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ABSTRACT
We observe that the modularity of current power manage-
ment algorithms often leads to poor results. We propose two
new interfaces that pierce the abstraction barrier that in-
hibits device power management. First, an OS power man-
ager allows applications to query the current power mode of
I/O devices to evaluate the performance and energy cost of
alternative strategies for reading and writing data. Second,
we allow applications to disclose ghost hints that enable bet-
ter power management in the presence of multiple devices.
Adaptive applications issue ghost hints to device power man-
agers when they are forced to use a poor I/O path because a
device is not in an ideal power mode; such hints allow devices
to implement proactive power management strategies that do
not depend upon passive load observation. Using these new
interfaces, we implement a middleware layer that supports
adaptive disk cache management. On an iPAQ handheld
running Linux, our cache manager reduces interactive re-
sponse time for a Web browser by 27% and decreases total
energy usage by 9%. For a mail reader, the cache manager
decreases response time by 42% and energy use by 5%.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—stor-
age hierarchies; D.4.4 [Operating Systems]: Communica-
tions Management—network communication; D.4.8 [Oper-
ating Systems]: Performance

General Terms
Management, Performance

Keywords
Power management, energy-awareness, adaptive caching

1. INTRODUCTION
Most I/O devices currently implement power management

algorithms that do not consider the context in which they
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are operating. Each device attempts to optimize its own
energy usage, not that of the entire mobile computer. Simi-
larly, applications rarely take the power mode of I/O devices
into account when deciding when and where to read or store
data. This modularity leads to simplicity of implementation
for both parties, but sacrifices both performance and energy
conservation.

The goal of our work is to enable better power manage-
ment by exposing additional context to applications and
devices. For applications, we add an OS power manager
that presents a common interface for querying device per-
formance and energy characteristics. The power manager
also exposes dynamic information that includes the power
mode that is currently employed by each device. Using this
context, adaptive applications can modify when and where
they read and write data in order to save power.

For power management algorithms, we add a ghost hint in-
terface that exposes “accesses that might have been.” When
an adaptive application chooses to not use a device because
it is in an inappropriate power mode, it discloses to the de-
vice’s power manager a ghost hint that quantifies the lost
opportunity. The power manager uses ghost hints to proac-
tively transition the device to power modes that better meet
application needs. We show that such hints are often a vital
part of an adaptive power management strategy; without
ghost hints, some applications achieve much poorer perfor-
mance or energy conservation.

To explore the effectiveness of these new interfaces, we
have built a middleware layer that provides energy-aware
data caching. We observe that remote access to data is fun-
damental to mobile computing. To guard against periods of
disconnection or poor wireless network coverage, many mo-
bile applications cache data on local disk. For this reason,
local and remote copies of data will often exist simultane-
ously, implying that an adaptive application has an oppor-
tunity to save time and energy by dynamically deciding from
which location it will read data. We have modified a Web
browser and e-mail reader to use this cache — our results
show substantial reduction in interactive response time for
both applications, along with moderate energy savings.

A secondary goal of our work is to provide the user with
a more intuitive power management interface. Currently,
each device exposes a separate set of custom controls for
tuning power management. These controls are typically not
expressed in terms that are meaningful to the average user.
We remedy this problem by providing a single, global knob
that controls the power management of multiple I/O de-
vices. This knob expresses the user’s relative priorities for

23



Hitachi Microdrive Cisco 350
Mode Power Mode Power
Performance Idle 760 mW CAM 1410 mW
Low-Power Idle 340 mW PSM 390 mW
Standby 80 mW

This figure shows the power usage of the Hitachi 1GB micro-
drive and Cisco 350 802.11 wireless network interface in each
supported power mode. Measurements were taken during idle
periods when no reads or writes were occurring. We report
the mean of five measurements — the standard deviation of
all measurements is within 4%.

Figure 1: Power usage of two I/O devices

performance and energy conservation. We show that it is
possible to translate this global value into specific strategies
for dynamically tuning custom device power management
controls by inserting a self-tuning software layer.

We begin in the next section by describing current power
management and its limitations in more detail. Section 3
outlines our design goals and Section 4 discusses our im-
plementation. Section 5 describes out experimental results.
We conclude with a discussion of related and future work.

2. BACKGROUND AND MOTIVATION

2.1 Dynamic power management
In the absence of power management, the energy used by

I/O devices can be prohibitive for small, mobile comput-
ers. For example, Figure 1 details the power usage of the
Cisco 350 802.11 wireless network interface and the 1GB
Hitachi microdrive. Without power management (in CAM
and performance idle modes, respectively), these devices
draw a combined 2.17 Watts of power without any I/O ac-
tivity. Given that the rest of the iPAQ handheld draws
only 1.44 Watts when idle, a back-of-the-envelope calcula-
tion shows that using these two devices without power man-
agement decreases battery lifetime by 60%.

For this reason, most I/O devices intended for mobile com-
puters support one or more power management modes. The
microdrive’s low-power idle mode reduces its power con-
sumption by 55% by shutting down many electronic com-
ponents. However, the next access incurs a performance
penalty of approximately 300 ms because the drive must
transition back to performance idle before accessing the disk.
Similarly, the microdrive’s standby mode decreases power
consumption by almost 90%, but the next access incurs a
transition cost of approximately 800 ms. The Cisco 802.11
card supports a power-saving mode (PSM) that disables
the network interface if no incoming packets are waiting
for transmission at the wireless access point. The inter-
face wakes up periodically (typically every 100 ms) to poll
the base station for new packet arrivals. This mode reduces
power consumption by 72%; however, incoming packets may
incur a delay proportional to the polling period, leading to
high latency and reduced throughput for network communi-
cation. Figure 2 further details the transition cost of chang-
ing power modes.

Both devices implement dynamic power management al-
gorithms that adaptively switch between the supported power
modes. Such algorithms observe device access patterns to
determine when to change modes. They attempt to use

Hitachi Microdrive
From Mode To Mode Time Energy
Low Power Idle Perf. Idle 300 ms 310 mJ
Standby Perf. Idle 820 ms 900 mJ
Perf. Idle Low Power Idle 160 ms 150 mJ
Perf. Idle Standby 320 ms 300 mJ

Cisco 350
From Mode To Mode Time Energy
PSM CAM 400 ms 510 mJ
CAM PSM 410 ms 530 mJ

This figure shows the cost of power mode transitions for the
Hitachi 1GB microdrive and Cisco 350 802.11 wireless network
interface. We report the mean of five measurements — the
standard deviation of all measurements is within 7%.

Figure 2: Device transition costs

high-performance modes during periods of high activity and
power-saving modes during idle periods.

2.2 Impact of power management
It seems intuitive that fetching data from local storage

should be less costly than fetching data from a remote server.
In the absence of power management, this is usually true.
However, as Figure 3 shows, the time and energy needed
to read data from network and storage devices is severely
impacted by the power modes being employed. To generate
these results, we ran the Dillo Web browser [6] on an HP
iPAQ handheld with a Cisco 350 wireless interface and and
a 1GB Hitachi microdrive. Dillo does not natively provide
disk caching, so we used the wwwoffle disk caching proxy [3]
to read and write to local storage. We used NISTnet [4]
to emulate a high-speed cable modem connection; we added
a 20 ms latency between the client and Web server, as well
as an upstream cap on bandwidth of 250 Kb/s and a down-
stream cap of 3Mb/s.

The results show that reading data from local storage is
best from a time and energy perspective if the local disk is in
a high-power mode. However, if the microdrive is currently
in a power-saving mode, it takes less time and energy to fetch
a small object from the network server. Reading a 32 KB
file from the microdrive takes 820 ms and 2.3 Joules if the
drive is in standby mode, but reading the file from the server
requires only 250 ms and 0.9 Joules if the network is in CAM.
For large objects, the most efficient method of reading data
is to pay the transition cost of spinning up the microdrive
and then read the object off disk. Reading a 512 KB file from
the drive in standby mode takes 320 ms less than reading
it from the network in CAM. While variation in available
network bandwidth and latency will change the break-even
point for these results, a network connection must be quite
poor to exceed the 800 ms cost of spinning up the hard drive.

2.3 The benefit (and limitations) of adaptation
Many applications cache data on mobile computers to

guard against disconnection or poor wireless connectivity.
Examples include Web browsers [3, 6, 22], e-mail applica-
tions [7], and distributed file systems [16]. Further, many
mobile computers have multiple storage or network options;
for example Bluetooth and 802.11. An adaptive application
can improve both performance and energy conservation by
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The top graph shows the time to read Web data from a 1GB Hitachi microdrive and from a Web server using a Cisco 350
wireless network interface. The bottom graph shows energy usage. The standby, low-power idle and active lines show time and
energy used to fetch data from disk with the drive initially in each mode. The CAM and PSM lines show time and energy to
fetch data from the network with the network interface in each mode. Each data point is the mean of three trials; the error bars
show the minimum and maximum trials.

Figure 3: Effect of network and storage power modes on Web fetch time and energy

observing the power modes of its network and storage de-
vices and dynamically deciding from which device it will
fetch each data object. Such an application could, for in-
stance, fetch small items from the network when the disk
is in standby mode. In contrast, current mobile application
embed a fixed cache hierarchy—they fetch an item from disk
even if it is cheaper to obtain the data over the network.

One relevant question is whether mobile devices in the
future will eschew disk drives entirely for reasons of energy-
efficiency. Currently, disk technology offers greater capac-
ity and is generally more cost effective than flash memory.
While prices change rapidly, as of November, 2003, a 4GB
Hitachi microdrive was priced at $489, a 1GB microdrive
was $185, and a 1GB SanDisk Compact Flash card was $249
(we could find no 4GB flash product offered) [27]. Further,
this work shows that it is possible to achieve reasonable
performance using disk technology with minimal impact on
battery lifetime.

Finally, a careful study of the results in Figure 3 reveals
that adaptation, by itself, is insufficient to achieve the best
possible performance improvement. Consider a Web appli-
cation that fetches many small images stored in the disk
cache. If the disk is in standby mode, the adaptive applica-
tion would fetch each image from the network server since
the cost of network access for each item is smaller than the

time and energy cost of spinning up the hard drive. For
each individual access, this decision is correct. Yet, if the
drive were to transition to a high-power mode, the transi-
tion cost would be amortized across many reads, leading to
significant energy and performance savings. Unfortunately,
such behavior is infeasible with current power management
strategies that base their decision upon observed accesses
— since the drive is never accessed, the power management
algorithm will never transition to a high-performance mode.

Our approach to solving this problem is the addition of
ghost hints that describe “accesses that might have been”.
The adaptive application first calculates the best possible
method for accessing data given each device’s current power
state. It fetches the data using this method. However, the
application also computes what method would have been
best if all devices had been in the ideal power mode. If
this ideal method differs from the method actually used,
the application issues a ghost hint to the power management
layer that describes the opportunity lost due to a device not
being in the ideal power mode.

In the above example, the disk power manager would re-
ceive several ghost hints and respond by spinning up the
disk. Thus, the application would fetch the first few files
from the network until the disk has completed its transi-
tion; once the disk is spinning, subsequent accesses would
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Figure 4: Energy-aware architecture

go to disk, saving both time and energy. Further, since the
network device would no longer be used by the application,
the network power manager would transition to a low-power
mode. No ghost hints are issued to the network at this point
because the disk offers the best possible performance while
it is spinning.

3. DESIGN GOALS
Our primary design goal is to provide simple interfaces

that enable better power management by piercing the ab-
straction barrier that currently separates applications and
the power management layer. In essence, this barrier is
yet another instance of the familiar tension between per-
formance and modularity in system design [19]. Our belief
is that current power management algorithms sacrifice too
much to achieve modularity — by exposing a small amount
of additional context, we gain substantial improvement in
performance and energy conservation.

Currently, almost all mobile computing devices imple-
ment a custom power management algorithm in isolation.
For example, the Hitachi microdrive decides when to en-
ter power-saving modes by observing the pattern of recent
disk accesses [14], and the Cisco 350 802.11 network inter-
face adaptively switches between PSM and CAM depending
upon traffic load [5]. These algorithms do not consider con-
text such as the base power of the mobile computer or appli-
cation intent. This often leads to decisions that are inferior
to those that could be made by a more informed power man-
agement algorithm. Further, each device typically exports a
custom set of controls for tuning its custom power manage-
ment algorithm. This leads to an explosion of complexity:
Windows XP on a typical laptop has over 25 separate knobs
that can be used to adjust power management behavior. A
secondary goal of our work is to reduce this complexity by
providing a global control that tunes the power management

of all devices simultaneously. While more work, including a
human factors study, is needed to evaluate this control, the
interfaces developed here represent a necessary first step in
this direction.

4. IMPLEMENTATION
Figure 4 shows our energy-aware caching architecture.

The power manager, described in the next section, is the
central repository for static and dynamic data describing
device power modes and their associated performance and
energy characteristics. The power manager is currently im-
plemented as a Linux loadable kernel module.

The second component of our architecture is self-tuning
power management (STPM), described in Section 4.2. STPM
algorithms consider more than just device access patterns:
they dynamically adjust their behavior to the base power of
the mobile computer as well as the relative priority of perfor-
mance and energy conservation. We implement self-tuning
power management in the kernel at a layer above individual
device drivers. All STPM modules expose a simple com-
mon interface. This enables users to adjust the behavior of
all devices simultaneously using a global knob. Each STPM
module translates the knob setting into a device-specific pol-
icy for dynamically adjusting the custom controls exported
by the particular device that it is managing.

An adaptive cache manager, described in Section 4.3, dy-
namically determines the best source from which to read
data by querying the current power mode of available devices
and predicting the performance and energy cost of reading
from each source. The cache manager also provides delayed
write mechanisms that amortize the cost of I/O access. We
have modified an e-mail reader and a Web browser to use
our cache manager.

The final component is an interface for ghost hints that is
described in section 4.4. The cache manager uses ghost hints
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RegisterDevice (IN device, IN mode data, IN transition costs, OUT handle);

Notify (IN handle, IN new mode);

DeregisterDevice (IN handle);

QueryNumModes (IN device, OUT num modes);

QueryModeInfo (IN device, IN mode, OUT mode info);

QueryTransitionCost (IN device, IN from mode, IN to mode, OUT cost);

QueryCurrentMode (IN device, OUT mode);

RegisterCallback (IN device, IN mode);

Figure 5: Power manager interface

to inform STPM modules that it would have used a partic-
ular device if only that device had been in another power
mode. Ghost hints enable devices to proactively transition
to high-performance modes.

4.1 The OS power manager
The power manager provides a common interface that

enables applications to query the performance and energy
characteristics of I/O devices. Such information is a vital
first step in the implementation of energy-aware strategies
at user level. Without such an interface, applications would
be unable to tune their behavior to the specific I/O devices
present on a mobile computer. Further, applications would
be unable to adjust their behavior in response to dynamic
power management.

We considered an alternative strategy of having each de-
vice export a custom interface. While this strategy could
potentially offer more flexibility, we feel that the power man-
ager adds a useful layer of indirection. Implementation of
energy-aware strategies is simplified because data about all
I/O devices is obtained through a single interface. Device
driver implementation is simplified because the power man-
ager provides common functionality for notifying applica-
tions when power modes change.

Figure 5 shows the power manager interface. The first
three functions are exported to device drivers; the next five
are exported to applications. When a device is loaded, its
driver calls RegisterDevice and discloses the device’s sup-
ported power modes, as well as performance and energy
characteristics in each mode. Whenever the device changes
to a new power mode, the driver calls Notify to inform the
power manager.

We have currently modified two Linux device drivers to
use this interface: the wireless network driver used by the
Cisco 350 802.11 network card, and the IDE driver used by
the Hitachi microdrive. We derived the performance and
energy characterization for each device, shown in Figures 1
and 2, by running a benchmark suite. This characteriza-
tion must be performed only once for each type of device.
Eventually, we hope that manufacturers and device driver
developers can make such information a standard part of the
driver interface since much of the necessary information is
already provided as part of the device specifications. For our
characterization, we used actual measurements, further de-
scribed in [1], rather than the stated specifications (although
we found few significant discrepancies).

The application interface allows user level programs to ob-
tain static and dynamic data about the power modes sup-
ported by each device. QueryModeInfo returns attributes of
a specified power mode such as the power drawn by the de-
vice and whether the device is capable of reading or writing

data in that mode. Further, if the device can read or write
data in the queried power mode, QueryModeInfo also returns
a model of the performance and energy costs of I/O oper-
ations. QueryTransitionCost returns the cost of changing
modes — this is expressed in terms of both time and energy.
QueryCurrentMode returns the power mode of a specified

device. Applications may also use RegisterCallback to
block until a device enters a specific mode. The callback
interface is useful for applications that can delay activity
and wish to avoid polling. For example, a Web browser
might wish to delay writing to its disk cache until the disk
is already spinning.

4.2 Self-tuning power management
STPM modules make better power management decisions

because they consider more context than just device access
patterns. Each module explicitly considers the base power
of the mobile computer and exports an interface that allows
the user to adjust the relative priority of performance and
energy conservation.

When a device is inserted into a laptop with high base
power, its power management algorithm should be conser-
vative. When it is inserted into a handheld with low base
power, its power management algorithm should be more ag-
gressive. The reason for this difference is that the benefit
of power management, i.e. the relative percentage of en-
ergy saved, is much greater on the handheld. Further, the
performance cost of power management is constant on both
devices, but the laptop will expend more total energy wait-
ing for I/O accesses since its base power is higher. In previ-
ous work [1], we have found that using default (i.e. untuned)
wireless network power management on laptops can actually
increase the energy used to perform common workloads.

The priority of performance and energy conservation is
exported to the user as a global knob that ranges in value
between 0 and 100. Each STPM module considers the value
of this knob in its power management decisions. When
the knob is set to 0, each STPM module implements the
power management policy that maximizes energy conserva-
tion. When the knob is set to 100, each module maximizes
performance. Intermediary values represent different rela-
tive weightings of these two goals. This knob reflects the
observation that the priority of these goals varies according
to usage context. If a user expects to operate on battery
power for only a few minutes, performance is the primary
concern. The longer the user needs the battery to last, the
more important energy conservation becomes.

The primary intent of this knob is to make power man-
agement more intuitive for the user. The user can control
the activity of many devices with one simple interface. Fur-
ther, this control is expressed in terms that are meaningful
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to the user, i.e. performance and energy conservation. In
contrast, current devices export custom controls, meaning
that a user must adjust many different knobs when greater
performance or extended battery lifetime is needed. Addi-
tionally, these controls are often expressed in terms such as
CAM, low-power idle, etc. that are unclear to the average
user. It is non-trivial to predict how adjusting these controls
will affect performance and energy conservation.

Finally, STPM modules allow applications to supply ad-
ditional context about device accesses. For instance, an ap-
plication may hint that a particular access is a background
request for which performance is not critical. A distributed
file system might use such hints to specify that prefetch re-
quests and delayed write operations are background traffic.

4.2.1 Network power management
As our network self-tuning power management module has

been described in detail elsewhere [1], we review here only
the relevant properties of this module. Our STPM network
module presents a hinting interface that enables applica-
tions to disclose how groups of packets sent and received
by the network interface are mapped to logical data trans-
fers. For applications that do not disclose such hints, the
module observes network traffic and uses heuristics to per-
form the mapping. The module groups transfers into runs
that represent sets of transfers that are closely correlated
together in time. It maintains histograms of run length and
inter-arrival time between runs. Considering both the base
power of the computer and the current relative priority of
performance and energy conservation, it performs a cost-
benefit analysis to calculate the best predicted policy for
power management. This policy describes when the net-
work device should transition to each power mode; for ex-
ample, the STPM module might transition from PSM to
CAM after it observes three consecutive transfers in a run.
Our results show that STPM improves performance and re-
duces energy usage for applications such as distributed file
systems, streaming audio, and remote X window display.

4.2.2 Disk power management
The disk STPM module decides when to transition to a

low-power mode (e.g. low-power idle or standby for the
microdrive) and when to transition back (e.g. to the per-
formance idle mode). A common practice in disk power
management is to use the break-even time as a heuristic for
determining when to transition to a low-power mode [21,
28]. We adopt this heuristic as a starting point and then
apply the STPM principles to improve it.

The break-even time is the amount of time that a disk
must remain idle in order to save energy by transitioning to a
low-power mode. As can be seen in Figure 2, the microdrive
expends considerable energy during power mode transitions.
Further, if the next disk request that is made after entering
the low-power mode is a foreground activity (as is likely
for most interactive applications), the mobile computer will
expend additional energy while waiting for the request to be
serviced. Thus, by knowing the amount of energy expended
by the mobile computer during transitions, Eup and Edown,
as well as the amount of power used while in the high-power
and low-power modes, Php and Plp, we can calculate the
break-even time, Tbe, as:

Tbe = (Eup + Edown)/(Php − Plp) (1)

The break-even heuristic assumes that the disk is more
likely to remain idle after it has already been idle for a period
of time. It therefore transitions to a low-power mode after
the disk has already been idle for the break-even time.

In our STPM module, we modify this heuristic to take
into account the base power of the mobile computer and the
relative priority for performance and energy conservation.
First, we use base power to calculate energy expenditure for
the entire computer, not just the disk device. Second, we
consider both performance and energy conservation when
deciding when to transition the disk and use the knob value
to assign a relative weighting to each goal.

Specifically, the time cost of using a low-power mode is
Tup, the performance hit we incur on the next request while
waiting for the disk to transition to the high-power state.
The energy cost, CE , is calculated as:

CE = Edown − (Php ∗ Tdown) + Eup + (Pbase ∗ Tup) (2)

During a transition to the low-power state, the mobile com-
puter is idle, so we must consider only the extra energy
expended by the disk to make the mode transition. Dur-
ing the reverse transition at the end of the idle period, the
next request is delayed, forcing the entire mobile computer
to waste power. We must therefore consider base power in
this cost.

We weight time and energy cost according to the knob
value, i.e. we treat K as the utility of reducing interactive
delay by one second, and we treat 100 − K as the utility of
saving a Joule. We calculate break-even time as:

Tbe =
(Tup ∗ K) + (CE ∗ (100 − K))

(Php − Plp) ∗ (100 − K)
(3)

The time and energy parameters, knob value, and base
power for these calculations are provided by the OS power
manager. Currently, the user sets the global knob value us-
ing a command-line tool. For the microdrive, the disk STPM
module calculates the break-even point for low-power idle
and standby transitions. During idle periods, it first transi-
tions to low-power idle and then transitions to standby.

In general, current disk power management algorithms
transition back to the high-power mode when the next re-
quest arrives. In our work, we consider two additional cases.
First, background traffic offers the opportunity to delay the
disk access until a more opportune time in the future. We
explore this idea further in the next section. Second, a
proactive disk power management policy may decide to tran-
sition to a high-power state even if no application is cur-
rently accessing the device. In section 4.4, we describe how
the STPM module uses ghost hints to proactively transi-
tion the drive and provide adaptive applications with the
opportunity for further power savings.

4.3 Middleware for energy-aware caching
Mobile applications such as Web browsers and e-mail clients

often proactively cache files on local media to make data
available during future periods of disconnection from the
network or poor network connectivity. Such applications
typically use a fixed cache hierarchy in which local storage
is always considered cheaper to access than remote storage.
However, as the results in Figure 3 show, device power man-
agement substantially impacts the cost of accessing data and
can often make remote access cheaper than local storage.
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CacheStatus (IN name, OUT status, OUT size);

GetData (IN name, OUT data);

GetMetadata (IN name, OUT metadata);

PutData (IN name, IN data);

PutMetadata (IN name, IN metadata);

Rename (IN new name, IN old name);

Delete (IN name);

Figure 6: Cache manager interface

We chose energy-aware caching as the first implementa-
tion of our ideas because it allows us to restrict the problem
domain to the simpler case of read-only data. In contrast,
supporting a distributed file system such as Coda that mod-
ifies data locally requires careful handling to ensure data
consistency. In this work, we further restrict our implemen-
tation to use a single network interface and a single storage
device. Section 7 discusses our plans to extend our work
into less restricted domains.

We chose a middleware approach to amortize the develop-
ment cost of adding energy-awareness across multiple appli-
cations. While the development complexity of the caching
layer is non-trivial, it exports a simple interface that can be
easily added to existing applications.

The cache manager API is shown in Figure 6. When read-
ing data, applications first call CacheStatus to determine
whether a file is stored in the cache. This function returns
one of three results: the file is not present, the file is present,
or the file is present but it would be preferable to fetch the
file from the network. This last result is advisory: the appli-
cation may fetch the requested file from the cache if desired.
The cache status also returns the size of the cached file.

The cache manager maintains an in-memory hash table
with the name and the size of each item — this allows it
to answer status queries without generating disk accesses.
When an item is present, it calculates the most efficient
manner of reading the data. At startup, it queries the OS
power manager to determine the static performance and en-
ergy characteristics of network and storage devices. When
it receives a status query for a cached item, it retrieves the
current power mode of each device from the power manager.
Given this data and the item size, it calculates the expected
time and energy needed to read the item from network and
from disk. It uses the knob value, K, to weigh these costs:

Costtotal = Exp time ∗ K + Exp energy ∗ (100 − K) (4)

Depending upon the returned status code, an application
either reads an item from disk using GetData or fetches the
item from a network server. After fetching an item from the
network, the application may call PutData to store the item
in the cache. Since this is a background request, the cache
manager defers the write when the disk is in a low-power
state by placing the request on its write queue. A sepa-
rate writeback thread registers for an OS power manager
callback to be delivered when the disk next enters the per-
formance idle state. After receiving the callback, it flushes
the write queue to disk. We currently cap the maximum
amount of data stored in the queue at 4MB to alleviate
memory concerns. This cap may be unnecessary, however,
since memory pressure will lead to paging, and the associ-
ated disk activity will trigger a write queue flush. Queued
data will be lost in the event of system crash — however,

given that this is only a cache, we feel this disadvantage is
more than outweighed by the potential energy savings. Al-
ternatively, we could have used Weissel’s Cooperative I/O
interface [28] were it present on our machine. However, our
user level implementation has the advantage of simplicity.

The PutMetadata call stores application-specific metadata
for each object. Metadata items are kept in the in-memory
hash table and are also written to disk using the deferred
write mechanism. The Web browser uses this functionality
to store HTTP header information. The remaining calls al-
low applications to rename and delete cached objects. These
operations are also deferred in the write queue.

We have modified an e-mail client and Web browser to
use our cache manager. In addition, we have changed these
applications to disclose the start and end of network trans-
fers to the network STPM module. These network hints
enable better network power management and also provide
the ability to implement simple estimation of network band-
width and latency.

4.4 Ghost hints
Adaptivity alone may be insufficient to realize substan-

tial performance or energy benefit across multiple devices.
Although the adaptive cache may choose the best device
at any given moment, it may lose considerable opportunity
because one or more devices are not in their best possible
power modes. For example, in Figure 3, if the disk is in
standby mode and the network in CAM, an adaptive Web
browser will ignore the disk cache and fetch a 32KB item
from the network saving 570 ms and 1,400 mJ. However, if
the microdrive had been in performance idle mode, the Web
browser would have read the cached copy, saving an addi-
tional 160 ms and 580 mJ. For a single object, it does not
make sense to transition to a high-power mode, but if the
Web browser is fetching many such items in short succes-
sion, the transition cost will be amortized across many reads,
leading to overall performance and energy savings. Unfor-
tunately, the disk power manager will never transition the
device because it observes no accesses.

How can this dilemma be resolved? We see three possible
solutions. The first is to implement a gray-box strategy [2]
at user level that predicts future accesses and issues a fore-
ground read to force the disk into a high-power mode. We re-
jected this approach because it is requires the user level pro-
cess to have explicit knowledge of device power management
strategies — this sacrifices far more modularity than we are
currently proposing. Also, it is difficult to support multiple
processes that use the same device with this approach. A
second possibility is to implement a global operating system
component that implements power management for all de-
vices on a mobile computer. Global knowledge may certainly
enable better power management, but may be too complex
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The graph on the left compares the average response time achieved by our adaptive cache with that achieved by the default
application caching strategy. The graph on the right compares the total energy needed to execute the trace.

Figure 7: Comparison of static and dynamic strategies

to implement. Further, this approach sacrifices even more
modularity than the gray-box solution. Without application
support, it might prove difficult to determine which accesses
could be performed on which devices.

We call the solution we chose ghost hints. A ghost hint
allows applications such as our cache manager to expose
“accesses that might have been” to device power managers.
When the adaptive cache manager chooses the device it will
access, it also computes the time and energy that would have
been needed to access alternative devices had they been in
their highest power modes. If a device could have offered a
better alternative for reading or writing data than the al-
ternative actually chosen, the cache manager issues a ghost
hint to the device power manager. In the above example,
the Web browser will issue a ghost hint to the disk power
manager for each 32KB item that it fetches from the net-
work. After receiving a few such hints in a short time period,
the disk power manager transitions the drive to performance
idle. During the transition, the Web browser continues to
access the network, but subsequent accesses reap the benefit
of the disk transition. Once the disk is in performance idle,
the network may transition to PSM since it is no longer be-
ing used. Since the network cannot offer better performance
in any power mode, no ghost hints are issued.

In each ghost hint, the cache manager specifies the poten-
tial time and energy that would have been saved had the
device been in the ideal power mode. The disk STPM mod-
ule uses this information to calculate the weighted benefit
that would have been derived from being in the performance
idle mode. It maintains a running total of such benefits.
The total is increased every time a ghost hint is received —
it is also decremented by the energy cost that would have
occurred by remaining in the performance idle mode since
the last ghost hint was issued. When this total exceeds the
break-even threshold, calculated in Equation 3, the module
transitions the microdrive to performance idle.

When the network STPM module receives a ghost hint, it
increments the count of transfers in the current run. Several
successive ghost hints cause a transition to CAM.

5. EVALUATION
We validate our power management architecture by an-

swering the following questions:

• Can adaptive, cross-device strategies deliver substan-
tial performance improvements without sacrificing en-
ergy conservation?

• Can a global knob allow the user to adjust system
behavior to meet different relative priorities for per-
formance and energy conservation?

• How important are ghost hints for realizing the full
benefits of cross-device power management?

5.1 Methodology
We use a HP iPAQ 3870 running the Linux 2.4.18-rmk3

kernel as the client platform in our evaluation. This hand-
held has a 206 MHz StrongArm processor, 64MB of DRAM,
and 32 MB of flash memory. We measure the base power
usage of the iPAQ (with the display lit and the processor
idle) at 1.44 Watts. We add a Cisco 350 802.11b network
interface and a 1 GB Hitachi microdrive with power charac-
teristics shown in Figures 1 and 2. The client communicates
with a Cisco Aironet 350 wireless network access point.

The server in our experiments is a Dell Precision 350 desk-
top with 3.06 GHz Pentium 4 processor and 1 GB DRAM
running the Linux 2.4.18-19.8.0 kernel. Packets sent be-
tween the client and server are routed through an identical
Dell desktop running the NISTnet [4] network emulator. We
emulate a typical high-speed broadband connection in our
area by adding a 20 ms delay to all packets (i.e. a 40ms
round-trip time), and by capping the upstream bandwidth
at 256 Kb/s and the download bandwidth at 3Mb/s.

For each experiment, we report average interactive re-
sponse time and total energy usage. Response time is mea-
sured by instrumenting applications with the gettimeofday

system call. Energy usage is measured with an Agilent
34401A digital multimeter. We remove the batteries from
the iPAQ and its expansion sleeve and sample current drawn
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This graph shows average response time and total energy used
by the e-mail reader for seven different STPM knob values.
Knob values from 0 to 70 yield equivalent results. For refer-
ence, the static disk cache strategy is also shown. The dotted
line on the bottom graph is a lower bound on the minimum
energy needed to execute the trace.

Figure 8: Performance/Energy tradeoff for e-mail

through the iPAQ’s external power supply approximately 50
times per second. We calculate system power usage by mul-
tiplying each current sample by the mean voltage drawn by
the iPAQ—separate voltage samples are not necessary since
the variation in voltage drawn through the external power
supply is very small. We calculate total energy usage by
multiplying the average power drawn during benchmark ex-
ecution by the time needed to complete execution.

We first tested our cache with an e-mail reader that is
based upon the email-sync [7] program that reads files from
an IMAP server and caches them on local disk. We modified
the program to use our cache to adaptively decide whether to
read cached mail from disk or from the network. To generate
a representative workload, we instrumented our mail reader
(exmh) to record the time, file name, and size of any mail
that we sent or received. We recorded activity over a one
week period and then selected a 15 minute period of heavy
e-mail activity to replay. The selected segment corresponds
to a user coming in at the beginning of the day and reading
accumulated mail — there are 41 messages read in the trace.

When replaying the trace, we assume that the handheld
has already contacted the IMAP server and cached mail lo-
cally to provide disconnected access. Thus, the cache may
choose to read e-mail from disk or from the server. We re-
play the trace, preserving the interactive think-time between
each event. When a trace event shows that the user has sent
an e-mail, we send a message of the same size to the server.

For Web experiments, we used the Dillo Web browser [6].
Since Dillo does not natively support a disk cache, we used
the wwwoffle disk caching proxy [3] to access local storage.
Unlike, the e-mail client, we cannot reasonably expect the
disk cache to contain all data that we access during the trace.
Since recent studies [29] have shown that the maximum hit
rate of a Web cache is approximately 50–60%, we only cache
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This graph shows average response time and total energy used
by the Web browser for seven different STPM knob values.
Knob values from 0 to 90 yield equivalent results. For refer-
ence, the static disk cache strategy is also shown. The dotted
line on the bottom graph is a lower bound on the minimum
energy needed to execute the trace.

Figure 9: Performance/Energy tradeoff for Web

half of the files that we will access on disk before beginning
the trace. The subset that is omitted is chosen randomly,
but is the same for all experiments. For uncached files, the
Web browser must contact the server to retrieve the data;
it then writes the data to the disk cache. For locally cached
files, our adaptive cache may choose to fetch the files off
disk or off the network. We selected a 20 minute trace from
the set of 1996 Berkley Web traces [11]. This trace accesses
116 unique Web objects. We chose the client trace that had
file size distribution closest to average and used the first 20
minutes of the trace. When replaying the trace, we preserve
the recorded inter-arrival time of Web requests.

5.2 Effectiveness of energy-aware caching
We first compared our adaptive cache to the existing static

disk cache implementation for each application. For the
static case, the application always reads data from disk if it
is cached locally. The static disk experiments use the default
device power management mechanisms; e.g. PSM (default
802.11b power management) for the network interface, and
the microdrive’s ABLE adaptive power manager. For our
adaptive cache, we use STPM — the global knob is set to
50 to specify that energy conservation and performance are
to be given equal priority.

As Figure 7 shows, our adaptive cache delivers substan-
tial performance improvement and some energy savings com-
pared to the default caching strategy. The left graph shows
the average interactive response time for each application
— this represents the average time needed to fetch a file.
The right graph shows the total amount of energy used by
the handheld during trace execution. For the e-mail ap-
plication, our power management strategy reduces average
response time by 42% and total energy usage by 5%. For
the Web application, our strategy reduces average response
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This graph shows average response time and total energy used
by the e-mail reader for seven different STPM knob values.
The solid line shows results with ghost hints; the dashed line
shows results without. Knob values lower than those labeled
yield roughly similar results. The dotted line on the bottom
graph is a lower bound on the minimum energy needed to
execute the trace.

Figure 10: Effect of ghost hints for e-mail

time by 27% and total energy usage by 9%. One reason
why the relative benefit of our caching strategy is lower for
the Web trace is that several of the accesses hit in the Web
browser’s memory cache and thus receive no benefit.

5.3 Adjusting the knob
We next examined how changing the relative priority of

performance and energy conservation affects the behavior of
our system. We specified different knob values between 0
(maximum energy conservation) and 100 (maximum perfor-
mance). Figure 8 shows results for the e-mail reader. The
solid line shows the behavior of our system for different knob
values; the box to the far right shows the static disk strat-
egy as a comparison point. The dashed line at the bottom of
the graph shows a loose lower bound on the minimum energy
usage that could possibly be achieved while running this ex-
periment. We calculated this value by multiplying the power
consumed by the iPAQ when idle (with disk in standby and
network in PSM) by the total time taken to execute the
trace when no power management is employed. Thus, this
lower bound shows the energy that would be needed if disk
and network accesses could be performed at no energy cost.

Changing the knob value allows the user to improve per-
formance at the cost of increased energy usage. For the e-
mail reader, there appears to be a knee in the curve. Knob
values between 0 and 70 yield results similar to the default
value of 50. At a knob value of 95, interactive response time
is reduced by 67% compared to the static disk cache, while
energy usage is increased by only 4%. At a knob value of
99, interactive response time is reduced by 89% compared
to the static cache, while energy usage is increased 18%. At
a knob value of 100, no power management is employed.

For the Web application in Figure 9, tuning the knob has
less effect. In addition, the curve does not exhibit much of a
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This graph shows average response time and total energy used
by the Web browser for seven different STPM knob values.
The solid line shows results with ghost hints; the dashed line
shows results without. Knob values lower than those labeled
yield roughly similar results. The dotted line on the bottom
graph is a lower bound on the minimum energy needed to
execute the trace.

Figure 11: Effect of ghost hints for Web

knee. Knob values of 0–90 have similar behavior. Compared
to the default value of 50, using a knob value of 95 reduces
interactive response time by an additional 9% at an energy
cost of 7%. Using a knob value of 99 reduces response time
by 45% at an energy cost of 44%.

One reason why marginal changes in the knob value create
little difference in system behavior for low knob values is
that there is little room for further energy improvement. At
the default knob of 50, our lower bound calculation tells us
that the Web application could decrease its energy usage by
no more than 9% and the e-mail application could reduce
energy usage by no more than 5%.

From these results, we conclude that the knob value gives
the user the potential to enact substantial tradeoffs between
performance and energy conservation. Further, increasing
the knob value never substantially increases energy usage
and decreasing the knob value never substantially hurts per-
formance. However, we are disappointed that the impact of
this control seems application-dependent. Our next step
is therefore to implement feedback control that automat-
ically adjusts the knob value to meet specific energy and
response-time goals. For example, we could use feedback to
dynamically adjust the knob to maximize energy conserva-
tion while ensuring that average interactive response time
is less than 200 ms. Alternatively, we could meet specific
battery-lifetime goals as is done in Odyssey [10].

5.4 The importance of ghost hints
We next examine the importance of issuing ghost hints.

For this purpose, we built a version of our cache manager
that does not issue ghost hints; all other elements of our
architecture remain the same. The dashed line in Figure 10
shows results without ghost hints for the e-mail application.
The solid line shows results with ghost hints enabled. For
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bound on the minimum energy needed to execute the trace.

Figure 12: Effect of ghost hints for full Web cache

this application, it is clear that ghost hints yield a substan-
tial benefit, especially when performance is a high priority.
Without ghost hints, a knob value of 99 yields results clearly
inferior to those that can be achieved with ghost hints (sev-
eral points on the solid line yield better energy conservation
and performance). For small knob values, the effect is less
clear, yet the version with ghost hints appears to slightly
outperform the version without ghost hints.

For the Web application in Figure 11, ghost hints appear
to have no real effect on system behavior. In our examina-
tion of the results, we found that the STPM disk module
was not being aggressive enough in spinning up the disk for
low knob values. Because only half of the accesses hit in the
cache, we were less likely to see a run of accesses clustered
together; thus, ghost hints tended to be issued farther apart
in time. Consequently, the STPM disk module rarely spins
up the disk.

To validate this theory, we constructed an (admittedly
artificial) benchmark in which all Web objects are in the
disk cache and reran the trace. The results of this new
benchmark are shown in Figure 12. Here, we see that ghost
hints do exhibit a substantial positive effect on the system,
giving some evidence to support our theory.

From these results, we conclude that ghost hints are a
valuable addition to our system. Ghost hints yield substan-
tial benefit for some workloads, and do no harm in the situ-
ations where they seem ineffective. We also believe that the
break-even heuristic we are currently employing for ghost
hints may be insufficiently aggressive. We therefore plan to
investigate whether other heuristics will allow ghost hints to
yield more consistent improvement across applications.

6. RELATED WORK
To the best of our knowledge, our system is the first

to allow applications to efficiently access data on multiple

I/O devices by explicitly considering device-specific power
management policies. We have also shown that is possible
to gracefully manage multiple devices that export custom
power management interfaces by using a self-tuning power
management layer to translate a global priority for perfor-
mance and energy conservation into device-specific policies.

Zheng et al. [32] performed a detailed characterization of
the energy needed to read and write data to several network
and storage devices. Their study helps motivate our work by
showing that the cost of accessing many I/O devices varies
substantially depending upon power mode.

Weissel’s cooperative I/O interface [28] helps coordinate
application activity with device power management. Appli-
cations specify accesses that can be deferred until the disk
is spun up by another access. We could have used this in-
terface to implement the write queue in our cache manager,
although an explicit user level queue would still be needed to
avoid creating a thread for each cache write. More generally,
Papathanasiou and Scott [23, 24] explore how aggregation
of disk accesses can improve energy-efficiency, and Heath et
al. [12, 13] investigate the use of compiler transformations
to produce such aggregation.

ACPI [15] allows applications to query device power modes.
Unlike our power manager, ACPI does not disclose perfor-
mance and energy characteristics. Further, the complexity
of the ACPI standard has hindered deployment of ACPI
on many operating systems. Our approach, in contrast, at-
tempts to expose a minimal interface to applications.

Shih et al. [25] propose wake-on-wireless, a system which
uses a low-power network to signal packet arrivals and guide
the power management of a high-power 802.11b network in-
terface. This system can logically be viewed as a single net-
work interface since the low-power network is not intended
for data transmission. When multiple wireless networks are
available for data transmission, we believe that our system
could guide power management decisions for both interfaces.

ECOSystem [30] enforces application-specific energy allo-
cations by descheduling processes that exceed their energy
budgets. Their currentcy abstraction [31] extends alloca-
tion decisions to I/O devices such as the network and disk.
Thus, currentcy can be used to describe allocation policies
that span multiple devices. We view allocation as orthogonal
to our goals: self-tuning power management tries to achieve
the best combination of performance and energy conserva-
tion given a specific application workload, but does not limit
which requests are serviced by devices.

Odyssey [10] also uses adaptation to reduce energy, but
focuses on a different issue. Odyssey applications use quality
adaptation to conserve energy. In our system, applications
adaptively change when and where they read data in order
to save energy and improve performance.

There is a rich body of existing work in both network [17,
18, 26] and disk [8, 9, 20] power management. In contrast
to our work, this prior research focuses only on the manage-
ment of a single device. Additionally, our work shows how
power management policies can be improved by consider-
ing additional context such as base power and the current
priority of performance and energy conservation.

7. CONCLUSIONS AND FUTURE WORK
The goal of self-tuning power management is to provide

the mobile user with better performance, longer battery life-
time, and more intuitive control over existing power man-
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agement mechanisms. We believe that the research reported
here is an important step in this direction.

Adaptive caching has proven to be a good choice for the
first prototype of our power management interfaces. The
read-only nature of the application and our choice to limit
adaptation to one network and one storage device have pro-
vided a restricted domain in which we could develop our
ideas. In the future, we plan to move beyond this domain
to less restricted arenas.

One exciting opportunity is distributed file systems. Since
clients in this domain may modify as well as read data,
the caching infrastructure must provide energy-efficiency for
both the read and write paths. One possibility along these
lines is to use relaxed cache consistency to delay and aggre-
gate writes to network and storage devices. Further, since
many mobile computers now sport several types of storage,
including mobile hard drives, flash memory, and USB sticks,
we can expand our decision space to include the possibility
of reading from and writing to multiple storage devices. One
challenge that this suggests is deciding when to issue ghost
hints in the presence of many I/O devices: should hints be
issued only to the single device that might offer the most
ideal performance or energy conservation, or should hints
be issued to all devices that could do better than the device
currently being used?

Another area of planned research is an investigation into
the use of feedback in setting the global tradeoff between
performance and energy conservation. We also plan to ex-
plore alternatives to the threshold-based strategy that we
are using for power management. The end result, we hope,
will be better operating system control over power manage-
ment and a more enjoyable experience for mobile users.
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