
µSleep: A Technique for Reducing Energy Consumption
in Handheld Devices

Lawrence S. Brakmo
DoCoMo USA Labs

181 Metro Drive, Suite 300
San Jose, CA 95110

brakmo@docomolabs-
usa.com

Deborah A. Wallach
Google

1600 Ampitheatre Parkway
Mountain View, CA 94043

kerr@google.com

Marc A. Viredaz
Logitech

Switzerland

viredaz@computer.org

ABSTRACT
Energy management has become one of the great challenges
in portable computing. This is the result of the increas-
ing energy requirements of modern portable devices with-
out a corresponding increase in battery technology. µSleep
is an energy reduction technique for handheld devices that
is most effective when the handheld’s processor is lightly
loaded, such as when the user is reading a document or
looking at a web page. When possible, rather than using
the processor’s idle mode, µSleep tries to put the proces-
sor in sleep mode for short periods (less than one second)
without affecting the user’s experience. To enhance the per-
ception that the system is on, an image is maintained on
the display and activity is resumed as a result of external
events such as touch-screen and button activity. We have
implemented, analyzed and evaluated µSleep on a prototype
pocket computer, where it has reduced energy consumption
by up to 60%.

Categories and Subject Descriptors
C.5 [Computer System Implementation]: General

General Terms
Design, Measurement, Performance

Keywords
energy management, power management, processor sleep

1. INTRODUCTION
The energy requirements of modern portable computing

devices continue to increase as a result of various factors.
Among these factors are the use of more powerful proces-
sors, the inclusion of more functionality, such as wireless
networking and imaging capabilities, as well as an increase

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’04, June6–9, 2004, Boston, Massachusetts, USA
Copyright 2004 ACM 1-58113-793-1/04/0006 ...$5.00.

in their usage time as they displace other pieces of equip-
ment.

These increases in energy requirements have been par-
tially offset by advances in battery technology and advances
in low power electronics. However, these advances have not
been sufficient to satisfy the users’ continual requests for
longer battery life. As a result, energy management has be-
come an integral part in the design of portable computing
devices.

Most portable computing devices, and in particular hand-
held computers, differ from non-portable computing devices
in some important ways. For example, the processors used
in these systems are highly integrated and include a large
number of I/O components such as LCD controllers, serial
communication interfaces, etc. Another important differ-
ence is their usage patterns. Most handheld devices are
used interactively and, as a result, there is a lot of idle time
between the user interactions, usually as a result of the user
viewing or reading the result of the previous interaction.

We have implemented a technique, called µSleep (pro-
nounced micro-sleep), that takes advantage of this usage
pattern. Rather than always putting the processor in its
idle mode during short (less than a second) periods of in-
activity, we put the processor in its sleep mode whenever
possible. The sleep state we use differs from the usual sys-
tem sleep state in important ways. The first difference con-
sists of keeping the display on while showing the image that
was present before the system went to sleep. The second
difference consists of waking the system up before the next
operating system (OS) scheduled event, such as servicing a
kernel timer. The final difference consists of waking the sys-
tem up when an external event, such as a press on the touch
screen, occurs. The goal of these differences is to make the
user unaware that the processor is sleeping. As far as the
user is concerned, the system is just idle. The display is
on, and the system responds to system and user events as
usual. The only difference is the added latency when waking
up as a result of external events, such as touchscreen or but-
ton events. However, this latency is unlikely to be noticed
by the user since the worst case delay for the processor to
awaken and resume executing is less than 12 ms, well below
the perceptual threshold.

Although the use of short duration sleeps is not new, our
work differs from earlier work in important ways. These
differences are described in Section 2. In order to evalu-
ate µSleep we have done a full implementation of this tech-

12

nique on Itsy, a prototype pocket computer developed by
our team at the former Compaq Laboratories in Palo Alto,
California. Section 3 contains a detailed description of Itsy,
followed by a description of µSleep in Section 4. Section 5
describes our evaluation infrastructure, which allows us to
measure energy consumption while we replay interactive sce-
narios. The results of our evaluation experiments are given
in Section 6, which show that energy consumption can be re-
duced by up to 60%. Section 7 discusses potential improve-
ments to µSleep and our experience implementing µSleep on
a PocketPC device.

2. RELATED WORK
Most recent processors targeted at battery-powered elec-

tronics feature low-power modes [3, 16, 8]. There is often
a mode aimed at implementing the idle thread of a typi-
cal OS and another mode which is intended to be used for
longer periods of inactivity (e.g., when the device is “turned
off”). The former is often referred to as idle or doze mode,
while the latter is often called sleep mode. Other names
have also been used. However, for the sake of clarity, we
only use the terms “idle” and “sleep” in this paper. Enter-
ing and exiting idle mode are usually lightweight operations
in terms of time and energy, but the power savings realized
in idle mode are moderately important. On the other hand,
much more power can be saved in sleep mode, at the cost
of a larger time and energy overhead to enter and exit this
mode. Many processors offer several flavors of idle and sleep
modes, each with different tradeoffs between power savings
and overhead.

Our work explores how, under certain conditions, sleep
mode can be used instead of idle mode. One approach is
to wait until the processor is idle and then turn it off when
it is predicted that the processor will not be needed for a
time interval long enough for the shutdown to be worthwhile.
This prediction is generally made on the basis of past obser-
vations [15], under the assumption that the time when the
next event requiring the processor will occur is unknown. In
some cases, the end of the shutdown time can be predicted,
so that the processor can be woken up in time for the next
(predicted) event [6]. The task of predicting when to shut
off a processor offers similarities with that of spinning down
a hard disk [10, 1, 14], however the time scales are very
different.

Our work differs from these earlier uses of short dura-
tion sleeps in the following ways. M.B. Srivastava et al.’s
work [15] focuses on devices where all computation is driven
by I/O events, such as portable wireless terminals. Fur-
thermore, they don’t implement their techniques on a real
system; their results are based on analysis and modeling.
C.-H. Hwang’s work [6] focuses solely on mechanisms for
predicting the length of idle periods on event driven appli-
cations (X Window System server, Netscape, telnet, and
tin). J.R. Lorch and A.J. Smith’s work [11] is based on
processors that can be put to sleep by turning off the clock
signal, which incurs very little latency, and which preserve
most of their state when they are sleeping.1

In comparison, our work focuses on a handheld device, the
Itsy pocket computer, where computation is driven by both

1This state is actually very similar to the idle mode on our
system, which is implemented by gating off the processor
core’s clock.

internal events as well as external events. This device, when
entering and exiting the sleep mode, incurs high overhead
and latency —about 16 ms to go from running to sleeping
and back to running. Most importantly, we have imple-
mented µSleep on a real device which allowed us not only to
measure the performance of the technique, but also to gain
deep insight into the issues surrounding this technique.

The main concept of µSleep, keeping the display on and
waking up before the next OS scheduled event, was first
published by Kamijoh et al. [9] in 2001 as part of their work
with the IBM wristwatch computer. Our work differs from
theirs in the following important ways. On the implemen-
tation side, we are able to exploit much shorter duration
sleeps than they do (250ms compared to 30ms). Regarding
the analysis of the technique, we discuss the energy over-
heads of going into and out of sleep and how they must be
taken into account when deciding whether to sleep. We also
present equations and techniques that can be used to pre-
dict the energy savings as a result of using µSleep on any
device. Finally, we do an experimental evaluation of µSleep
where we show the energy saved by the technique in three
different scenarios, two of which consist of interactive ap-
plications. We evaluate µSleep with the processor running
at twelve different frequencies and also measure the differ-
ences in response time for the interactive applications. On
the other hand, Kamijoh et al. do not include any energy
or power measurements of their device while using the tech-
nique.

A related promising technique is dynamic voltage-frequency
scaling. Since the power used by a CMOS circuit is propor-
tional to the product f · v2, where f is the clock frequency
and v is the voltage, reducing the voltage —and hence the
maximum clock frequency —provides an important bene-
fit. Even if the time required to complete a given task in-
creases inversely proportionally to the frequency, the energy
required for this task decreases at the same rate as the volt-
age squared. Policies of when to to modify the voltage and
frequency have been extensively studied [18, 4, 12, 2, 13].

This work explores how to save power when the processor
completes its tasks faster than necessary. It should be noted
that dynamic voltage-frequency scaling algorithms could be
used at the same time as µSleep. However, each technique
would affect the potential savings of the other and finding
an optimum could be a very hard problem. One potential
way to make use of both techniques would be to use only
one at a time, picking whichever performs best. In particu-
lar, dynamic voltage-frequency scaling could be used when
µSleep can not be used.

3. EVALUATION PLATFORM
For an evaluation platform, we used the Itsy pocket com-

puter [5]. Itsy version 2 is a complete handheld device based
on the StrongARM SA-1100 processor [7] with 32Mbyte of
flash memory, 32Mbyte of DRAM, a 320× 200-pixel gray-
scale LCD, a touch screen, audio input and output, a recharge-
able lithium-ion battery, and several serial interfaces. Itsy
can also accommodate a daughter-card which can be used to
add more memory and/or interface additional peripherals.

In many aspects, Itsy is very similar to contemporary com-
mercial handheld devices. Its size and weight (118 × 65 ×
16mm3, 130 g) makes it even smaller and lighter than most
of its commercial counterparts. However, the most impor-
tant difference is that Itsy was designed as a research plat-

13

99.9

sleep − LCD off 7.7

80 100

idle − 59 MHz at 0.925V 54.3

idle − 206 MHz at 1.45V

sleep − LCD static image 27.6

idle − 59 MHz at 1.45V 73.9

0
Power (mW)

20 40 60

Figure 1: Itsy power consumption in sleep and idle modes.

form, with flexibility being the most important driving force
behind all design decisions. Many features have been added
to allow easy monitoring and modification of the hardware,
as well as to avoid constraining how the software manages
the hardware.

The StrongARM SA-1100 is a low-power 32-bit proces-
sor which implements the ARM instruction set. It pro-
vides a useful collection of peripheral devices, as well as
power-saving features. In particular, it features software-
controllable clock frequency and two low-power modes: idle
and sleep. In idle mode, the clock to the processor core is
gated off (saving power thanks to the circuit’s CMOS tech-
nology), but the power is maintained and all peripherals
remain enabled. In sleep mode, most of the processor is un-
powered. Only the real-time clock and the wake-up circuit
remain enabled. Optionally, the system clock can remain
enabled for faster wakeup.

Several of Itsy’s external peripherals (i.e., not integrated
in the processor) can be disabled or offer low-power modes.
To avoid constraining the software, each unit can be con-
trolled individually and independently of whether the pro-
cessor is in sleep mode or not. This strategy lets the OS
disable any of these units while the processor is running, or
conversely, if possible, any of the units can remain active
while the processor is in sleep mode. This is particularly
useful for the LCD, the touch screen, and the push-buttons.
However, in the case of the display, some additional hard-
ware was required because the LCD controller is integrated
in the StrongARM SA-1100 processor. Itsy’s LCD has a
built-in 1-bit-per-pixel memory. With the help of an aux-
iliary controller, which is implemented in a programmable
logic device and generates the appropriate timing signals, it
is possible possible to display a static monochrome image
(i.e., no gray levels) while the processor is in sleep mode.

Similarly, the DRAM can be kept in self-refresh mode
during sleep or can be completely unpowered (although the
latter is not used in this particular study). Therefore, the
OS can implement a wide variety of sleep modes, ranging
from “deep sleep,” which maintains only the real-time clock,
to “light sleep,” which keeps all clocks on, the DRAM con-
tents preserved, the LCD enabled, and most interrupts (e.g.,
touch screen, push-buttons) configured to wake up the pro-
cessor.

Itsy’s StrongARM SA-1100 processor supports frequency

scaling, that is, the processor’s frequency can be selected by
software. However, this processor is not specified to operate
at different voltages depending on the frequency, a prop-
erty known as voltage scaling. At the time that Itsy was
developed, there were no processors targeted to handheld
devices that were specified for voltage scaling. However,
processors supporting voltage scaling, like the Intel XScale
family [8], had already been announced. In order to study
energy management techniques involving voltage-frequency
scaling, our team decided to perform our own characteriza-
tion of the voltage-frequency behavior of the StrongARM
SA-1100 processor.

A strenuous set of benchmarks (including booting the OS
and executing several power-hungry applications) was run
on Itsy while decreasing the core voltage at the end of each
set (for these experiments the processor core was powered
by a laboratory power supply instead of the built-in one).
Using a fully-automated set-up, several tens of Itsy systems
were characterized.

Allowing for a reasonable margin, the voltage-frequency
characteristics of each Itsy was established, with voltages
below specifications at low frequencies and voltages slightly
above specifications for above-specifications frequencies. Itsy
units with “good” characteristics were then selected and
modified to support voltage scaling. It should be stressed
that these prototypes are research platforms intended to
explore techniques targeted at next-generation processors.
Therefore, the fact that they do not meet the level of relia-
bility expected from a commercial device was not considered
as a problem. In particular, all tests were performed at room
temperature and no attempt was made to characterize the
processor over its intended temperature range.

In this study we used an Itsy variant, referred to as Itsy
v2.6, which is an Itsy v2.4 system with a modified core power
supply implemented on a daughter-card. Itsy v2.6 supports
30 voltages between 0.925 V and 2.0 V, allowing frequencies
from 59 MHz to 265 MHz.

4. µSLEEP
µSleep reduces energy consumption by taking advantage

of idle periods, which are common with handheld computers.
Rather than putting the processor in idle mode, µSleep puts
the processor in sleep mode for short durations, on the order
of 40 ms to 1 second. Figure 1 shows the power consumed

14

running

idle
processor

sleep

RTC alarm or
external event

µSleep

OS idle

and devices allow µSleep
next_timer > break_even

sleep button or
sleep timeout

RTC alarm or
sleep button

else

no process to run

interrupt

Figure 2: State diagram of a generic implementation of µSleep.

by Itsy in sleep and idle modes. At 59 MHz, Figure 1 shows
the idle power both for a core voltage of 0.925 V and of
1.45 V. These numbers are representative of a system with
and without voltage scaling, respectively. The idle power
at 206MHz would be representative of a system without
frequency scaling. As can be seen, there is a significant
power difference between sleep mode with the LCD on and
idle mode in the different configurations shown. Our goal
was to create a new power state that would bridge this gap.

Although µSleep puts the processor in sleep mode, it dif-
fers from the common implementation of the system sleep
state, where the device appears as if it was turned off. In
contrast, µSleep attempts to fool the user into believing that
the device is running as usual. In other words, the two goals
of µSleep are: (1) to have no effect on the user’s experience
and (2) to reduce the device’s energy consumption.

The first goal of having no effect on the user’s experi-
ence imposes some requirements. First, the system must
mimic the physical appearance of a running device. This is
achieved by keeping all active peripherals working as on a
running system, in particular, the display must maintain the
same image as just before the processor entered sleep mode.
Second, the system must mimic the same computational be-
havior as if it was running. This is achieved in two ways:
(1) by only putting the processor in sleep mode when it is not
needed (i.e., the OS is idle and none of the active peripherals
require the processor to be running2) and (2) by waking up
the device just before the next OS scheduled event, or when
the user interacts with the device (touch-screen or button
press). By waking up the processor just before the next OS
scheduled event, the device behaves just like a system that
is continuously awake. For example, if an application has
a blinking cursor implemented in software, the cursor will
continue to blink because the system will be woken up every
time the cursor needs to change appearance.

The goal of reducing energy consumption is achieved by
preventing the processor from going into sleep mode, unless
it has been determined that it will sleep long enough to save
energy. On Itsy, entering sleep mode and exiting it immedi-
ately after consumes more energy than keeping the system
idle for the same duration. This is due to the hardware and
software overhead of entering and exiting sleep mode (flush-
ing the caches, executing suspend and resume code, etc.).

2For instance, on Itsy, some peripherals like audio input and
output require the processor to be running and, therefore,
µSleep can not be used if one of these peripherals is active.

4.1 ImplementingµSleep
There are specific hardware and software requirements

that need to be satisfied in order to be able to implement
µSleep. There are four hardware requirements. First, the
processor must have a sleep mode. This is common for mod-
ern processors targeted at low-power applications. Second,
the device must be able to display a static image while the
processor is asleep. This can be achieved in many ways;
for example, if the processor is able to keep an integrated
LCD controller active while the rest of the processor goes to
sleep, by having the LCD controller outside the processor,
or by using an LCD display with a built in frame-buffer and
which is able to display the image in the frame-buffer when
the LCD controller is turned off. Third, the system must
have the capability of waking up in response to external
events such as touch-screen or button activity. Finally, the
device must have a programmable timer, ideally with 1 to
10ms resolution, which can wake the system up. This timer
is used to wake the system up before the next OS scheduled
event.

The software requirements are as follows. First, the code
implementing µSleep needs to know when the next OS timer
event3 will be, to determine if the system can sleep long
enough to save energy. Second, the code needs to know if
currently active peripherals will allow the processor to en-
ter its sleep mode. For example, on Itsy any audio input
or output activity requires the processor to stay awake. Fi-
nally, there must be a way for the code implementing µSleep
to put the system to sleep, which includes notifying device
drivers before the system goes to sleep and just after it wakes
up. These requirements are easily satisfied if implementing
µSleep on a device with an open operating system (we used
Linux).

Figure 2 shows the system states in a generic implemen-
tation of µSleep (some details have been left out for sim-
plicity). In this sample implementation, the real time clock
(RTC) is used as the µSleep wake up timer. The primary
state is when the system is running; that is, a process or
thread is running, or kernel code is executing on the behalf
of a process or thread. The system can enter its sleep state
as a result of a given button being pressed or as a result
of an inactivity timer. The OS idle state is entered when
the OS idle process starts running, as a result of no other

3An OS timer event is a software timer set by the OS; the
OS uses a periodic hardware timer to implement the func-
tionality of the software timer.

15

process or thread being able to run. When the system en-
ters the OS idle state it checks whether it can do a short
duration sleep (µSleep). The check consists of determining
if the system can sleep long enough to save energy and if
all the devices allow the processor to enter sleep mode. If
so, the system enters the µSleep state, otherwise the sys-
tem goes into the processor idle state where the processor
is put in idle mode to conserve energy. The system exits
the processor idle state and goes into the running state
as a result of any enabled interrupt. The system exits the
µSleep state as a result of an enabled external event, such
as touch-screen or button activity, or as a result of the RTC
alarm.

Our implementation of µSleep on Itsy —which has an
LCD with an integrated frame-buffer to display an image
when the processor is sleeping— is more complicated than
the generic implementation, where we have assumed that
the LCD controller can keep running when the processor
is sleeping. This complication is the result of a 16 ms la-
tency when switching from displaying images from the LCD
controller to displaying a static image in the LCD’s frame-
buffer. Rather than immediately transitioning from OS idle
to µSleep when the conditions are satisfied,4 the transition
to a static image is started and the system goes in the pro-
cessor idle state until this transition is completed. At this
time the conditions must be rechecked to verify that no ex-
ternal events occurred which would prevent the system from
going to sleep.

We also had to solve the problem of how to wake up the
system from µSleep since the only timers on Itsy are the
StrongARM SA-1100 processor’s timers and all of them are
disabled in sleep mode, except for the RTC. However, the
RTC has an nominal resolution of 1 second, rather than the 1
to 10ms resolution required to optimally support µSleep.
Fortunately, the StrongARM SA-1100 processor features a
programmable clock divider and trim value, which are in-
tended to calibrate the RTC with an accuracy of ±5 seconds
per month or better. However, by appropriately program-
ming the clock divider, it is possible to make the RTC run
much faster. In our case, we programmed an RTC frequency
of 1024 Hz.5

Determining when the next OS timer event will occur
was easily solved; we added code to Linux to implement
this functionality. Finally, to make µSleep more robust, we
added a backoff mechanism that is activated whenever the
actual µSleep period is too short (i.e., the system uses more
energy than not sleeping at all) as a result of waking up
due to an external event. The goal of the backoff mecha-
nism is to prevent a worst case scenario where the device is
repeatedly woken up from µSleep after a few milliseconds.
The implementation is simple. When a µSleep period is too
short we first determine if the last µSleep period was also
too short. If not, a given variable is set to 40ms, otherwise
this variable’s value is doubled as long as it does not exceed
1 second. This variable’s value is then used as the minimum
time before we allow to enter µSleep again. This variable

4The condition next timer > break even is modified to
next timer > break even + 16 ms to account for the latency
in transitioning to a static image.
5As a result of changing the RTC frequency, we had to
add code to handle the increased RTC wrapping frequency,
which increased from once every 136 years to about once
every 50 days.

usleepOkFlag = 1?
 yes: call begin_usleep
 no: put processor in
 idle state

idle_process

usleep_enable = 1
call try_usleep

enable_usleep

 yes: call try_usleep
all devices allow usleep?

device_notification

devices allow usleep?
 no: turn LCD on
 return
next_timer < break_even?
 yes: turn LCD on
 try again later
tell devices to prepare for sleep
set RTC alarm to next_timer − awake_time
sleep
sleep time > break_even?
 yes: try again soon
 no: try again later (exponential backoff)

begin_usleep

if transition to static finished

usleepOkFlag = usleepFlag

LCD_timer_handler

devices allow?
 no: return
next_timer < break_even?
 yes: try again later
usleepFlag = 1
usleepOkFlag = 0
put LCD in static mode

try_usleep

Figure 3: Pseudo-code implementation of µSleep.

is reset as soon as one µSleep period is long enough to save
energy. Figure 3 shows a pseudo-code implementation of
µSleep.

4.2 Energy savings
The energy used (eused) per µSleep period of length T ≥ ts + tr

is given by:

eused = es + er + ps · (T − ts − tr) (1)

Where:
T : µSleep duration (incl. entering and exiting)
ts = ts(f): time to enter sleep mode
tr = tr(f): time to exit sleep mode (enter run mode)
es = es(f): energy to enter sleep mode
er = er(f): energy to exit sleep mode (enter run mode)
ps: sleep mode power with LCD enabled

For simplicity, we have omitted the processor core fre-

16

Core Core Sleep Average
frequency voltage duration power

— 54.3mW
20ms 59.4 mW
30ms 58.3 mW

59MHz 0.925V 40ms 57.3 mW
50ms 56.5 mW
60ms 55.4 mW
70 ms 54.1mW

— 99.9mW
20ms 105 mW

206MHz 1.450V 30ms 102 mW
40 ms 99.8mW
50ms 97.0 mW

Table 1: Determination of break-even times (tbe).

quency (f) from equation (1) and the equations below. How-
ever, all time, power, and energy constants used here depend
on the processor frequency, with the exception of the sleep
mode power. This dependency is a result of the required
computation to enter and exit sleep mode, while preserving
the system’s state.

One can also use the break-even time (tbe) to find the
energy used per µSleep period, without first determining es,
er, ts, or tr. Let tbe = tbe(f) be the sleep duration (T) such
that the energy used during this time, including entering
and exiting sleep mode, is equal to the energy that would be
consumed if the system was idle for the same time interval.
That is:

es + er + ps · (tbe − ts − tr) = pi · tbe (2)

Where:
pi = pi(f): idle mode power.

Then, we can calculate the energy used (eused) for a µSleep
period as well as the energy saved (esaved) with respect to
an idle period of the same duration (T):

eused = pi · tbe + ps · (T − tbe) (3)

esaved = pi · T − eused

= (pi − ps) · (T − tbe) (4)

Note that esaved can be negative if T < tbe, indicating that
energy has been wasted rather than saved.

The break-even time (tbe) can be determined for each pro-
cessor frequency (f) in the following way. First, we measure
the average power (pi) when the system is idle (see Sec-
tion 5.2 for details on our measurement procedure). Next,
we measure average system power while doing short dura-
tion sleeps every 250ms. In our case, we started with a
sleep duration of 20 ms and increased it by 10 ms until the
average power consumed is equal to pi. The sleep dura-
tion when this happens is tbe. Table 1 shows the results
of our experiments to determine the break-even time for
59MHz and 206MHz, which are 70 ms and 40 ms, respec-
tively. The break-even times for all frequencies are shown
in Table 2. Note that in these experiments, as well as in all
subsequent experiments, we fix the processor’s frequency for
the duration of the experiment (we don’t use dynamic fre-
quency scaling). The voltage used for each frequency is the
pre-determined lowest adequate voltage, except at 59MHz
where we also use 1.45 V to examine the case of a device that
doesn’t support voltage scaling. Using the lowest adequate

Core Core
frequency voltage tbe

59 MHz 0.925 V 70 ms
74 MHz 0.975 V 60 ms
89 MHz 1.025 V 60 ms

103 MHz 1.075 V 50 ms
118 MHz 1.075 V 50 ms
133 MHz 1.125 V 50 ms
148 MHz 1.175 V 70 ms
162 MHz 1.225V 70 ms
177 MHz 1.275V 40 ms
192 MHz 1.400V 40 ms
206 MHz 1.450V 40 ms
221 MHz 1.550V 30 ms
236 MHz 1.600V 30 ms

Table 2: Break-even times (tbe).

voltage for each frequency corresponds to a worst case for
µSleep, since a system that does not support voltage-scaling
would have shorter break-even times (tbe) at low frequencies,
hence, make µSleep even more desirable.6

Although equation (4) does not account for all effects
of µSleep— in particular, the fact that a µSleep period is
sometimes longer than the corresponding idle period would
have been — it is still a good approximation and can be used
to predict the energy saved, without actually measuring it.
Once the constants tbe, pi, and ps have been determined for
a given system once and for all, the OS can easily be modi-
fied to record the number of µSleep periods (Ns) as well as
the average duration of these periods (tavg). Alternatively,
one can measure Ns and tavg for potential µSleep periods, if
one wants to study the effectiveness of µSleep before imple-
menting it. Based on equation (4), the total energy saved
(Esaved) is:

Esaved = Ns · (pi − ps) · (tavg − tbe) (5)

Table 3 shows the accuracy of equation (5) at predicting
the energy that is saved by using µSleep in various scenar-
ios. In the first scenario (idle), the system is idle for 10 min-
utes. In the second scenario (read), a user reads a document
on the system. In the final scenario (calendar), a user in-
teracts with a calendar program performing a fixed set of
tasks. The scenarios are described in more detail in Sec-
tion 6. We first measured the energy consumption when the
scenarios ran with µSleep disabled, then we measured the
energy consumed when the scenarios ran with µSleep en-
abled. At the same time, we also recorded Ns and tavg. As
seen in column 7, for our experiments the prediction error
is less than 7%.

5. EVALUATION INFRASTRUCTURE
We have created an evaluation infrastructure in order to

evaluate the performance of µSleep, both in terms of its ef-
fectiveness at reducing energy consumption and of the effects
that it has on system performance. This evaluation infras-
tructure consists of two parts. The record/replay system

6The break-even times would be shorter on a system with-
out voltage-scaling because the power consumed while in
idle mode would be larger but the power consumed while
sleeping would be the same.

17

Core Energy Energy Actual Predicted
Scenario frequency w/o µSleep w/ µSleep Esaved Esaved Error Ns tavg

idle 59MHz 33.9 J 20.6 J 13.3 J 13.4 J 1% 661 829ms
idle 206MHz 62.1 J 23.7 J 38.4 J 37.7 J 2% 649 852ms
read 59MHz 33.7 J 29.3 J 4.4 J 4.1 J 7% 292 671ms
read 206MHz 43.1 J 29.4 J 13.7 J 12.8 J 7% 278 740ms
calendar 59MHz 64.2 J 59.5 J 4.7 J 5.0 J 6% 603 370ms
calendar 206MHz 74.1 J 60.4 J 13.7 J 14.2 J 4% 683 325ms

Table 3: Comparison of measured and predicted energy savings.

time

1

user selects
edit menu����

user selects
paste operation

3

����

2

finishes drawing
edit menu

����

t

3

����Replay at
59 MHz

time

1

user selects
edit menu	�	

user selects
paste operation

3

����

2

finishes drawing
edit menu

�
�

t

3

����Replay at
296 MHz

time

1

user selects
edit menu����

user selects
paste operation

3

����

2

finishes drawing
edit menu

����

t

Record at
133 MHz

Figure 4: Effects of processor frequency on replaying events.

allows us to record, for later replay, the user input events
that occur as a user interacts with the device. The measure-
ment system allows us to measure the power consumed by
the device, as well as record other system information such
as processor frequency, idle time, etc.

The user events recorded during a particular experiment
is referred to as a user scenario. We consider three user
scenarios, all of which are part of the the Qt Palmtop Envi-
ronment (QPE) by Trolltech (version 1.1.1). QPE consists
of a GUI library as well as common PDA applications such
as a calendar, address book, etc. In the idle user scenario,
QPE is running, but there are no user events so the de-
vice is mostly idle (the Linux OS is performing intermittent
computation). In the read user scenario, the user starts
programs to read information and presses buttons and the
touch screen to navigate through the documents. Finally,
in the calendar user scenario, the user is interacting with a
calendar program, both viewing and entering events.

By performing experiments where we replay the same user
interactions as we try different energy management tech-
niques, we are able to meaningfully evaluate and compare
these techniques. We can also measure the performance of
the system with no energy management to determine a base-
line against which to compare.

5.1 Record/replay system
As illustrated in Figure 4, one cannot record events on a

system running at one processor frequency and replay them
naively when the processor is running at a different fre-
quency. The figure consists of three time lines, each showing
three events. The first event corresponds to a user selecting
a generic edit drop-down menu. The second event corre-
sponds to the time when the system finishes drawing the
drop-down menu. The last event corresponds to the user
selecting the paste operation from the edit menu. The first
time line is based on a system running at 133MHz. The
user events (1 and 3) are recorded in this system for later
replay.

The second time line is based on a system running at
59 MHz. Because of the lower processor frequency (59MHz
instead of 133 MHz), the edit menu takes longer to draw.
As a result, it would not be meaningful to replay event 3
at the same time as it was recorded. A more meaningful
interpretation would be to assume that the delay (t) between
events 2 and 3 is fixed since it corresponds to the “think
time” of the user. Therefore, event 3 should be replayed
after the same delay (t) has elapsed since event 2. A similar
approach must be followed for the third time line, where the

18

59 74 88 103 118 133 147 162 177 192 206 221

frequency

0

20

40

60

en
er

gy
 (

J)

idle (1.45 V)
idle w/usleep (1.45 V)
idle
idle w/usleep

Figure 5: Energy usage in idle scenario.

edit menu finishes drawing earlier as a result of the system
running at 296Mhz.

Our record and replay infrastructure is OS based and can
be used with any application. It determines when process-
ing for a user event is finished (system event 2 in Figure 4)
and stores this information. When the next user interaction
happens (event 3 in Figure 4), the record system determines
the delay between these two events (time t in Figure 4) and
stores it along with the user events. When replaying the
events, the replay system determines when processing for a
user event is finished and then delays the necessary time (t)
before replaying the next user event. The record/replay sys-
tem is not only able to meaningfully replay events indepen-
dently of the processor frequency, but it is also able to record
the processing time associated with each user event. This
information allows us to determine the effect that a given
energy management technique has on the response time of
the system.

Our record/replay system is able to deal with both static
changes in processor frequency, where the processor fre-
quency is fixed for the whole experiment, as well as dynamic
changes, where the processor frequency may change during
the experiment. Finally, the replay system can also deal with
the processor state transitions that occur with µSleep. In
particular, if the device is in a µSleep short-duration sleep,
the replay system will trigger an interrupt, as a result of
a replayed external event, at the time when the external
event would have happened, and not ahead of time (as it
occurs with OS scheduled events). This behavior produces
the correct response times when doing µSleep.

5.2 Measurements
The Itsy features several sense resistors that allow us to

monitor the power dissipated by the whole system. We used
a measurement setup fairly similar to a setup designed else-
where [17]. Briefly summarized, we measure voltages di-

59 74 88 103 118 133 147 162 177 192 206 221

frequency

0

10

20

30

40

en
er

gy
 (

J)

read (1.45 V)
read w/usleep (1.45 V)
read
read w/usleep

Figure 6: Energy usage in read scenario.

rectly and currents indirectly as voltage drops across sense
resistors. For all experiments, the battery was replaced by
a power supply set to 3.75V. Itsy, the multimeters, and
the power supply are connected to a computer, which can
run experiments fully automatically. When carefully im-
plemented, this strategy results in error terms smaller than
typical system-to-system variations.

6. RESULTS
As mentioned in section 5, we used three user scenarios

in our experiments: when the system is mostly idle, when a
user is reading documents and when the user is interacting
with a calendar program. We ran each of these scenarios
at 12 processor frequencies in the range between 59MHz
and 221MHz while using voltage scaling. The voltages as-
sociated with each frequency are shown in table 2. The
user scenarios ran at 59 Mhz twice, once with voltage scal-
ing (0.925V) and once without (1.45V).7

The rest of this section discusses the results of our ex-
periments. For the first three figures, where we compare
the energy consumed when we replay a user scenario with
and without µSleep, a solid line is used to connect the ex-
periments without µSleep and a dashed line to connect the
experiments where we enabled µSleep. Furthermore, the
case where there is no voltage scaling (59 MHz at 1.45V) is
indicated by marks that are not filled in.

Figure 5 shows the energy consumed during a 10 minute
experiment when there is no user interaction; that is, the
system is mostly idle. There is still computation going
on, such as updating the clock shown on the display, pe-
riodic processing by system processes, etc. The advantage
of µSleep is clearly visible for each frequency, with energy

7Note that 1.45 V is the voltage required to run the pro-
cessor at 206MHz, which is the maximum frequency that
the Itsy was designed to run at (prior to the voltage scaling
modifications).

19

59 74 88 103 118 133 147 162 177 192 206 221

frequency

0

20

40

60

80
en

er
gy

 (
J)

calendar (1.45 V)
calendar w/usleep (1.45 V)
calendar
calendar w/usleep

Figure 7: Energy usage in calendar scenario.

savings ranging from 40% at 59 MHz to 68% at 221 MHz.
Note that the energy consumed when µSleep is used is al-
most constant and is independent of the processor frequency.
The reason for this is that since the system is mostly idle,
the processor is spending most of its time in its sleep mode
in the form of short duration sleeps. The average sleep du-
ration is 650ms; the average awake duration is 55 ms.

Figure 6 shows the energy consumed by the read scenario.
The read scenario lasted between 4.7 and 5.6 minutes de-
pending on the processor frequency. The energy savings
ranged from 13% at 59 MHz to 35% at 221 MHz. The aver-
age sleep duration depends on the processor frequency. At
59MHz, the average sleep duration is 229ms and the average
awake duration is 278 ms. At 221 MHz, the sleep duration
is a little larger, 271ms, and the awake duration is much
less, about 97ms (note that the system goes through more
sleep-awake cycles during the 221MHz experiment).

Figure 7 shows the energy consumed by the calendar sce-
nario. The scenario lasted between 6 to 8 minutes depend-
ing on the processor frequency. The energy savings were
less than those achieved in the read scenario, ranging from
7% at 59MHz to 21% at 221 MHz. At 59 MHz, the average
sleep duration is 370 ms and the average awake duration is
453ms. At 221MHz, the sleep duration is 312ms and the
awake duration is 197 ms.

It is not surprising that the awake duration is less at the
higher processor frequencies since the required computation
can be performed much faster. Note that we used an early
version of QPE (1.1.1) for our experiments which is known to
have performance problems. We would expect much better
energy savings from µSleep if we were using a current version
of QPE.

The “U” shape of the energy curve in Figures 6 and 7 can
be explained as follows. The power consumed by the system
can be broken into the power consumed by the processor core
and the power used by the rest of the system. As the core

59 74 88 103 118 133 147 162 177 192 206 221

frequency

0

20

40

60

en
er

gy
 s

av
in

gs
 (

%
)

idle
read
calendar

idle (1.45 V)
read (1.45 V)
calendar (1.45 V)

Figure 8: Energy savings for all scenarios.

frequency is increased, the core voltage needs to be increased
following an approximately linear relationship. Therefore,
we expect the graph of core energy vs. frequency to have
the shape of a quadratic function, since:

E ∝ t · f · v2 (6)

On the other hand, although the power consumed by the
rest of the system is indirectly affected by the core frequency
and voltage, it is not affected in a monotonic fashion and the
fluctuations are small enough that, to a first degree, it can
be approximated as constant. As a result, since the execu-
tion time of the read and calendar scenarios is decreasing
as the frequency increases, the energy is also decreasing.
The energy used by the whole system is the sum of these
two functions. One function, the energy consumed by the
core, increases quadratically while the other, the energy used
by the rest of the system, decreases approximately linearly,
hence explaining the “U” shape of the curve.

Figure 8 shows the energy saved by using µSleep as a
percentage of the energy used when not using µSleep. As
expected, the energy savings increase as a function of the
core frequency. When looking at the figures for the read and
calendar scenarios one could assume that the best approach
would be to always run at a core frequency of 133MHz since
this is where the lowest value of the energy curve occurs.
However, running at lower fixed core frequencies increases
the response time of the system (the time between a user
event and when the system is ready to process the next
event), as demonstrated in Figure 9.

7. DISCUSSION
One of the stated goals of µSleep is that there should be

no effect on the user experience. That is, the user should be
unaware that the device is doing short duration sleeps. As
mentioned earlier, when the processor is in the sleep mode,
the Itsy can only display a monochrome static image. This

20

59 74 88 103 118 133 147 162 177 192 206 221

frequency

0

200

400

600

av
er

ag
e

re
sp

on
se

 t
im

e
(m

s)
calendar
read

Figure 9: Response time for read and calendar scenar-

ios.

is in contrast to the 16-level grayscale images that can be
displayed when the processor is awake. However, the per-
ceptual difference between the two images is reduced by the
fact that the monochrome static image is a dithered version
of the grayscale one.8 We also fine-tuned our graphics li-
brary to further reduce the visual differences between the
graylevel and dither versions of its 3D widgets.

For certain image types, such as photographs, the dif-
ferences between the monochrome and graylevel images are
more noticeable. If this behavior is not desired, µSleep can
be automatically disabled when certain types of programs,
such as image viewers, are in the foreground. However, note
that the visual effects of µSleep on Itsy are the result of
the platform being designed before µSleep was conceived.
These effects can be eliminated by the techniques described
in Section 4.1, such as by using an external LCD controller.
For example, the PocketPC implementation discussed at the
end of this section was done on a device with a color screen
and with an LCD controller external to the processor. As a
result, there are no visual artifacts during the sleep intervals
on this device.

The most effective way to increase the performance of
µSleep is to increase the length of the short duration sleeps
as well as their frequency. Since µSleep wakes the system up
right before the next OS scheduled event, the length of the
short duration sleeps can be increased if we can reduce the
number of OS scheduled events. Since one of the most com-
mon sources of OS scheduled events is application timers,
reducing their number can significantly increase the perfor-
mance of µSleep. For example, we found that the default
GUI on Itsy (the manager) was using distinct timers to up-
date each of the status icons. These status icons show the
time and date, the current processor load, remaining bat-

8This is automatically done by the LCD controller in the
StrongARM.

tery, volume level, etc. Each of the status icons were being
updated every second, and since they were not synchronized,
the average interval between timers was less than 250ms.
By using just one timer to update all the status icons we
increased the interval between timers to more than 600 ms.

A general way to implement this functionality could be
achieved by creating a new system function to set periodic
timers. The function could have two arguments, the first
argument specifies the interval between timers (1 second for
our status icons example), the second argument indicates
the maximum delay allowed before the first occurrence of
the timer. Then, multiple calls to set timers with a period
of one second, or multiples of one second, would result in
timers that expire at the same time.

However, there may be times when we don’t have access
to the application’s code to improve their handling of timers.
In many instances the behavior of the application is not af-
fected negatively if the timers are delayed by a short amount.
Then, the code that checks for the next OS scheduled event
could be modified to check if the scheduled event belongs
to a particular set of applications which are known to be
resilient to timer delays. If so, the sleep duration could be
increased beyond the OS scheduled event.

On Itsy we cannot use µSleep when an application is ac-
tively using the audio device9 because the processor needs to
be awake to transfer the data to, or from, the audio codec.
However, if the audio codec had sufficient buffering, then it
would be possible to transfer 200ms or more of audio at one
time, then sleep until it is time to start processing or send-
ing more data. This way it could be possible, depending on
the device particular characteristics, to use µSleep while the
device is playing an encoded audio file.

Similar issues arise with other I/O devices such as the
processor’s serial port. These issues can be resolved in a
similar way; either by increasing the available buffering in
the case that the device is external to the processor, or by
allowing the device to stay awake while the processor sleeps.

One of the advantages that µSleep has over the standard
use of system sleep is that the OS and its applications are
able to perform all their computation. As a result, network
connections can stay alive because all code related to con-
nection timers is executed as normal. Therefore one could
create a variant of µSleep to replace the standard system
sleep, where network connections would stay alive. This
variant of µSleep would turn the display off as well as dis-
able some of the wake up events of standard µSleep (such as
touch screen presses). Furthermore, to increase the amount
of energy saved, this variant could also increase the dura-
tion of the short sleep periods, say to one or two seconds,
ignoring the time of the next OS scheduled event (most com-
mon network connections would still stay alive even if their
timers are delayed by a couple of seconds).

The final topic we want to cover in this section is our
experience porting µSleep to a PocketPC device where we
were constrained by the lack of access to the PocketPC OS
code. Although we never achieved a full port of µSleep to
the PocketPC device due to time constraints, we achieved
enough functionality to determine that it would be feasible
to do a full implementation of µSleep. Furthermore, initial
measurements on a PocketPC with a color screen showed

9If an application has opened the audio device but hasn’t
used it in the last 5 seconds, then we enable µSleep until the
user accesses the audio device.

21

that we could achieve power savings of up to 35% when the
backlight was off, and up to 20% when the backlight was set
at a comfortable level.

8. CONCLUSIONS
We have introduced µSleep, a new technique for reducing

power consumption in computing devices. This technique
is most useful in portable devices, where it can be used to
significantly increase the battery life of the device in some
cases. We implemented µSleep on the Itsy pocket computer
both to determine the viability of this technique and to mea-
sure the energy savings achieved by this technique. Our
experiments have shown that µSleep can reduce energy con-
sumption by more than 60% in some instances, such as when
the device is lightly loaded. We have also done a preliminary
implementation of µSleep on a PocketPC based device, giv-
ing evidence that this technique could be implemented on
diverse devices, as long as some basic requirements are met.

Acknowledgements
The Itsy project was started at Digital’s Western Research
Laboratory, and led by William Hamburgen, who co-designed
the hardware with one author (M. Viredaz). The other two
authors (L. Brakmo and D. Wallach) and Carl Waldspurger
ported the Linux operating system to the Itsy. Many other
members of the Western Research Laboratory and the Sys-
tem Research Center made significant contributions to the
project (while at Digital and then Compaq). The work on
µSleep was performed while the authors were members of the
research staff at Compaq and then HP Labs. In addition,
the authors wish to acknowledge the enthusiastic support of
their management at all three companies.

9. REFERENCES
[1] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the

power-hungry disk. In USENIX Winter 1994
Technical Conf. Proc., pages 293 – 306, San Francisco,
Jan. 1994. USENIX.

[2] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. In
Proc. Seventh Annual Int’l Conf. on Mobile
Computing and Networking, Rome, July 2001. ACM,
IEEE, ACM Press.

[3] S. Gary, P. Ippolito, G. Gerosa, C. Dietz, J. Eno, and
H. Sanchez. PowerPC 603,TM a microprocessor for
portable computers. IEEE Design & Test of
Computers, 11(4):14 – 23, Winter 1994.

[4] K. Govil, E. Chan, and H. Wasserman. Comparing
algorithms for dynamic speed-setting of a low-power
CPU. In Proc. First Int’l Conf. on Mobile Computing
and Networking, pages 13 – 25, Berkeley, Nov. 1995.
ACM, NASA, ACM Press.

[5] W. R. Hamburgen, D. A. Wallach, M. A. Viredaz,
L. S. Brakmo, C. A. Waldspurger, J. F. Bartlett,
T. Mann, and K. I. Farkas. Itsy: Stretching the
bounds of mobile computing. Computer, 34(4):28 – 36,
Apr. 2001.

[6] C.-H. Hwang and A. C.-H. Wu. A predictive system
shutdown method for energy saving of event-driven
computation. ACM Trans. on Design Automation of
Electronic Systems, 5(2):226 – 241, Apr. 2000.

[7] Intel. IntelR© StrongARMR© SA-1100 Microprocessor:
Developer’s Manual, Aug. 1999. Document
No. 278088-004.

[8] Intel. IntelR© XScaleTM Microarchitecture: Technical
Summary, 2000.

[9] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath,
and C. Narayanaswami. Energy trade-offs in the ibm
wristwatch computer. In Proc. Fifth International
Symp. on Wearable Computers, pages 133 – 141,
Zurich, Oct. 2001. IEEE.

[10] K. Li, R. Kumpf, P. Horton, and T. Anderson. A
quantitative analysis of disk drive power management
in portable computers. In USENIX Winter 1994
Technical Conf. Proc., pages 279 – 291, San Francisco,
Jan. 1994. USENIX.

[11] J. R. Lorch and A. J. Smith. Scheduling techniques for
reducing processor energy use in MacOS. Wireless
Networks, 3(5):311 – 324, Oct. 1997.

[12] T. Pering, T. Burd, and R. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms.
In Proc. 1998 Int’l Symp. on Low Power Electronics
and Design, pages 76 – 81, Monterey, Aug. 1998.
IEEE, ACM, ACM Press.

[13] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic
voltage scaling on a low-power microprocessor. In Int’l
Symp. on Mobile Multimedia Systems & Applications,
Delft, Nov. 2000.

[14] T. Simunic, L. Benini, P. Glynn, and G. De Micheli.
Dynamic power management of portable systems. In
Proc. Sixth Annual Int’l Conf. on Mobile Computing
and Networking, pages 11 – 19, Boston, Aug. 2000.
ACM, IEEE, ACM Press.

[15] M. B. Srivastava, A. P. Chandrakasan, and R. W.
Brodersen. Predictive system shutdown and other
architectural techniques for energy efficient
programmable computation. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 4(1):42 – 55,
Mar. 1996.

[16] R. Stephany, K. Anne, J. Bell, G. Cheney, J. Eno,
G. Hoeppner, G. Joe, R. Kaye, J. Lear, T. Litch,
J. Meyer, J. Montanaro, K. Patton, T. Pham, R. Reis,
M. Silla, J. Slaton, K. Snyder, and R. Witek. A
200MHz 32b 0.5W CMOS RISC microprocessor. In
1998 IEEE Int’l Solid-State Circuits Conf.: Digest of
Technical Papers, pages 238 – 239, 443, San Francisco,
Feb. 1998. IEEE.

[17] M. A. Viredaz and D. A. Wallach. Power evaluation of
a handheld computer. IEEE Micro, 23(1):66 – 74,
Jan. – Feb. 2003.

[18] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Proc. First
Symp. on Operating Systems Design and
Implementation, pages 13 – 23, Monterey, Nov. 1994.
USENIX.

22

