A Mechanism for Host Mobility Management supporting
Application Awareness

Arjan Peddemors Hans Zandbelt Mortaza Bargh
Telematica Instituut
Enschede, The Netherlands

{Arjan.Peddemors, Hans.Zandbelt, Mortaza.Bargh}@telin.nl

ABSTRACT

Many approaches exist today that address the issues that arise
when a mobile node changes its point(s) of attachment to the
Internet. Mobile IP takes care of host mobility at the IP layer;
others at the transport layer (Mobile SCTP) or at the application
layer (SIP with re-invite). In practice, most of these approaches
rely on functionality residing on the mobile host that scans, detects
and activates the networks available through one or more network
interfaces.

The mechanism proposed in this paper takes into account that
multiple of these approaches may be applied at the same time. It
provides the applications on the mobile host with information
about the state of the lower-layer mobility management protocols
(such as Mobile IP) as well as the state and characteristics of the
available network resources. Applications may consecutively
adapt their behavior depending on this mobility process
information and thus accommodate to the changed network
connectivity conditions, possibly in an application specific
manner. In this paper, we present the architecture of our mobility
management mechanism. We also describe the implementation of
our prototype and the results of experiments with the mechanism,
thereby addressing the complexities of an integrated application-
aware mobility management system.

Categories and Subject Descriptors

C.21 [Computer-Communication  Networks]:  Network
Architecture and Design — Network communications, Wireless
communication; D.4.4 [Operating Systems]: Communications
Management — Network communication

General Terms
Management, Design, Experimentation

Keywords
Mobility Management, Host Mobility, Application Awareness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MobiSys 04, June 6-9, 2004, Boston, Massachusetts, USA.

Copyright 2004 ACM 1-58113-793-1/04/0006...$5.00.

231

1. INTRODUCTION

The advances in mobile device capabilities have been remarkable
in recent years. Mobile phones, PDAs, and notebooks have
become more powerful, more versatile and better usable and this
progress is likely to continue in the near future. At the same time,
the availability and applicability of new network technologies such
as the IEEE 802.11 Wireless LAN series, and Bluetooth, but also
new developments in 2.5G and 3G cellular network
standardization, make clear that we live and continue to live in a
world of heterogeneous network technologies. The Internet
Protocol is the binding factor between these network technologies:
even the traditional applications that strongly rely on circuit-
switched networks characteristics, such as voice calls, are more
and more used in an IP environment. For this paper, we will
therefore consider an all-IP network situation.

With the evolution of mobile technologies towards more advanced
devices and faster networks, the networked applications running in
mobile environments will further evolve from applications known
and implicitly targeted at fixed workstations towards applications
that can be regarded as “truly” mobile. True mobile applications
explicitly take into account the fact that they run on a mobile
device that is connected to one or more dynamically changing
networks. They will not be part of a niche domain but will be
running on consumer-market devices such as advanced mobile
phones.

Mobile applications must take into account that they typically
operate in a highly dynamic network environment. The mobile
device may connect and disconnect dynamically to, mostly,
wireless networks. The wireless networks in general expose a
more dynamic behavior in terms of variation of available
bandwidth and delay than their fixed counterparts; they
occasionally may not even be available at all for a short period of
time (when the device owner is driving through a tunnel, for
example). These dynamic network characteristics are inherent to
the mobile environment and they impose a specific set of
constraints on the connectivity handling functionality in the
mobile terminal on both the network (IP) and application level.

The mobile device may have various means to provide so-called
seamless mobility to the applications. It may implement Mobile IP
Mobile Node (MN) functionality to supply mobility management
at the IP layer. Or it may provide a Mobile Stream Control
Transmission Protocol (Mobile SCTP) implementation handling
mobility management at the transport layer (see also the next
section). A well functioning real-world mobile system, however,



must make sure that whenever networks appear or disappear, the
mobility management functionalities are triggered to adjust to the
new situation. We call this process of network activation and
deactivation, and the updates in the state of the mobility
management components the mobility process.

This paper proposes a system-level mobility management
mechanism for mobile hosts in a heterogeneous network
environment. The mechanism provides means to inform the
applications running on the mobile host about the state and the
events in the mobility process and about the state and
characteristics of the available network resources. It cooperates
and interacts with existing protocols and mechanisms, such as
Mobile IP or SCTP, which are specifically designed for or can be
applied to accommodate node mobility within the Internet.

The remainder of this paper is organized as follows. In the next
section, we will give a description of the background, motivation
and our guiding principles. Section 3 focuses on the architecture;
section 4 and 5 discuss the implementation of our mechanism and
the experiments we have done for its initial validation. Section 6
evaluates and discusses our results and section 7 provides an
overview of the work that relates to our approach. The final
section presents our conclusions and thoughts about our future
work.

2. BACKGROUND AND MOTIVATION

This section describes the mobile device context that we consider
to be representative for devices in future all-IP network
environments. We propose a classification of applications that
may run on the mobile terminal. Additionally, we discuss a
number of principles that we used as guidelines for the
construction of the mechanism architecture.

2.1 Mobile device context

Many kinds of wireless technologies currently do co-exist and it is
likely that their number will further increase in the near future.
Mobile devices, also low-end models, will be equipped with
multiple network interfaces that facilitate access to different kinds
of wireless networks. This requires that, on the mobile host,
functionality is in place that manages the activation of network
access through the network interfaces. For uninterrupted IP
services, it is important that this activation can be performed
without explicit interaction with the user.

Much effort has been spent on solving the issues that arise when a
node becomes mobile and changes its point of attachment to the
Internet. This has led to the development of various protocols and
protocol implementations that address these problems. To date, the
most notable of these solutions is Mobile IP [16][9]. This protocol
ensures that the mobile node does not need to change its primary
IP address that is used in connectivity sessions. However, it is not
obvious that Mobile IP will be applied in all (mobile)
circumstances. It requires at least one extra entity in the network
for keeping track of the mobile connectivity state: the Home
Agent (HA). Its deployments may be problematic, for instance in
case of coexistence with firewalls and Virtual Private Networks
(VPNs). Mobile IP will only be a viable solution when it can be
applied in the majority of access networks that the user normally
visits.

232

Other existing protocols and techniques can be applied to address
attachment issues at the transport layer (Mobile SCTP [18] or
TCP-Migrate [19]) or at the application layer (for instance, the
Session Initiation Protocol (SIP) with re-invite [23]). Often, these
follow an end-to-end approach, which does not require extra
functionality in the network, except, when needed, for location
management.

SCTP supports the reliable transfer of data between two endpoints
over a so-called association. Contrary to a TCP connection, an
SCTP association may use multiple IP addresses per peer (multi-
homing). The set of IP addresses per peer may be altered during
the lifetime of the association (through Dynamic Address
Reconfiguration [20]), which can be used to sustain the association
while one or both peers roam between access networks.

We believe that, at this point in time, it is unclear whether there
will be a single dominant protocol or technique for mobility
management. Additionally, one specific mobility management
technique may be more suitable than another for certain kinds of
applications [12]. Or, different mobility management techniques
may better suit a single application in changing circumstances
[11]. Therefore, we want our mechanism to simultaneously
support multiple solutions.

When the mobile device connects to a network, it usually must
supply credentials for authentication and authorization. In general
different and mostly non-cooperating parties administer these
networks. In many cases, this means that the user must supply
credentials before the network can be accessed, which, naturally,
may harm the objective of seamless connectivity. We assume,
however, that an average user will not enter new networks,
governed by unknown parties, very frequently, and that it is
acceptable to occasionally provide new credentials.

2.2 Application classification

From the perspective of mobility management, different types of
applications can run on the mobile device. We define two
characteristics that we use for our classification of applications: 1)
whether or not the application is aware of the mobility process and
2) whether or not the application itself is dealing with the
management of its connections and session in the event of
changing connected networks.

Table 1: application classification

Aware of
mobility process

Managing own
connection /

sessions
Type I application no no
Type II application yes no
Type I application yes yes

A type I application is not aware of any changes at the network
level. It assumes that, in normal circumstances, a connection to
another node on the Internet is not disrupted. This is the default
behavior of many applications that normally run in a non-mobile
environment.

Applications of type Il are aware of the mobility process, but do
not want to maintain their connections themselves. They do not



want to implement their own strategy for the handover of their
connections from one interface to another, but rather rely on
system level functionality for this purpose. The classical example
is a video stream player that tells the video server to adapt its
bandwidth usage, depending on the characteristics of the available
networks. The player depends on a mechanism such as Mobile IP
to ensure that the same UDP connection remains established
between server and client even while the client has switched to a
different access network and thus has changed its point of
attachment.

The type III application is aware of the mobility process and
managing its own connections. In the example above, it would tear
down the UDP connection over the old network and reinitiate it
over the newly available network. This application level mobility
management may be beneficial when no lower level mobility
management functionality is available, or when it is relatively easy
to reinitiate the connection in the scope of the work that needs to
be done anyway to adapt to the new situation.

The trade-off when developing a type Il or type III application is
between implementation effort and optimized application behavior
during handovers. A type Il application relies on the system
mobility functions that typically are configured to meet the
common denominator between all application and user
requirements and thus cannot deal with any specific application
requirements. By controlling the network attachment strategy and
handover timing themselves, different applications can manage
their own connections taking into account their different
characteristics. Examples are a low bandwidth Instant Messaging
utility that preferably stays connected to a WAN all the time as
opposed to a video streaming tool that prefers a network
connection with the highest bandwidth available even if this
induces frequent handovers with occasional packet loss.

2.3 Guiding principles

This subsection provides the set of most important principles that
we used as a guideline when constructing the mobility
management mechanism:

a) Applications on the mobile host can often benefit from
information about the mobility process. They may need
information about the estimated bandwidth for currently
active access networks, upcoming changes in the set of
available access networks, etc, to provide the best possible
service to the user. This means that, from the perspective of
some of the applications, we are moving away from IP as the
single provider of abstraction towards beneath-IP layer
information. An additional abstraction of mostly link and IP
layer information must be introduced that is capable of
expressing what is going on in the mobility process and
capable of describing the (dynamic) characteristics of the
available network resources.

b) Simultaneously support the cooperation with and
incorporation of existing mobility management protocols
such as Mobile IP, Mobile SCTP, and SIP re-invite, at the
network, transport and application layer. This provides
flexibility towards applications running on the mobile host:

they can select the protocol that matches their current needs

233

best. Additionally, it provides alternatives when one protocol
cannot be used for a certain network configuration.

¢) Control is at the end point — the mobile host — with a clear
division of responsibilities for the operating system and the
mobile applications. The operating system makes decisions
about the activation of access networks, routing settings for
these networks, and the state and usage of below application
layer mobility protocols. No entity in one of the networks
influences these decisions (naturally, the user can be denied
access to a network). The applications running on the mobile
host do not influence the operating system decisions either:
they may run their own application layer mobility
management and may use the available network resources,
but they do not, for instance, take part in the selection of
access networks. In general, it may be possible to construct a
mechanism that lets the operating system and applications
share responsibilities. We think, however, that enabling
application influence will quickly lead to conflicts when
applications have opposing interests. At this stage, we focus
on a clear division of responsibilities.

d) The mobile host provides one or more mobility management
components to support seamless mobility. One aspect of
seamless mobility is real-time behavior. The real-time
characteristics vary per protocol and continue to be a topic of
research. The end-to-end nature of Mobile SCTP and SIP re-
invite, for example, may results in high latency handovers.
For IP layer mobility, a number of alternatives and
improvements to Mobile IP have been proposed that
essentially group IP subnets into mobility domains and
minimize the scope (and latency) of most updates to the
domain only: Cellular IP (CIP) [4], HAWAII [17], Mobile IP
Regional Registration (MIP-RR) [6], Mobile IP with
Location Registers (MIP-LR) [8], etc. The real-time
requirements for a single protocol are much less strict when
switching from one overlay network to another. In that case,
the mobile host simultaneously has access to two or more
networks: the handover time is not influenced by the time
needed to establish link layer connectivity, authentication and
authorization. Additionally, many applications do not need
very fast handovers, because they are not real-time by nature
or they can occasionally cope with short network
interruptions. Here, we do not focus on real-time aspects.

3. ARCHITECTURE

The main functional entity in our architecture is the mobility
manager. The mobility manager is a system-level service (or
daemon) that resides on the mobile host as a background process.
It is responsible for the management of the host’s network
mobility. The applications on the mobile host can connect to the
mobility manager to receive events that describe the mobility
process and the available network resources.

The mobility manager listens for events from the operating system
about changes in the network interfaces, the availability of
network scan results, timeouts, etc. Based on these events and
based on the configuration of the mobility manager, it takes
actions to, for instance, set the IP configuration for network
interfaces, manipulate the host’s routing table, initiate scanning on



certain network interfaces, etc. Additionally, it controls any
available IP layer and transport layer mobility management
components on the mobile host. The mobility manager is not
aware of components that take care of application layer mobility
management: these typically come in the form of libraries that are
linked with applications. These components connect to the
mobility manager to decide in close agreement with the
application logic to, for example, move a session from one active
network to another.

The most obvious candidate for an IP layer mobility management
solution is Mobile IP. We therefore choose Mobile IP to discuss
how our architecture deals with IP layer mobility management
functionality. A candidate for transport layer mobility
management is less obvious: the protocols and mechanism at this
layer are less well known and not (yet) part of solid standards and
implementations. We choose Mobile SCTP, mainly because its
embedding in the regular SCTP standard is on its way. The usage
of the two protocols as part of our mobility management
mechanism is depicted in Figure 1 and Figure 2.

»| Mobile SCTP
Move tunnel from one
Mobile IP interface to another
mobile node
Mobility oot
Application
Manager Type | .
n { MIP tunnel
Actions € g Aql'%ll;;;stlllon eP/Unl?
AND E g connections
=1
@
Events ~ 7| | o
ANS 8‘ A;_)r[;,l’l;;a::?n ; Move connection to other interface

Figure 1: Host mobility management with Mobile IP usage
example; applications of type I and II rely on Mobile IP and
applications of type III manage their own connections.

When looking at Mobile IP usage (Figure 1) we see the following
interaction. Suppose that at a certain moment, the mobile host is
connected to two wireless networks A and B and the user is
walking out of range of A. Suppose that Mobile IP runs in
tunneled mode with a co-located care-of address (CoA), all traffic
from and to the CoA is received over the bi-directional tunnel and
the tunnel is realized over network A. The mobility manager then
indicates towards the Mobile IP mobile node functionality that the
tunnel must be moved from network A to network B. Typically, a
type I application, which does not receive information about the
current state of the mobility process from the mobility manager,
implicitly uses the CoA when it initiates connections to other
nodes on the Internet, because the default route is over the Mobile
IP tunnel. All its connections are setup through the tunnel and
remain established when the tunnel moves from one interface to
another. The connections for a type Il application are similar to the
ones for a type I application; they remain established without
intervention by the application. The type II application, however,
is aware of the fact that the tunnel is moved from one interface to
another and is additionally aware of the types and characteristics

234

of both network A and B. It therefore can decide to change, for
example, the amount of traffic it generates over the established
connections. The type III application receives information from
the mobility manager that the connection with network A is lost. It
decides to stop the connections it had over network A and re-
establishes them over network B.

g e SeTE Add/remove path
from/to SCTP
Mobile IP association
mobile node
Mobility Applicati ‘
pplication SCTP
Manager Type | corn.
B =
- 3 Application SCTP
Actions 3 Type Il conn.
-
(0] .
— =1 TCP / UDP connection
(EVETES ANS %\ Application . :
] Type IIl ‘ Move connection to other interface

Figure 2: Host mobility management with Mobile SCTP usage
example; applications of type I and II rely on Mobile SCTP
and applications of type III manage their own connections.

The interaction is mostly the same when Mobile SCTP is used
(see Figure 2). Let’s assume the same network situation as above.
Now, the applications of type I and II use an SCTP connection to
reliably transfer data from and to another node on the Internet.
First, the SCTP connection uses a single path over network A to
the other node. When the connection with network A is lost, the
mobility manager indicates towards the Mobile SCTP
functionality that the SCTP connections must use a new path, over
network B, for communication with the other nodes. The situation
for a type III application is equal to above. Naturally, a type III
application may use an SCTP connection as well, but then obtains
control over this connection to add or remove paths to the SCTP
association by itself.

In our opinion, SCTP can be a good alternative to mobility
management functionality at other layers. It provides a good
replacement for Mobile IP when end-to-end characteristics are
important; it can provide system-level mobility management when
an application does not want to maintain its own connections and
Mobile IP cannot be applied. To our knowledge, however,
implementations of Mobile SCTP are few and still in their early
stages. Additionally, we feel that Mobile IP is more widely
recognized as an important mobility management protocol than
Mobile SCTP. We therefore do not further consider Mobile SCTP
in the rest of the description of our architecture and
implementation, but focus on Mobile IP when it comes to the
interaction of our mechanism with existing mobility management
protocols.

The mobility manager consists of a number of components (as
depicted in Figure 1 and Figure 2). The communication between
these components is message based. Every component defines a
set of messages: outgoing messages that provide information
towards the other components and incoming messages that are
interpreted by the component. The following components are



defined: Interface Detection (ID), Access Network Detection
(AND), and Access Network Selection (ANS). The configuration
of the mobility manager and its components is static. Currently, no
provisions are made to dynamically change configuration
parameters at runtime.

The applications that need to stay up to date with the state of the
mobility process and the characteristics of the network resources
connect to the mobility manager using the mobility manager
interface. The messages generated by ID, AND, and ANS are
passed on to the clients in unaltered form: our approach is that the
abstractions made by the components is sufficient to suit both the
other components and the applications. The application can than
filter out the messages that are of particular interest. Obviously,
the application may link with a library, for instance to provide SIP
re-invite based mobility management, that connects to the mobility
manager and interprets the messages.

In a multi-homed situation, a subtle relation exists between the
usage of the IP layer mobility management functionality (Mobile
IP), the selection of the outgoing interface, the selection of the
source address, and the default route. Applications typically use
the Sockets Application Programming Interface (API) to setup
connections with other Internet entities. By binding to a local
address while initiating a connection, the application can choose
the IP-level mobility management: the connection will be
managed by Mobile IP when binding to the Mobile IP address; the
connection must be managed by the application when binding to
another address than the Mobile IP address (not considering
transport layer mobility management here). Type I applications do
not explicitly bind to a local address when initiating outgoing
connections, but leave this to the operating system. Normally,
when connecting to a node, which is not directly accessible
through one of the local networks, the source address becomes the
address configured for the interface that is set as the default route.
By setting the default route to the Mobile IP tunnel (when running
in tunneled mode), outgoing TCP and UDP connections will, by
default, be managed by Mobile IP. When an application explicitly
binds to a local address for a TCP or UDP connection initiated to a
global node, we assume that the outgoing network interface for
this connection is the interface that is configured with this local
address.

The remainder of this section describes the components of the
mobility manager and the messages that they can send and receive.
Furthermore, it provides a description of the interaction between
the mobility manager and its clients, the applications.

3.1 Interface detection

The mobility manager must be aware of the network interfaces
that are currently available in the operating system. The Interface
Detection (ID) component supplies information about the creation
and deletion of network interfaces in the OS. It indicates the type
of the network interface as an abstraction of the operating system
interface type: we currently define the types et h (Ethernet),
w an (Wireless LAN), and di al up (PPP dialup). It also
indicates the expected maximum bandwidth for a network
interface. Note that this is not the same as the actual available
bandwidth. Additionally, ID indicates whether a network interface

235

is up or down. Finally, it provides information about the current IP
address that is set for a network interface.

We define different types of interfaces, because a type can be
associated with one or more inherent characteristics. Obviously,
this is important to the other mobility manager components, but it
is also relevant to the clients. An application may, for example,
choose to use a network through one type of interface because it
knows the costs of usage are low compared to the networks
available through interfaces of other types. In that case, the
application associates a characteristic — cost of usage — with an
interface type, as a supplement to the characteristics defined by
ID.

Table 2: messages defined for Interface Detection

ID message description

NEW EVT A new interface is available in the OS

CHG_EVT An existing interface has changed: up or
down, IP address change

DEL_EVT An interface is removed from the OS

LI ST_REQ Request a list of current interface

LI ST_EVT A list of current interfaces (including
characteristics)

3.2 Access network detection

It is important that the mobility manager is aware of the networks
that can currently be made available through the network
interfaces existing in the operating system. For some interface
types, there is not much to choose: an Ethernet adapter is either
connected to the Ethernet or not. For wireless adapters this is often
different: multiple networks can be available through the same
adapter. A Wireless LAN interface can be instructed to scan for
available networks, although it can only be connected (associated)
with a single network at a given time. The scanning results
normally contain information about the quality of the available
networks.

Table 3: messages defined for Access Network Detection

AND message description

NEW EVT A new network is available

CHG_EVT An existing network has changed: link
quality change

DEL_EVT

A network is no longer available

SCAN_START_REQ | Start scanning on a specific interface (in

addition to automatic scans)

SCAN_READY_EVT | Scan is ready for a specific interface

LI ST_REQ Request a list of available networks

LI ST_EVT A list of currently available networks

(including characteristics)

The Access Network Detection (AND) component is responsible
for the scanning of available networks for Wl an interfaces at
regular intervals. It provides a translation from Wireless LAN
specific indications of network quality, such as signal and noise
values, to a qualitative indication of network quality. We define
four levels of quality: poor, medium, good, and excellent. AND




uses the information from ID about the available network
interfaces. Whenever the quality of a network chances, it notifies
the other components by sending a network change event.

3.3 Access network selection

Most of the control functionality of the mobility manager resides
at the Access Network Selection (ANS) component. ANS deals
with a number of different issues. For each interface it activates
the preferred network at the link layer. Additionally, it makes sure
that IP parameters such as the IP address are obtained for each
interface with an active network, and it takes care of setting these
parameters. Furthermore, it is responsible for controlling the
system level mobility management functionality such as Mobile
IP. ANS moves the Mobile IP tunnel from one physical interface
to another if appropriate given the current network situation.
Finally, it controls which interface is used as the default route.

The activation of link layer connections, the actual “access
network selection”, is executed for those network interfaces that
support connecting to different networks. The interface type Wl an
is an example. For each such an interface, a list of networks exists
in the ANS configuration that indicates the preferred activation
order. The first entry in the list has the highest preference and will
be activated when available. If AND indicates that this network is
not available, or if the quality of that network is below a certain
(configured) threshold value, the second entry will be considered,
etc. An entry in the preferred network list may be a wildcard. On
reaching a wildcard entry, ANS selects and activates the network
with the best quality. So, for unknown networks the default
behavior is to select the one with the highest quality.

In many cases, ANS must supply credentials for authentication
and authorization to setup a link layer connection. For Wl an, this
may involve setting the Wired Equivalent Privacy (WEP) key.
Alternatively, ANS may use a method like IEEE 802.1X with
various kinds of authentication over the Extensible Authentication
Protocol (EAP). The ANS configuration stores the credentials for
the networks: a set of default credentials may be specified for
networks that can be accessed using 802.1X and networks that are
not known at startup.

After network activation at the link layer, it is necessary to obtain
the IP settings for the interface. The IP parameters such as IP
address, network prefix and gateway may be specified in the ANS
configuration. In most cases, however, the IP settings are obtained
dynamically using a DHCP client. ANS takes care of controlling
the DHCP client for interfaces that are actively connected at the
link layer. It waits for the DHCP client to supply and set the IP
parameters for newly activated networks. The DHCP client also
must take care of setting the network route for the new network.
ANS, however, sets the default route (and gateway).

Every time a network is activated or deactivated for one of the
interfaces, ANS checks if it is necessary to change the settings of
the system level mobility management components (here, only
Mobile IP). We assume that Mobile IP runs in tunneled mode with
a co-located CoA. We also assume that the available Mobile IP
mobile node functionality is “passive”: it does not actively scan
for available network on Wireless LAN interfaces and does not
change the path of the tunnel by itself.

236

A list in the ANS configuration provides the order in which
interface/network combinations are preferred to supply the Mobile
IP CoA. The combination of interface and network is important,
because multiple interfaces may connect to the same network. In
certain situations it may be desirable to prefer one interface over
the other, for instance, because the interface has better power
consumption characteristics. Again, the first combination in the
list has the highest preference and will be chosen as the path for
the tunnel. If the first combination does not exist, ANS looks at
the second, etc. The list of preferred Mobile IP CoA suppliers
does not influence the activation of a network for a network
interface: this is solely determined by the list of preferred
networks for that interface. Additionally, an interface/network
combination can only be chosen when IP layer connectivity is
realized over that network (otherwise, there would be no point in
trying to establish the tunnel over this interface/network). After
the selection of the preferred combination, the Mobile IP
component is signaled to move the tunnel to this new path.

Table 4: messages defined for Access Network Selection

ANS message description

AN_SELECT A network is selected for a certain
interface

AN_DESELECT A network is deselected for a certain

interface

DEFAULT_I F_SELECT | An interface is selected as default

interface (default route)

M P_COA_SELECT An interface is selected to supply

the Mobile IP CoA

M P_COA_DESELECT | An interface is deselected to supply

the Mobile IP CoA

STATUS_REQ Request the current ANS status

STATUS_EVT Supply the current ANS status

(network selection per interface,
selected default route, selected CoA

supplier)

The ANS component manipulates the routing table of the mobile
host. Obviously, the default route entry must exist in the routing
table and it changes over time as the mobile host connects to
different networks. For this reason, the ANS configuration holds a
list that describes the order in which interface/network
combinations are preferred to provide the default route (similar to
the preference for CoA supplier). On a change in the configuration
of the active networks, ANS checks whether the default route must
be changed using this preference list.

The type III applications may choose to setup connections to other
Internet nodes over active networks that are not used as the default
route. This can be done by binding the connection to the IP
number associated with the (non-default) interface, provided that a
gateway is configured to route the traffic off this local network.
Normally, the default route provides the gateway. The routing
mechanism on the mobile host must be instructed to use another
route when the source address is not the address of the regular
default interface. It is important to realize, however, that routing




on the mobile host typically is based on the destination address
only.

In contrast to the ID and AND components, ANS must be
extended when a new below-application layer mobility
management protocol is added. This is inevitable, as ANS is the
primary controlling entity in the mobility manager. For Mobile IP,
it has knowledge about Mobile IP specific actions and concepts
such as binding updates to the home agent, the CoA, and the
virtual interface for the tunnel. It must control the functionality for
new mobility management protocols such as Mobile SCTP in a
similar way. It is highly likely that this new protocol will
introduce new AND messages to describe the mobility process
state to the applications.

3.4 Client interfacing

An application connects to the mobility manager interface to stay
informed about the current state of the mobility process and the
network resources. Strictly speaking, it could obtain this
information directly from the operating system. The components
of the mobility manager, however, provide an abstraction of
below-application layer state of the network resources and their
configurations. The AND component provides, amongst others, an
abstraction of the current state of the mobility management
protocols at the IP and transport layer. Furthermore, the mobility
manager supplies a single mechanism to receive all this
information: there is no need for the application to use one system
API for getting the available network interfaces, another for
obtaining information about the available wireless networks, and a
third for retrieving the routing configuration.

The abstraction hides many details of the layers below the
application layer. Without this abstraction, the application must
deal with many parameters that are specific for a certain layer or
technology. For example, to obtain a quality measure for a
network activated through an 802.11b interface, the application
would have to be capable of interpreting 802.11b scan results and
translate signal and noise parameters to an indication of network
quality. To make things worse, this information is often driver and
hardware specific.

The level of abstraction should fit the usage. Here, we want the
application to:

e  Have information about the local network path followed by
the IP packets for connections with other nodes; it must know
through which access network the connection traffic is
routed.

e Know the available below-application layer mobility
management protocols that it can use for new connections.

e  Know the system default behavior for mobility management,
e.g. when regular connections are initiated, will they be
managed by Mobile IP or maybe not at all.

e  Have knowledge of the current descriptive parameters of the
interfaces (type, IP settings) as well as the active network
accessible through each interface.

e Obtain a notion of the quality of the available access
networks, when applicable, e.g. Wireless LAN link quality.

237

We believe that the messages generated by the mobility manager
components provide a level of abstraction that is sufficient for the
applications to obtain the above information. The interaction
between the mobility manager and a typical ‘aware’ application is
illustrated by two examples given below.

3.4.1 Interaction Example 1

In example 1, the application (of type II) has a Mobile IP based
UDP connection with another Internet node. The mobile host
running the application has access to a fixed Ethernet and an
802.11b WLAN. When the user moves around, the mobile host
looses its access to the fixed network and the application wants to
adapt the bandwidth consumption based on the expected network
resources available in the new situation. The following actions can
be discerned:

a)
b)

The application starts and connects to the mobility manager.

The application sends an ID LI ST_REQ to obtain a list of
currently available interfaces and their types, maximum
available bandwidths, up or down states, and IP parameters.
The mobility manager replies with an ID LI ST_EVT
message including the interface information.

The application sends an ANS STATUS_REQ to request the
current ANS status. The mobility manager replies with an
ANS STATUS_EVT indicating that the eth interface
supplies the Mobile IP CoA and that the default route is set to
the Mobile IP tunnel: now the application knows that is has
Mobile IP facilities at its disposal and that normal
connections (initiated without binding to a specific local IP
address) will be managed by Mobile IP. Additionally, it
knows that the tunnel traffic will go over the et h physical
interface.

<)

d) The application initiates the UDP connection to the other
node using the regular Sockets API. This connection is, by
default, managed by Mobile IP. The application starts using
the connection with a bandwidth consumption that can be
supported by an et h interface with the indicated maximum

bandwidth.

After a while, the mobile host disconnects from the fixed
network. The mobility manager detects that the link is down
and sends an AND DEL_EVT for the et h interface. The
application does not react to this information. ANS, however,
uses this trigger to move the Mobile IP tunnel from the et h
to the W an interface: it first sends out an ANS
M P_CQA DESEL ECT message for et h to indicate to the
applications that the tunnel is not over the fixed network
anymore, immediately  followed by an  ANS
M P_CQA_ SELECT message for Wl an to indicate that the
tunnel is up again over the wireless network.

e)

Now the application knows that the packets for its connection
go over the W an interface; it adapts the bandwidth
consumption for the connection to a level that is appropriate
for the wireless network.

Note that the application has no guarantees about the bandwidth
available on a certain network. The network resources may have to
be shared with other users and applications. Each network type can



be related to a rough indication of its empirically determined
available bandwidth. Naturally, the difference between types may
be multiple orders of magnitude: the average available bandwidth
for a fixed FastEthernet network can be 20 Mbits/s while for a
GPRS network this may be 15 Kbits/s. We assume that the
applications are most interested in changes in this order of
magnitude (for any given parameter, not just bandwidth). It is up
to the application to assume certain average values for parameters
that are associated with network types; the mobility manager only
provides an indication of the network type itself.

3.4.2 Interaction Example 2

In example 2, the application (of type IIT) has a UDP connection to
another Internet node and re-initiates this connection when
necessary given the changes in network resources. In this case, the
mobile host has access to a wide-area cellular network with a low
bandwidth and substantial usage costs. The application would
rather use more bandwidth, but only wants to switch to another
network if it has a good quality, for instance a network of type
et h or of type W an with a good quality indication. By switching
only when another high quality network is available, the
application reduces the number of connection re-initiations. The
following interaction takes place:

a)
b)
©)

As interaction example 1.
As interaction example 1.

The application sends an ANS STATUS_REQ to obtain the
current ANS status. The mobility manager replies with an
ANS STATUS_EVT indicating that the cellular network is
available through the di al up interface; the et h and Wl an
interface have no active networks. Additionally, it may
indicate the Mobile IP and default route status, but this is of
no interest to the application.

d) The application sets up the UDP connection to the other node
using the Sockets API. Before connecting, it binds its local
socket to the IP address of the di al up interface. The traffic
for this connection will therefore run over the di al up

interface, regardless of the changes in the Mobile IP state.

The application receives AND NEW EVT, DEL_EVT, and
CHG_EVT messages indicating that 802.11b networks have
become in or out of reach, or that their qualities have
changed. The application keeps track of the quality of these
networks. ANS uses this information to activate one of these
networks through the w an interface, depending on
preference (as configured) and quality.

The mobility manager sends an ANS AN_SELECT to notify
that one 802.11b network has been selected and activated
through the W an interface. The application checks the
current quality of the accessible 802.11b network and learns
that it is medium. The application decides that this quality is
not high enough to justify a re-initialization of the
connection.

The mobility manager sends an AND CHG_EVT indicating
that the quality of the currently available 802.11b network
has gone up from medium to good. Now the application
decides that the quality is good enough. It tears down the

e)

2)

238

connection over the di al up interface, and initiates a new
connection over the Wl an interface (by binding its local
socket to the IP number of the W an interface).

h) The application adapts the bandwidth consumption to a level

that is appropriate for the newly chosen network.

4. IMPLEMENTATION

This section describes our prototype implementation. The mobility
manager as described above is implemented in C as a user space
daemon for the Linux operating system. Our primary target device
is an HP iPAQ running Familiar Linux v7.x, although the
implementation also works on other, perhaps less mobile,
environments such as Linux Redhat 9 on a laptop. The prototype
supports Ethernet, 802.11b, and PPP/dialup physical link types to
connect the mobile host to different kinds of networks. All
communication is IPv4 based. The Mobility Manager
implementation consists of the components identified in the
previous section with one addition: a component that implements
the Mobile IP mobile node functionality. The parameters that are
used to configure the mobility manager are stored in a
configuration file. This file is read during startup of the mobility
manager.

Mobility Manager

Mobile IP

mobile node

select( ) loop

Application

snq abessa|y

TCP
connections

client

connector

‘ Application

Figure 3: the internals of the Mobility Manager: the
components use the message bus for communication between
each other and the sel ect () loop for the subscription to
asynchronous events

As depicted in Figure 3, the components communicate with each
other using a message bus. A message sent to the message bus is
received by all connecting components. All messages consist of a
header part indicating type and size and a data part which is a
plain C st r uct . The Mobility Manager runs single threaded: the
main loop is implemented using the sel ect () Unix system call.
All components have the opportunity to add file descriptors to this
sel ect () loop. This allows them to be notified of asynchronous
events.

4.1 Interface detection

The detection of interface changes is realized using a Linux
rt net | i nk socket. The kernel sends interface creation, deletion,
and change events through this socket to the ID component.
Additionally, this socket is used to receive changes in IP address
settings for an interface. The ID component translates these



system-specific events into ID messages. ID inserts the socket into
the sel ect () loop and will be notified whenever the kernel
sends an interface event.

4.2 Mobile IP mobile node functionality

This component implements the Mobile IP mobile node
functionality for the mobile host. It is essentially a stripped and
modified Dynamics Mobile IP mobile node daemon [5]. All active
parts — the scanning of Wireless LANS, the setting of the default
route — are removed. It is tested to run in tunnelled mode with a
co-located CoA, although it may run in other modes (e.g. Foreign
Agent mode) as well. This component is not configured through
the Mobility Manager, but re-uses the configuration file that
comes with the original Dynamics mobile node daemon. It defines
a single message, UPDATE_REQ, which can be used to move the
tunnel from one interface to another.

4.3 Access network detection

The detection of 802.11b networks is accomplished using the
Linux Wireless Extensions. Not all drivers support scanning,
however. We have successfully used host ap_cs (v0.1.0) for
cards using the Intersil PrismlI chipset, a patched ori noco_cs
(v0.11b, morinoco patch) and a patched wl an_cs (v1.07,
proprietary patch) for Orinoco and Avaya cards.

For most driver and card combinations it is necessary to set the
802.11b SSID to ‘any’ to obtain scanning results for all reachable
access points. This means that during scanning, the association
with the current network is lost and must be re-established when
the scan has finished. Our experience is that this does not
influence the state of the layers above the link layer; TCP
connection, for instance, do not break when the association is
temporarily interrupted at the link layer. The host ap_cs driver
supports a continuing association during scanning for certain card
firmware versions.

During scanning it is not possible to communicate (even when
remaining associated). Therefore the intermediate time between
two consecutive scans should be long. However, to have an up-to-
date picture of the qualities of the currently available networks, it
is important to scan often. These two conflicting interests must be
balanced for the actual scan interval. Our experience is that the
time to execute a full scan can be quite diverse given different
cards and drivers. A scan for the Avaya/orinoco_cs
combination can take around 400 ms, while a
Linksys/host ap_cs scan sometimes takes up to 1200 ms to
complete. Our default setting is a scan interval of 10 seconds.

We have noticed that the outcome of successive scans can differ
significantly. Sometimes an access point ‘disappears’ even when it
is obvious that it is well within reach. With the next scan it is often
back in the scan results. AND keeps track of the scan history in a
sliding window fashion. The quality is calculated using a weighted
average, where recent results have a higher weight. Our default
window size is 5. The signal and noise parameters are transformed
to the qualitative indicators of network quality using a set of
threshold values. These threshold values are, unfortunately,
specific for a certain hardware and driver combination.

239

4.4 Access network selection

The implementation of the ANS component also uses the Wireless
Extensions. When a Wl an network is selected, the association
with the access point is created with this functionality.

After link layer activation, the IP parameters must be obtained and
set. When not specified in the configuration file, the IP parameters
are obtained using an external (outside of the Mobility Manager
process) DHCP client. We currently use dheped, version
1.3.22pl4.

[l Mobility Manager Monito

ans | and id ]

‘/ lo unspec up  127,0,0,1

& ethi eth up 198,169,17,.80
# tunle  unspec dn

o oethl wlan  dn

V PRpo dialup up B2,133,68,240
VTUHLHNQ unzpec up  195,169,17.490
' wlan®  wlan  up 195,169,17,189

[l Mobility Manager Monito:

ans  and ]id 1

link dialup pppd unspec unspec

mifll TI4GE wlan wland excellent managed
link eth ethi Unspec UnSpec

will] am wlan wland good managed

il 1ak wlan wland medium managed

er-M

(el Mobility Manag

ans | and | id |
default route interface

selected network per interface

Do wlant
= pppd

ulan TI4GE

dialup link 62,133,658,240

ans | and | id |

default route interface

selected network per interface

Pewlane  wlan  TI4GE
—a pppd dialup link 62,133,658, 240
sgfaethd  eth link  195,169,17.80

= =

Figure 4: the Mobility Manager Monitor showing the state of
different components of the Mobility Manager




To manipulate the default route, ANS uses a Linux rt net | i nk
socket. To move the Mobile IP tunnel, ANS uses the Mobile IP
component.

4.5 Client communication

Applications (clients of the Mobility Manager) set up a TCP
connection to localhost on port 9898. The client connector
component is responsible for handling the client connections. All
messages that appear on the message bus are forwarded to the
clients. An example of a client is the Mobility Manager Monitor
(see Figure 4).

All applications running on the mobile host can connect to the
mobility manager in this way, irrespective of the user accounts
under which the applications run. This may result in unprivileged
users obtaining system information that is usually not available to
them, such as (an abstraction of) 802.11 scanning results. Many
mobile hosts, however, effectively run as single user systems.
Choosing a slightly different type of communication could
probably solve unprivileged access, for instance through Unix
domain sockets that are associated with file system permissions.
For reasons of simplicity, we have not further considered security
issues for the communication between the mobility manager and
its clients.

4.6 Routing

By default, the Linux kernel selects the outgoing interface for an
IP packet based on the destination address only (i.e. for the kernel
version 2.4 that we used). We assumed, however, that when an
application wants to initiate a connection to a host elsewhere on
the Internet and it wants to force the traffic for this connection
over a specific network interface, it binds the local socket for that
connection explicitly to the IP address associated with the
preferred interface. In this case, the kernel always forwards the
outgoing IP packets to the gateway directly reachable through the
default interface, even when the socket is bound to an IP number
associated with a non-default interface. The packets leave the host
through the default network interface with a source address that
belongs to another interface. While this may work in terms of end-
to-end communication, it results in a return path that is different
from the outbound path. More importantly, the communication
partly goes through a non-preferred local network.

Fortunately, Linux supports more advanced ways of route
selection in the form of policy based routing. This functionality
(available from kernel version 2.2 and up) uses multiple routing
tables and a routing policy database (RPDB) to select routes based
on a number of criteria such as the source address. It supports the
configuration of multiple routing tables. To route an outbound IP
packet, the kernel selects a table based on a number of attributes
associated with the packet.

The mobility manager can configure the policy based routing
facilities in such a way that the outgoing IP packets leave the
mobile host through the interface that is associated with the source
address. For every network with a gateway to other networks,
typically to the Internet, it configures a dedicated routing table that
is essentially a copy of the main routing table except for the
default route. The dedicated routing table has a default route that
points to the gateway reachable through this specific network and

240

interface. A rule in the RPDB prescribes that the dedicated routing
table must be used when the source address matches the address
associated with this interface. For applications that do not
explicitly set the source address, the default route in the main
routing table applies. The mobility manager changes the default
route in the main table when it decides that the regular default
route must point to another network. A network without a gateway
does not get a dedicated routing table, because it is used only for
local communication.

5. EXPERIMENTS

This section describes the experiments we have done for an initial
validation of the mobility manager concepts and its
implementation. We want to verify that our mechanism works for
different kinds of applications. Given the classification we
provided in section 2, this means testing the mobility manager
implementation against all three types of applications.
Applications of type I, however, use so little mobility manager
functionality that we only consider type II and type III
applications in this section. Type I applications are a trivial case:
running them successfully would merely prove that the Mobile IP
functionality works.

We have developed a streaming video application that interfaces
with our mobility manager implementation in order to react to
changes in the state of below-application level mobility protocols
(Mobile IP) and to changes in the network resources. The
application consists of a video streaming server and client that
adapt the video stream running between them, when necessary. It
can run as a type Il and as a type III application. The specific
behavior of the application during handovers is configurable
thereby enabling us to validate different handover scenarios.

5.1 Video Streaming Server

The video streaming server is a Linux host running a VIdeo
Conference tool (VIC) [22], a rather well-known MBone [7]
videoconferencing application. The VIC tool is configured in
transmit-only mode, thus used only for sending out a video stream,
not receiving or listening for peer streams. The host is equipped
with a TV-card that has its input connected to the local cable
television broadcast network. The VIC server application captures
the TV signal through the TV card, encodes the signal in the h.261
format and sends it out over the network as a RTP unicast UDP
stream to a specific target IP address. The original VIC server
code has been extended with (scripted) functionality that opens a
control socket on which it listens for messages that instruct the
VIC server to adapt its configuration. These messages conform to
a simple proprietary protocol whose semantics are comparable to
the usage of a SIP re-invite transaction, used for adaptation of an
existing session. The possible forms of adaptation are:

e increase or decrease the network bandwidth used for the RTP
stream

e change the number of frames per second that is encoded
e modify the encoded picture size (small or large)
e modify the encoded picture quality,

e alter the target IP address for the unicast RTP stream



e change the TV channel (this feature is actually unrelated to
mobility management),

This functionality allows a peer client to dynamically reconfigure
the server and adapt the running streaming session characteristics.
Although the server is only able to handle one client
simultaneously (unicast), this is sufficient for our purposes.

5.2 Video Streaming Client

The video streaming client running on the mobile terminal is also
a VIdeo Conferencing Tool (VIC) that is configured in receive-
only mode, thus not sending its own video. We have used the VIC
client during the validation tests on both notebook and Hewlett
Packard iPAQ (type 3870) hardware running the Linux operating
system. The VIC client receives the RTP packets, decodes the
h.261 frames and displays the video stream in a local window. The
original VIC code has been extended with (scripting-only) code
that communicates with both the mobility manager and the peer
streaming server. VIC opens a client socket to the mobility
manager on which it receives messages that it uses to determine its
mobility strategy. Furthermore it is capable of sending control
messages (in the previously described proprietary format) to the
VIC server in order to instruct its peer to adapt the characteristics
of the multimedia session; this is typically done upon interpreting
the messages from the mobility manager about any changes in the
network environment and the state of Mobile IP.

5.3 Networks and Handovers

During the validation tests we connected our mobile terminals
(both the notebook and the iPAQ) to the following networks
simultaneously:

e An 802.11b Wireless LAN, by using a PCMCIA WLAN card

e A GPRS wide-area cellular network, by connecting via a
GPRS enabled mobile phone using Bluetooth'.

e A fixed Ethernet (over a host-to-host USB cable for the
iPAQ)

We have used the GPRS network connection as an “always on”
low priority connection. The connection to this network was setup
and configured statically and assumed to be permanently
available. The mobility manager dynamically configured the
WLAN and Ethernet interfaces on the mobile host. Handovers
were triggered by moving the mobile terminal in and out of range
of a WLAN access point or, alternatively, manually reduce the
transmit power of the access point’. Additionally, handovers were
initiated by plugging in an Ethernet cable (notebook only) or by
putting the iPAQ in its cradle, which enabled it to use a host-to-
host Ethernet connection over its USB interface. Furthermore, we

We have also executed preliminary tests over a UMTS network
by connecting to a test network via a UMTS phone using
Bluetooth. Unfortunately we were not able to use a globally
routable IP addresses for our mobile host so we could not use
the RTP streaming application.

©

This was done using a laptop with an Intersil PrismII WLAN
chipset in so-called HostAP mode, thus serving as a wireless
access point. This setup allows access to controls that are
inaccessible in most commercial hardware access points.

241

were able to force a handover by manually bringing WLAN and
Ethernet interfaces up or down (for use in test scripts).

5.4 Application Type II Streaming

When running as a type II application, the VIC client interprets
mobility manager Access Network Selection (ANS) messages
about changes in the Mobile IP CoA (M P_COA_SELECT). Such
a message indicates that, based on the strategies configured in the
mobility manager, Mobile IP traffic runs over a new network, and
possibly over a new interface. Notice that the Mobile [P CoA has
changed, but since VIC acts as a type II application, it has bound
its sockets to the Mobile IP Home Address and as such the stream
sent by the VIC server will still reach the Mobile Host through
Mobile IP tunnel over the CoA interface. However, since we are
on a new network, the layer 2 type of the network may have
changed; for example we may have switched from a WLAN
network to a GPRS network. If this is the case, as indicated by the
ANS message, the characteristics of the new network may
dramatically differ from those of the old network. In order to
accommodate for such a change, the VIC client maps the layer 2
type of the network to a predetermined maximum bandwidth that
the RTP stream is allowed to use and it notifies the peer VIC
server of this bandwidth by sending a (proprietary) adaptation
message. In case of a handover to a GPRS network this would be
about 30kb/s.

5.5 Application Type III Streaming

When running as a type III application, the VIC client interprets
mobility manager Access Network Selection (ANS) messages
indicating  changes in the default route interface
(DEFAULT_| F_SELECT). Such a message indicates that the
MM has chosen a new network and/or interface as the default
interface for outgoing traffic. This means that our (default) IP
address has changed and perhaps the layer 2 type of the network as
well. Since our type III application does not use Mobile IP, the old
IP address may become unreachable and the client decision is to
change the target endpoint of the current RTP connection to the
new IP address. (Alternatively the application could decide to
defer this handover until mobility manager notifies that the old
network is actually down). The VIC client rebinds its receiving
socket to the new IP address and notifies its peer server of the
address change, and possibly the new bandwidth parameters as
determined by the layer 2 network type.

6. EVALUATION AND DISCUSSION

In this section we summarize our experiences with and thoughts
about the concepts, implementation and the initial validation of
our mobility management mechanism. Since we have not done
detailed measurements and analysis, we cannot present
quantitative results. Instead we describe our experiences from a
qualitative perspective.

6.1 Multiple mobility management protocols
The experiments with the video streaming application show that
our mechanism works for a situation where Mobile IP is used as
well as for a situation where a proprietary application-level
mobility protocol is used. We strongly feel that the availability of
multiple means of mobility management provide the kind of
flexibility needed in a heterogeneous network environment.



To experiment with a high level of flexibility, however, it would
be good to have more mobility management protocols available.
Mobile SCTP is a prominent candidate because it supplies
mobility management at the transport level, which is something
we have not been able to test in our current implementation.
Furthermore, adding Mobile SCTP would allow us to investigate
the modularity of our architecture and implementation.

6.2 Interface Abstraction

From the architecture description in section 3, it is clear that the
interface provided by the mobility manager towards the
applications is hiding many aspects and parameters from layers
below the application layer. At the same time, it is clear that
applications that need to be mobility aware have to deal with quite
a number of elements that have not been abstracted away. They
need to have, for example, an understanding of the capabilities of
the different interface types: networks accessible through a wl an
interface can have a certain link quality, but this is not the case for
networks reachable through an et h interface. Also, the entities
defined as data elements in the messages, interface, network,
bandwidth, quality, etc. have a certain relationship towards each
other. The entities and their relationships define a model that has
to be understood, at least partly, by the application.

The experiments in the previous section show that for a particular
configuration with a particular application, the level of abstraction
and the associating model is sufficient to support this application
running in both a type II and a type III mode. This is an initial
form of validation, but for a more thorough validation many more
applications and configurations must be used to determine that the
abstraction and semantics are right.

For instance, we probably could extend the set of Access Network
Selection (ANS) messages with a message that notifies the
applications upfront that a new network will be activated instead
of the current active network for a particular network interface.
Applications then have the opportunity to take some preparing
actions, for instance signaling their peers, while their current
connections are still up and running. This appears like a logical
addition, but we’re not sure it will be used by many applications.

Looking at the actual mechanism for passing messages from the
mobility manager to the application, C St r uct s, we realize it is
necessary to have a more generic approach, because our current
implementation is too much C programming language specific.
We would suggest using a human readable simple text-based
scheme.

6.3 Implementation: Handover Delay

The experienced handover delay is only very marginally
influenced by the mobility manager architecture or the chosen
mobility protocol. It largely depends on the following factors:

a) Network interface scan specifics

The time needed for scanning new networks (here 802.11b
WLAN) depends on the (radio) hardware, the driver and the
firmware of the network interface card. Our measurements with
different WLAN PCMCIA cards vary between 0.4 and 3 seconds
needed for one scan. This parameter has a major effect on the
reaction time of the mobility manager, which can only react after
gathering and processing network scanning results.

242

b)  Network latency

Communication with remote entities is required in several layers
of the mobile terminal protocol stack. The application layer needs
to transport session adaptation parameters to the peer entity, the
network layer needs to re-register for location management
purposes (Mobile IP registration), and possibly even layer 2
authentication may be needed (e.g. 802.1x). These steps need to
finish before the handover can finish. The time needed for this is
largely dependent on the round-trip delay of the newly chosen
network. For example, our measurements on the GPRS network
show a round-trip delay of nearly 1 second, which adds a 2 second
delay to a type 2 application handover scenario (Mobile IP
registration, session adaptation, no dynamic authentication).

This calls for integration of network authentication, location
management and session adaptation. As a possible alternative, we
could use SIP for that purpose.

¢) Authentication

The authentication to the new network itself may cause a delay in
the time that is needed to configure the network interface. An
example is the usage of 802.1x with EAP-(T)TLS for wireless
LAN connectivity. The processing overhead involved for setting
up the TLS traffic and processing certificates may be significant
for small client devices (see paragraph e)). Moreover the server
side processing can add to this delay, possibly by contacting other
servers (Radius). Our experiences show that the usage of 802.1x as
opposed to using WEP keys, introduces a noticeable delay in
handover times in the order of 1 second (this includes both
processing and communication overhead).

d) IP address configuration

In our tests we have used the DHCP protocol for configuring IP
addresses on the network interfaces. Our measurements show that
DHCP may need between < 50 ms and 5 seconds to obtain and
configure an IP address on an interface. Of course this depends on
the configuration and implementation of the DHCP client and
server, but we suspect that network equipment such as routers and
switches play an important role here as well. This experience
shows that IP address configuration is an important factor
nevertheless. A possible improvement would be to use statically
assigned, pre-configured IP addresses when roaming to well-
known networks.

e)  Client device processing power

The limited processing power available on mobile devices is
important for all of the tasks that need to be performed during a
handover. This includes executing operating system tasks, network
related tasks, mobility management processing and application
processing. Although this seems like an obvious remark, its effect
is not to be underestimated. We have seen a more than remarkable
reduction of “user experienced” handover times when comparing
notebook performance against iPAQ performance. The average
user experience on the iPAQ is “a matter of seconds”, on the
laptop it could be called “truly seamless”.

/) Application characteristics

The application that is actually being used during the handover,
can in itself contribute to the seamlessness of the handover. This is
typically done by buffering: when the application buffer is filled



before entering the handover phase, and the handover is finished
before this buffer is empty, a user will not notice any interruption
at the application level. We have noticed the benefits of this effect
when using VIC video.

Note that the negative effects of the first five factors mentioned
above can be avoided if the new network can be configured before
the session is transferred from the old network. However this is
not possible when the network connectivity is lost unexpectedly or
when performing a handover to a new network connected to the
same interface as the old network (e.g. WLAN-to-WLAN
handovers using a single network interface card).

7. RELATED WORK

This section provides an outline of the work that relates to the
issues presented in this paper. It gives an overview of related work
focusing on mechanisms that allow mobile applications to be
network context aware (mobility and network aware applications).
Additionally, we look at an approach for letting applications
influence the mobility process (application aware mobility
management).

The Odyssey platform for adaptive mobile data access described
in [14], with experiences presented in [15], models the adjustment
of applications to general changes in resources around the high-
level concepts of agility and fidelity. It supports a division of
adaptation functionality between operating system and application.
We limit our scope to the awareness of the mobility process and
the network resources, where the applications may choose at
which layer their connections are managed for mobility. We do
not support, however, a situation where the application and the
system jointly decide about for example the selection of the
Mobile IP CoA (which may have a large impact on available
bandwidth for existing Mobile IP connections). We feel that such
a joint responsibility requires an interaction with a high
complexity (and overhead) between applications and system, also
in the light of conflicts that might occur. Additionally, we think
that the abstraction and the model of the information that makes
applications aware are by itself more important than the
mechanism for the transfer of this information. Such an
abstraction and model are mostly domain specific. Odyssey is
complementary because it deals with the actual application
adaptation, while our approach focuses more on supplying the
information for this adaptation.

The Mobiware Toolkit presented in [2], provides an adaptive
mobile networking environment. It defines a service model where
part of the functionality is at the mobile device and parts are in the
network (routers/switches). It has a strong focus on quality of
service (QoS) aspects and supplies handover functionality. In
contrast, our approach assumes the availability of existing
mobility management mechanisms and standards (that support
handovers). Mobiware defines a utility function that indicates how
well an application can stand changes in bandwidth, and an
application adaptation policy. Our mechanism “simply” provides
the appropriate information about the mobility process and
network resources to the applications, such that they can apply
their mobility strategy in a model of their choosing. As an
enhancement to Mobiware, the programmable handoff architecture
in [10] supports multiple styles of handoff control, and suggests,

243

as we do, to use a system-level network detection mechanism for
multiple mobility management protocols. The architecture has an
elegant modular structure for handoff adapters, but does not focus
on providing information towards the applications about the
mobility process.

The framework described in [3] supports the development of
network-aware applications. It provides the application with a
feedback loop that informs about changes in the network resources
and that helps mapping from network centric quality measures to
application centric quality measures. The states of below-
application layer mobility protocols are not part of the network
resources. Additionally, network communication goes through the
feedback loop layer (adaptation layer). Our mechanism allows an
application to use the regular operating system facilities for
network communications.

Although the Congestion Manager presented in [1] does not deal
with mobility management issues, it provides a mechanism (API)
that allows applications to be aware of changing network
conditions. The API replaces the Sockets API, whereas our
interface towards the applications stands side by side with the
Sockets API. The work in [21] uses ICMP messages to provide
information about the link conditions and network environment to
the layers above the network layer. However, it does not define
messages describing the mobility process.

The mechanism proposed in [24] is an example of application
aware mobility management. It adapts the routing behavior of the
mobile host depending on the kind of connection initiated by the
application. This allows the operating system to decide whether
Mobile IP will handle a connection or not. In contrast, we let the
application make this decision: by binding a socket to the IP
address of an interface, the application can influence the selection
of the applied mobility management protocol. Additionally, our
mechanism not only incorporates the usage of mobility
management protocols at the network layer, but also at the
transport and application layer.

8. CONCLUSIONS AND FUTURE WORK

We have introduced a mechanism for host mobility management
in an environment of heterogeneous networks that cooperates and
interacts with existing mobility management protocols at different
layers. This mechanism provides means to make the applications
running on the mobile host aware of the states and events of the
mobility process and aware of the state and characteristics of the
available network resources. We have proposed an application
classification to better understand the way applications react to
information about the mobility process and the network resources.
Furthermore, we have implemented a prototype of this mechanism
in the form of the mobility manager, showing the complexities of
an integrated application-aware mobility management system. We
provided an initial validation of the mechanism by using the
prototype with a streaming video player implemented as both a
type 1l and a type III application.

Our future work will focus on the level of abstraction offered by
the mobility manager interface towards the applications.



9. AVAILABILITY

The implementation of the mobility manager is available at [13] in
the form of source code.

10. ACKNOWLEDGMENT

We would like to thank the members of the 4gplus project,
especially our colleague Ronald van Eijk and our co-workers from
Lucent Bell Labs in The Netherlands, for their contributions to the
fruitful discussions we had about the concepts and
implementations of mobility management on the mobile host.

This research has been supported by the Dutch “Freeband
Kennisimpuls” Research Programme for Telecommunication
Applications (4gplus project).

11. REFERENCES

[1] D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H.
Balakrishnan, “System Support for Bandwidth Management
and Content Adaptation in Internet Applications”, In
Proceedings of the Fourth Symposium on Operating Systems
Design and Implementation (OSDI 2000), Oct. 2000.

O. Angin, A. Campbell, M. Kounavis, and R. Liao, “The
Mobiware Toolkit: Programmable Support for Adaptive
Mobile Networking,” IEEE Personal Communications
Magazine, pp. 32-43, Aug. 1998.

(2]

J. Bolliger, and T. Gross, “A Framework-Based Approach to
the Development of Network-Aware Applications”, /[EEE
transactions on Software Engineering, vol. 24, no. 5, pp.
376-390, 1998.

A. T. Campbell, J. Gomez, and A. Valko, "An Overview of
Cellular IP", In Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC'99),
September 1999.

Dynamics Mobile IP, Retrieved on 24/3/2004 from http://
dynamics.sourceforge.net/.

E. Gustafesson, A. Jonsson, and C. Perkins, “Mobile IPv4
Regional Registration”, [ETF Internet Draft, draft-ietf-
mobileip-reg-tunnel-08.txt (work in progress), Nov. 2003.

Introduction to the MBone, Retrieved on 24/3/2004 from
http://www-itg.lbl.gov/mbone/.

R. Jain, T. Raleigh, C. Graff and M. Bereschinsky, “Mobile
Internet Access and QoS Guarantees Using Mobile IP and
RSVP with Location Registers”, In Proceedings of the IEEE
International Conference on Communications (ICC ‘98),
Atlanta, GA, June 1998.

D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in
IPv6”, IETF Internet draft, draft-ietf-mobileip-ipv6-24.txt
(work in progress), June 2003.

[10] M. E. Kounavis, A. T. Campbelll, G. Ito, and G. Bianchi,
“Design, implementation and evaluation of programmable
handoff in mobile networks”, Mobile Networks and
Applications 6, pp. 443461, 2001.

9]

244

[11] T. T. Kwon, M. Gerla, S. Das, and S. Das, “Mobility
Management for VoIP: Mobile IP vs. SIP”, IEEE Wireless

Communications Magazine, vol. 9, no. 5, pp. 66-75, Oct.
2002.

[12] A. Misra, S. Das, and P. Agrawal P, “Application-centric
analysis of [P-based mobility management techniques”,
Journal of Wireless Communications and Mobile Computing,
vol. 1, issue 3, Aug. 2001.

[13] Mobility Manager source code, http://moma.telin.nl/.

[14] B. Noble, “System Support for Mobile, Adaptive
Applications”, I[EEE Personal Communications, pp. 44-49,
Oct. 2000.

[15] B. Noble and M. Satyanarayanan, “Experience with adaptive
mobile applications in Odyssey”, Mobile Networks and
Applications 4, pp. 245-254, 1999

[16] C. Perkins (Ed.), “IP Mobility Support for IPv4”, IETF RFC
3344, Aug. 2002.

[17] R. Ramjee, T. La Porta, S. Thuel, K. Varadhan and S.Y.
Wang, “HAWAIIL: A Domain-Based Approach for
Supporting Mobility in Wide-Area Wireless Networks”, In
Proceedings of the Seventh Annual International Conference
on Network Protocols (ICNP ‘99), Oct. 1999.

[18] M. Riegel, and M. Tuexen, “Mobile SCTP”, IEFT Internet
draft, draft-riegel-tuexen-mobile-sctp-03.txt (work in
progress), Aug. 2003.

[19] A. Snoeren, and H. Balakrishnan, “An End-to-End Approach
to Host Mobility”, in Proceedings of the 6th International
Conference on Mobile Computing and Networking
(MobiCom 2000), Aug. 2000.

[20] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, 1. Rytina, M.
Belinchon, and P. Conrad, “Stream Control Transmission
Protocol (SCTP) Dynamic Address Reconfiguration”, /ETF
Internet draft, draft-ietf-tsvwg-addip-sctp-08.txt (work in
progress), Sep. 2003.

[21] P. Sudame and B.R. Badrinath, “On Providing Support for
Protocol Adaptation in Mobile Wireless Networks”, Mobile
Networks and Applications 6, 43-55, 2001.

[22] Video Conferencing Tool, Retrieved on 7/11/2003 from
http://www-mice.cs.ucl.ac.uk/multimedia/software/vic/.

[23] E. Wedlund, and H. Schulzrinne, “Mobility Support Using
SIP”, In Proceedings of 2nd ACM/IEEE International
Conference on Wireless and Mobile Multimedia
(WoWMoM’99), Seattle, USA, Aug. 1999.

[24] X. Zhao, C. Castelluccia, and M. Baker, "Flexible Network
Support for Mobility", In Proceedings of the Fourth Annual
International Conference on Mobile Computing and
Networking (MobiCom'98), Dallas, Texas, October 1998.



