate devices and RF spectrum. At
the same time, we seek to address the limitations of mobile
phones through emphasis on audio-only applications and a
range of computer-mediated voice channels, all enabled by
the flexibility of IP.

In order to motivate discussion of the Impromptu archi-
tecture and user interface services, we initially discussed Im-
promptu’s application suite implemented to date. The ar-
chitecture supports the streaming audio, storage, and pro-
cessing requirements of all these applications, in the context
of an IP network. It must provide a set of user interface ser-
vices to allow speech recognition and synthesis in a shared
manner. Finally, it must enable user management of mul-
tiple simultaneous applications through a consistent and ef-
fective user interface.

If Impromptu is compelling, it is less the number than
the variety of audio applications it supports, and the in-
teractions between them. The characteristics of streaming
audio place added demands on a distributed ubiquitous or
collaborative computing architecture. The transitory nature
of sound in a non-visual user interface requires support from
the software environment if the user is to manage multiple
applications. Solutions to these problems are much more the
domain of computing than telephony, even though the de-
vice might feel more like a jazzed up phone than a computer
to the user.

9. ACKNOWLEDGMENTS
Elina Kamenetskaya wrote the POTS telephone gateway

and parts of the Garblephone application. Mike Jacknis,
Stefan Marti, and Nitin Sawhney helped implement and
evaluate an early version of the audio garbling algorithm.
Years ago, Barry Arons developed some of the browsing
techniques reused in reviewing chat history; his work with
the first author on audio “window systems” influenced the
notion of foreground and background non-graphical applica-
tions. Eric Hulteen made some small but powerful sugges-
tions for speech recognition feedback.

10. REFERENCES
[1] V. Hardman, M. Sasse, and I. Kouvelas. Successful

multiparty audio communication over the internet.
Communications of the ACM, 41(5):74–80, May 1998.

[2] C. Jensen, S. Farnham, S. Drucker, and P. Kollock.
The effect of communication modality on cooperation
in online environments. In Proceedings of Human
Factors in Computing Systems (CHI’00), pages
470–477. ACM, 2000.

[3] R. Litiu and A. Parakash. Developing adaptive
groupware applications using a mobile component
framework. In Proceedings of the ACM 2000
Conference on Computer Supported Cooperative Work,
pages 107–116. ACM, 2000.

[4] L. Ludwig and M. Cohen. Multidimensional audio
window management. International Journal of
Man-Machine Studies, 34(3):319–336, 1991.

[5] K. Nagel, C. Kidd, T. O’Connell, A. Dey, and
G. Abowd. The Family Intercom: Developing a
context-aware audio communication system. In
G. Abowd, B. Brumitt, and S. Shafer, editors,
Ubicomp 2001: Ubiquitous Computing, Lecture Notes
in Computer Science Series, pages 176–183.
Springer-Verlag, 2001.

[6] S. Roucos and A. Wilgus. High quality time-scale
modification for speech. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and
Signal Processing, pages 493–496. IEEE, 1985.

68

[7] K. Ruhleder and B. Jordan. Co-constructing
non-mutual realities: Delay-generated trouble in
distributed interaction. Computer Supported
Cooperative Work, 10(1):113–138, 2001.

[8] C. Schmandt, J. Kim, K. Lee, G. Vallejo, and
M. Ackerman. Mediated voice communication via
mobile ip. In Proceedings of the 15th Annual ACM
Symposium on User Interface Software and
Technology (UIST ’02), pages 141–150. ACM, 2002.

[9] C. Schmandt and A. Mullins. Audiostreamer:
Exploiting simultaneity for listening. In Proceedings of
Human Factors in Computing Systems (CHI’95),
pages 218–219. ACM, 1995.

[10] H. Schulzrinne, S.Casner, R. Frederick, and
V. Jacobson. RTP: A transport protocol for real-time
applications. IETF RFC 1889, 1996.

[11] I. Smith and S. Hudson. Low disturbance audio for
awareness and privacy in media space applications. In
Proceedings of the ACM Conference on Multimedia,
pages 91–97. ACM, 1995.

[12] L. Stifelman, B. Arons, C. Schmandt, and E. Hulteen.
Voicenotes: A speech interface for a hand-held voice
notetaker. In Proceedings of Human Factors in
Computing Systems (CHI’93), pages 179–186. ACM,
1993.

[13] B. Suhm, B. Myers, and A. Waibel. Model-based and
empirical evaluation of multi-modal interactive error
correction. In Proceedings of Human Factors in
Computing Systems (CHI’99), pages 584–591. ACM,
1999.

[14] M. Walker, J. Fromer, G. Di Fabbrizio, C. Mestel, and
D. Hindle. What can I say?: Evaluating a spoken
language interface to email. In Proceedings of Human
Factors in Computing Systems (CHI’98), pages
582–589. ACM, 1998.

69

