
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

E N H A N C E M E N T S T O T H E
A U T O F S A U T O M O U N T E R

Ricardo Labiaga

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Enhancements to the
Autofs Automounter

Ricardo Labiaga – Sun Microsystems, Inc.

ABSTRACT

An automounter is a system tool that enables administrators to share a uniform file system
name space across an organization. Until the introduction of the enhanced autofs automounter,
no automounter had integrated browsability of maps into the operating system. This paper
describes enhancements made to the autofs automounter that enable entry listing in automounter
maps without triggering mount storms. This allows applications to seamlessly browse potential
mountable entries without the overhead of file system mounts. In addition, this paper describes
the implementation of lazy mounting of hierarchies, which improves on-demand file system
mounting.

Introduction

An automounter is a service that automatically
mounts file systems upon reference and unmounts the
file systems after a period of inactivity. This service
has been traditionally used to access NFS file systems
in large enterprise environments where centralized
administration of the file system name space is pre-
ferred. An automounter will perform the mounts when
a file system is first referenced without requiring the
workstation user to acquire super-user access to per-
form the mount command. To the user, the mount of
the newly accessed file system is transparent.

Three automounters are in wide use today. The
first to become available was the automounter in
SunOS 4.0. This automounter is available in many
Unix system platforms, such as those from Auspex,
HP, Compaq, IBM and SGI. A second automounter,
the Amd automounter [8], is included in 4.4 BSD and
has also been ported to many Unix systems. The third,
the autofs automounter, was introduced in 1993 in Sun
Solaris 2.3 and has been implemented on various other
Unix system platforms since then, such as HP, IBM,
Linux and SGI.

Both the SunOS 4.0 automounter and the Amd
automounter are implemented as NFS servers [4]. The
server is a daemon process, NFS mounted on directo-
ries that are required to be dynamically mounted. Each
mount point is associated with a map that determines
what components appear under the mount point and
describes to which file systems they correspond.
When the user process crosses the mount point, the
kernel communicates with the daemon in the same
manner it would communicate with any other NFS
server. The daemon mounts the desired NFS file sys-
tem on an alternate path and returns a symbolic link to
this newly mounted file system. All lookups crossing
the mount point are redirected by the kernel to the
NFS server daemon, which returns a symbolic link to
the mounted NFS file system.

The autofs automounter is considerably different
than the traditional NFS server based automounter. It
consists of three main components; the autofs file sys-
tem, an auxiliary automount command utility and the
automountd daemon.

The autofs file system is a virtual file system [6]
(VFS) that intercepts requests to access directories that
are not yet present. It calls the automountd daemon to
mount the requested directory. The automountd dae-
mon locates the requested path in the automounter
maps, mounts the corresponding file system overlay-
ing the autofs mount point, or mounts it on a subdirec-
tory within the autofs file system. The subdirectory is
created if necessary. Once the requested file system
has been mounted, the original operation which
accessed the autofs directory can proceed. Subsequent
references to the mounted file system are redirected
within the kernel by the autofs file system. No further
intervention of the automountd daemon is required.

It is the responsibility of the automount auxiliary
command to initially install the autofs mounts that
connect the automounter maps into the file system
name space. At system startup, the automount com-
mand reads the auto_master map and installs the initial
set of autofs mounts into the file system name space.

Master map for automounter
#
/net -hosts -nobrowse
/home auto_home

Table 1: auto_master map.

Given the auto_master map listed in Table 1, the
automount command installs the -hosts map on the /net
directory and the auto_home map on the /home direc-
tory. The -hosts map is a special automounter map
consisting of all available hosts in the network along
with their respective exported file systems. Figure 1
illustrates the resulting autofs file systems. The fol-
lowing would be the equivalent autofs mounts:

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 165

Enhancements to the Autofs Automounter Labiaga

$ mount -F autofs -o nobrowse \
-hosts /net

$ mount -F autofs auto_home /home

/

home net

auto_home -hosts

Autofs file systems

Figure 1: Autofs mount points.

By default the automountd daemon and the auto-
mount command will look for the maps in the /etc
directory, unless otherwise specified in the auto_master
map. The name service is consulted depending on the
system configuration. On a Sun Solaris OS, the auto-
mount entry in /etc/nsswitch.conf determines whether or
not the automounter will consult the name service
directory. The current release of the Sun Solaris OS
supports NIS and NIS+ [7] automounter maps. Sup-
port for automounter maps via the Lightweight Direc-
tory Access Protocol [5], will be added in a future
release.

An autofs mount contains the following informa-
tion:

• The name of the map associated with the mount
point.

• The type of the map, either direct or indirect.
• The address of the user-level automountd dae-

mon to contact for file system resolution.
• The default options to be used for mounting.

There are three kinds of automounter maps:
direct, indirect, and executable. A direct map contains
entries consisting of an absolute path, used as the key
identifier, a corresponding file system to be mounted
upon reference of the key and an optional set of mount
flags to be used. Each direct map entry is itself
installed as an autofs mount. Each one of these
mounts constitutes a direct mount. A direct mount is
defined as the autofs mount of an absolute path listed
in a direct autofs map. With a direct mount, once the
autofs mount point is accessed by a process, the autofs
file system calls the automountd daemon providing its
path and direct map name. The automountd daemon
proceeds to mount the corresponding file system cov-
ering the autofs mount point. The autofs file system
then redirects the blocked request to the newly
mounted file system. Table 2 illustrates two direct map
entries part of an auto_direct map.

/usr/dist -ro flash:/export/dist
/opt/onbld -ro flash:/export/onbld

Table 2: auto_direct map.

An indirect map contains entries consisting of a
key identifier (a simple path component), a corre-
sponding file system to be mounted upon reference of
the key and an optional set of mount flags to be used.
The indirect map itself is installed as the autofs mount,
in contrast to direct maps whose entries are the actual
autofs mounts. An indirect mount is defined as the aut-
ofs mount of an indirect map. With indirect mounts
the autofs file system provides access to a directory of
automatic mounts. Access to the autofs mount point
itself does not trigger mounts, instead a request to
lookup a subdirectory (key) in this directory will cause
the autofs file system to call the automountd daemon
with the subdirectory name and the map name. The
daemon finds the name in the map, mounts the corre-
sponding file system using the subdirectory as the
mount point (not the autofs mount point) and replies to
the autofs file system, which in turn redirects the
blocked request to the new file system mounted. Table
3 illustrates an indirect map containing various home
directory entries.

ashok redback:/export/home/ashok
bev turbo:/export/home/bev
brent terra:/export/home/brent
david jetsun:/export/home/david
warp hp:/export/warp
peter turbo:/export/home/peter
spencer austin:/export/home/spencer

Table 3: auto_home map.

An executable map is a special kind of indirect
map. It is a local file with its execute bit set. The auto-
mountd daemon will execute the file and provide the
name of the key to be looked up as an argument. The
executable map returns the corresponding map entry
on its stdout or no output if the entry cannot be deter-
mined. Refer to [3] for a detailed description of exe-
cutable maps.

An extensive description of the features of the
various automounters can be found in the references
[1, 2, 3, 4, 8] at the end of this paper.

Limitations of the Autofs Automounter

Although the autofs automounter solved a num-
ber of problems seen in previous automounters [3],
some limitations remained:

• There was inherent serialization in the autofs
file system kernel component. This prevented
concurrent mounts of entries that were part of
the same automounter map.

• No support for browsability of maps was pro-
vided. A listing of an autofs directory only
returned entries that had previously been
mounted. Entries that had not yet been mounted
were not listed.

166 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Labiaga Enhancements to the Autofs Automounter

• The mechanism used to mount and unmount
hierarchies of file systems was prone to error.
Temporary outage of a component lead to holes
in the file system name space.

Architecture

In order to fix these limitations, the autofs auto-
mounter was re-architected for Sun Solaris 2.6. The
new version remains split into three distinct compo-
nents:

• The autofs file system, a kernel virtual file sys-
tem that triggers all of the mounting and
unmounting of file systems.

• The automountd daemon, a user level process
responsible for performing the actual mounts
and unmounts of the requested file systems.

• The automount command, a user level program
that installs the initial autofs file system entry
points.

The autofs file system and the automountd daemon
communicate using connection-oriented RPC over the
loopback transport. The RPC Protocol section
describes this protocol in detail.
Browsability of Indirect Maps

Until the introduction of the enhanced autofs
automounter, automounters lacked the ability to list all
available entries in maps. A listing of an autofs direc-
tory referencing an indirect map only returned a list of
directories already mounted, but did not list the entries
which could potentially have been mounted, making it
difficult for the end user to know what entries were
available before they were first accessed.

This restriction was in place to prevent uninten-
tional mounts of the entire map contents, a condition
known as a mount storm. For instance an ls -l /home/*
command, would have triggered a mount storm. This
mount storm would have been caused by the read-
dir(3C)/stat(2) combination. The readdir(3C) makes
the entire list of keys available to the browsing utility,
such as ls(1) or a GUI file manager, which in turn
issues a stat(2) of every entry to obtain its attributes.
The stat(2) of an indirect map entry would have trig-
gered the mount of the entry in order to verify its exis-
tence, and obtain its attributes. Performing this opera-
tion on every entry would have made directory brows-
ing expensive and time consuming on relatively large
maps.

The enhanced autofs automounter solves the
mount storm problem by modifying the mount strat-
egy. Previous automounters trigger the mount as soon
as a new entry is looked up in an automounter map, so
stat(/home/user) triggers the mount of the file system
that corresponds to the user entry in the auto_home
map. The enhanced autofs automounter postpones the
mount of the file system until the indirect map entry is
opened or a lookup of a component underneath it takes
place. A simple stat(2) of the entry does not trigger a
mount, instead the automountd daemon will simply
query the map for existence of the entry.

Indirect maps may include a wildcard key ‘‘*’’,
which tells the automountd daemon that any key is
valid in the map. In such cases, since not all entries are
explicitly defined in the map, a listing of the map
needs to be the combination of the dynamically cre-
ated entries (those previously matched and mounted
via the wildcard key) and the explicitly defined
entries. This is achieved by first listing the entries that
have already been mounted (either explicitly or via the
wildcard) and then listing all explicitly defined entries
in the map. A search for duplicates is done by the aut-
ofs file system before returning from the getdents(2)
system call.

The first getdents(2) of an indirect mount point
will return the entries currently mounted. Once all
mounted entries have been listed, subsequent get-
dents(2) cause the autofs file system to send an
AUTOFS_READDIR request to the automountd dae-
mon to list the remaining entries in the map. This is
done repeatedly until all entries in the map have been
listed. The name of the map, the offset within the
directory, and the number of bytes requested are
included in the request. The automountd daemon will
return the directory entries in chunks of the requested
size, starting at the requested offset. Duplicates of
entries already mounted are filtered out by the autofs
file system. The maximum number of mounted entries
listed is specified by the value of AUTOFS_DAE-
MONCOOKIE. This value is OS specific, though is
usually in the order of tens of thousands of entries.

Consider the auto_home map listed in Table 3.
Assume that the /home/brent and /home/peter directories
have previously been accessed and mounted, and that
our readdir(3C) library function generates getdents(2)
requests of 25 bytes. A call to readdir(/home) will gen-
erate the following sequence of getdents(2) opera-
tions:

• The first getdents(/home, 25) lists the previously
mounted entries brent and peter, and sets the
next offset to AUTOFS_DAEMONCOOKIE to
indicate it is done listing all currently mounted
entries.

• Since the end of the directory has not yet been
reached, a second getdents(/home, 25) is issued.
Given that the current value of the offset is
AUTOFS_DAEMONCOOKIE, the autofs
readdir code handler issues a request to the
automountd daemon, requesting the next 25
bytes in the directory. The automountd daemon
in turn returns the first four entries in the map
(22 bytes including termination characters)
ashok, bev, brent, and david, and sets the next
offset to AUTOFS_DAEMONCOOKIE + 4,
since it returned four entries. It is the autofs file
system that filters out the brent entry, since it is
currently mounted and has already been listed.

• Again, since the end of directory has not yet
been reached, another getdents(/home, 25) call is
issued. The request is sent to the automountd

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 167

Enhancements to the Autofs Automounter Labiaga

daemon again, which then returns the warp,
peter, and spencer entries. The automountd dae-
mon sets the end of directory boolean indicator
in the structure containing the result, and
replies to the autofs file system. The autofs file
system filters out the peter entry since it is cur-
rently mounted, and getdents(2) returns the
remaining two entries to the caller.

To maximize performance, and minimize kernel
memory usage, no nodes are created as a result of a
getdents(2) request. Nodes for the given entries will
only be created if a process makes a subsequent
lookup of entries listed by getdents(2) [i.e., ls -l].

These nodes are created with default attributes,
which causes stat(2) to report the default attributes of
nodes on which no file system has yet been mounted,
instead of the directory attributes of the root of the
mounted file system. Once the real mount is triggered,
the attributes of the root of the mounted file system
will be reported. There is no way to obtain the true
attributes of the root of the file system without mount-
ing the file system first. Remember that the intention
is to be able to list the contents of an automounter map
without having to mount the file systems referred to
by the entries in the map. Note that this is the same
behavior of direct map entries in previous automoun-
ters.

Performance

When an AUTOFS_READDIR request is
received by the automountd daemon, it issues a
request to the name service for the contents of the
requested map. Since name services such as NIS and
NIS+ do not support requests using byte ranges, the
entire map needs to be requested on the first AUTO-
FS_READDIR call, even when only a portion of the
map entries will be returned to the autofs file system
at a time. Since the automountd daemon caches the
entry listing, a subsequent AUTOFS_READDIR invo-
cation will obtain its information from this cache. This
leads to good performance of relatively large auto-
mounter map listings.

The directory listing of a 13,000 entry NIS auto-
mounter map (ls -f) takes approximately 15 seconds on
a cold cache and two seconds on a warm cache. A
long directory listing, which enumerates entries and
their corresponding attributes (ls -l), takes approxi-
mately 40 seconds. A listing of a map with just under
150 entries is practically instantaneous. These infor-
mal measurements were obtained on a single CPU Sun
Ultra 1 workstation running at 167 Mhz over a 10 Mb
ethernet.

Optimizing Browsability of Maps

Information is more readily available if it is hier-
archically organized. For example a large corporation
may be divided into divisions and each division may
be subdivided into organizations. Members of a team
are easily identifiable when the division and organiza-
tion to which they belong is known.

The autofs file system name space can be orga-
nized in a similar manner. It is easier to browse and
administer multiple small automounter maps, than a
single large flat map. Each automounter map can con-
tain a combination of autofs and non-autofs mounts.
For example, the company previously mentioned
makes its employee home directories available
through a hierarchical name space that mirrors its
organizational structure. Its home directories are
rooted at /home and the auto_master map contains the
single entry:

/home auto_home
The auto_home map contains:

legal -fstype=autofs auto_legal
eng -fstype=autofs auto_eng
HR -fstype=autofs auto_HR
mktg -fstype=autofs auto_mktg
CEO flash:/export/olsen

The auto_eng map contains:

OS -fstype=autofs auto_OS
AMI -fstype=autofs auto_AMI
java -fstype=autofs auto_java
VP flash:/export/smith
CTO flash:/export/jackson

The auto_OS contains:

mct iceberg:/export1/mct
spn iceberg:/export1/spn
jim flash:/export/jim
...

The user jim accesses his home directory as
/home/eng/OS/jim. This results in the autofs mount of
the auto_home, auto_eng, and auto_OS maps, as well as
the NFS mount of flash:/export/jim. A directory listing
of jim’s organization simply returns the contents of the
auto_OS map.

Potential Problems

Even though in practice mount storms are very
rare, they can still occur. A recursive listing of entries
under an indirect mount point can trigger the mount of
all the file systems in the map. This may prove to be
expensive and time consuming. It is conceivable that
some legacy scripts and applications will need to be
fixed to avoid this situation, especially those that do a
depth-first search of the automounted file system at
any point in order to build their own cache.

Disabling Browsability

Browsability may be disabled through the use of
the -nobrowse map option for a specified map and chil-
dren maps. The option is inherited. This option
instructs the autofs file system not to list the contents
of the specified map, causing it to simply return the
listing of entries already mounted. This is similar to
the old behavior, where only mounted entries were
listed. The system administrator may want to specify
this option in the rare event that a given application
causes mount storms or when maps are unreasonably

168 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Labiaga Enhancements to the Autofs Automounter

large, causing browsing to negatively affect system
performance. This option only applies to the specified
map and does not affect browsability on other areas of
the file system name space. For instance, Table 1
shows the /net autofs mount point installed with the
-nobrowse option. A readdir(3C) of the /net directory
will only list the entries that have already been
mounted. It will not list potentially mountable entries.
The -browse option is used to re-enable browsability at
any point in the autofs hierarchy. The default is
-browse.
Incompatibility Issues

The -nobrowse and -browse options can not be
parsed by older automounters. These options are not
intended for inclusion in maps accessed via the shared
name services, unless all automounters understand the
new options or simply ignore unknown options. If an
older automounter accesses an entry containing either
of these options (or any other unknown option for that
matter), it will cause the mount to fail since the older
automounter cannot correctly parse the new options.
The local system automounter map files are a better
location for these options.

Improved Concurrency

The autofs automounter concurrency was
severely limited when it came to accessing multiple
automatic mounts under an indirect autofs mount.

In the case of multiple concurrent accesses to a
single direct autofs directory, only one request needs
to be issued to the automountd daemon to mount the
corresponding file system. All other requests should
block for the originating request to finish. This was
achieved by flagging the autofs mount point with a
‘‘mount in progress’’ flag. Once the originating
request received its reply from the automountd dae-
mon, it signaled all other threads waiting on this
mount point to proceed and clear the ‘‘mount in
progress’’ flag. No new requests needed to be made to
the automountd daemon since the mount had already
been installed.

In the case of indirect mounts, the autofs direc-
tory was not the mount point of the newly mounted
file system. Instead, the automountd daemon created a
new mount point as a subdirectory of the autofs direc-
tory and mounted the new file system on top of it. At
the time the request to the automountd daemon was
generated, the autofs file system had no unique mount
point to use as a synchronization point. Instead, it
used the autofs indirect mount point to block other
threads from generating a second mount request for
the subdirectory. Unfortunately, this had the side
effect of blocking lookups and mounts of other subdi-
rectories under the same autofs indirect directory. This
affected concurrency and lead to unnecessary hangs,
where the lookup of a given path needed to wait for
the mount of an unrelated path to be finished by the
automountd daemon.

For instance, access to /home/warp first flagged
the /home node with the ‘‘mount in progress’’ flag and
then requested the automountd daemon to mount the
corresponding file system on /home/warp. This is illus-
trated in Figure 2.

/

home net

auto_home -hosts
STOP

1. Block all new lookups here.
2. Request the automountd daemon
 to mount /home/warp.

Figure 2: stat(/home/warp).

The automountd daemon in turn created the warp
directory under the /home mount point and issued the
mount system call to mount the new file system. If, at
the same time, access to /home/bev was requested by a
second process, the second process would unnecessar-
ily block until the first process’ access completed,
since the /home node had previously been locked. Hav-
ing a multithreaded automountd daemon was of no
particular use at this point, since the request to mount
/home/bev was blocked by the autofs file system. Fig-
ure 3 illustrates this scenario.

/

home net

auto_home -hosts

STOP

stat(/home/bev)blocks here.

automountd

mount(hp:/export/warp) in
progress...

warpwarp

Figure 3: stat(/home/bev).

Once the mount of the new file system on
/home/warp finished, the second request to install the
/home/bev mount could be made to the automountd
daemon.

To fix this major limitation, the enhanced autofs
automounter moves the creation of the mount point

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 169

Enhancements to the Autofs Automounter Labiaga

from the automountd daemon to the autofs file system.
For instance, upon lookup of /home/warp, the autofs
file system determines that warp has not previously
been accessed, creates the node for the name, warp,
flags it with a ‘‘lookup in progress’’ flag, and issues a
lookup request to the automountd daemon, as illus-
trated in Figure 4.

warp

/

home net

auto_home -hosts

STOP

1. Block all new lookups here.

2. Request the automountd
 daemon to lookup
 /home/warp.

Figure 4: Non-blocking stat(/home/warp).

The daemon looks up the warp entry in the map
and returns either success or failure to the autofs file
system. A concurrent lookup of /home/bev can proceed
since the /home node is not locked. The autofs file sys-
tem creates a new node for the name, bev, under
/home, sets the ‘‘lookup in progress’’ flag on /home/bev
and sends the request to the automountd daemon. This
is illustrated in Figure 5.

/

home net

auto_home -hosts

warp bev
STOPSTOP

1. Block all new lookups here.

2. Request the automountd daemon
 to lookup /home/bev.

Lookup of /home/warp in progress....

Figure 5: Concurrent stat(/home/bev).

At this time all new concurrent accesses to
/home/bev will be blocked until the automountd dae-
mon replies, since the bev node is flagged with
‘‘lookup in progress.’’ This prevents flooding the auto-
mountd daemon with requests to perform duplicate
lookup work. When the calling thread receives its
reply from the automountd daemon, it will wake up
any other threads waiting on the bev node, at which
time they can return the same lookup status as the call-
ing node obtained from its request to the automountd
daemon.

Thus far, the nodes have only been looked up, no
mounts have taken place. In order for the node to be
covered with its corresponding file system, the node
needs to be opened, or a lookup of a component
underneath the node needs to take place. The RPC
Protocolo Section describes the mount trigger policy
along with the autofs RPC communication protocol in
more detail. After the automountd daemon is done
mounting the file system, the synchronization flags on
the mount point are cleared and every process is
allowed to proceed with its lookups and traverse into
the newly mounted file system. This is illustrated in
Figure 6.

/

home net

auto_home -hosts

warp

STOP

1. Block all new lookups
 here.

2. Request the automountd
 daemon to mount
 /home/warp.

automountd
3. mount(hp:/export/warp)

hp:/export/warp

Figure 6: opendir(/home/warp).

Lazy Mounting of Hierarchies
Many times, more than a single file system needs

to be mounted as part of a file system hierarchy. Exist-
ing automounters mount all members of this file sys-
tem hierarchy at once, as soon as the top level file sys-
tem is accessed. A common example of this is the use
of the /net autofs mount. The automounter mounts all
file systems from a given server when /net/host is ref-
erenced. These file systems may be hierarchically

170 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Labiaga Enhancements to the Autofs Automounter

related, one within the other, and the entire hierarchy
is mounted as a unit. As a side effect, the entire hierar-
chy of file systems needs to be unmounted as a unit as
well. This presents a number of problems. First, a
large number of file systems are mounted, even if only
one is needed. Second, and a more significant prob-
lem, is that nested file systems have to be recursively
unmounted and remounted if the entire hierarchy can
not be unmounted. The remounting of elements is par-
ticularly prone to failure due to network discontinuity
and time outs, which often result in a hole in the file
system name space.

To address this problem, the enhanced autofs
automounter mounts only the top level file system of a
hierarchy on first reference, installing autofs trigger
nodes where the next level file systems will need to be
mounted upon reference. This provides better on-
demand automounting of hierarchies by reducing the
total number of mounts. The autofs trigger nodes are
direct mount points. They trigger a request to mount
the real file system when the trigger node is opened or
a lookup of a component under this directory is per-
formed.

net

-hosts

iceberg

/

Figure 7: stat(/net/iceberg).

The automatic unmounting process is now
reduced to unmounting the top level file system and its
trigger nodes, instead of n file systems, multiple levels
deep. If the top level file system is busy, only the trig-
ger nodes are remounted, which is considerably faster
than remounting other file systems, since the remount
does not involve context switching in user space or
over-the-wire communication with potentially dead or
slow servers.

The following example describes the new mech-
anism for mounting hierarchical mounts in the
enhanced autofs automounter. Assume the server ice-
berg exports the following eleven file systems:

/
/export1
/export1/home

/export2
/export3
...
/export9

/net is an autofs mount point that references the -hosts
map.

As illustrated in Figure 7, a lookup of /net/iceberg
creates the new node and makes a call to the auto-
mountd daemon requesting that it lookup the entry. If
such entry exists, the new node is returned. If the entry
does not exist, the node is removed and an ENOENT
error is returned.

An opendir of /net/iceberg triggers a call to the
automountd daemon to NFS mount iceberg:/, the top-
level file system. After this top-level file system has
been successfully mounted, the automountd daemon
replies to the autofs file system indicating it needs to
install nine new trigger nodes located at:

/net/iceberg/export1
/net/iceberg/export2
...
/net/iceberg/export9

Notice that only the trigger nodes for the level
immediately following the top level were installed.
This is illustrated in Figure 8.

/

net

-hosts

iceberg

iceberg:/

export1 export9

. . .
-hosts:

iceberg/export1

-hosts:

iceberg/export9

Figure 8: Top-level and trigger nodes.

If export1 is later referenced, the NFS file system
iceberg:/export1 will be mounted, along with a trigger
node for the next level of mounts, /export1/home in this
case. This is illustrated in Figure 9. A subsequent
access of /net/iceberg/export1/home would trigger the
NFS mount of iceberg:/export1/home. Notice that no
triggers under /net/iceberg/export1/home need to be

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 171

Enhancements to the Autofs Automounter Labiaga

installed, since the server does not share any file sys-
tems rooted deeper than iceberg:/export1/home.

iceberg

iceberg:/

export1 export9

. . .
-hosts:

iceberg/export9
iceberg:/export1

-hosts:

iceberg/export1/home

home

Figure 9: stat(/net/iceberg/export1/dir).

iceberg

iceberg:/

export1 export9

. . .
iceberg:/export1

home

iceberg:/export9

iceberg:/export1/home

Figure 10: Older automounters mount all file systems
on first reference.

There is no need to mount file systems that are
never touched. Only the file systems accessed have
been mounted along with the trigger nodes that enable
the mounts of the next level. In contrast, the older
automounters would have mounted the entire hierar-
chy on first reference of /net/iceberg as depicted in Fig-
ure 10.

Unmounting
The automatic unmount of a hierarchy is per-

formed depth-first. A file system and its trigger nodes
are unmounted as a unit. In the example depicted in

Figure 9, the iceberg:/export1 file system and the ice-
berg/export1/home trigger node are both unmounted at
the same time. This leaves the iceberg/export1 trigger
node exposed, ready to trigger a new mount if a future
access takes place. The unmount of iceberg:/ will not
be attempted as long as any of its trigger nodes are
covered by a mounted file system.

The RPC Protocol

The autofs file system and the automountd dae-
mon communicate using connection-oriented RPC
over the loopback transport. The communication pro-
tocol has been extended to six basic operations. All
RPC calls are initiated by the autofs file system, they
wait in a listening state until the automountd daemon
replies or the calling thread is interrupted. The autofs
file system will initiate a call to the automountd dae-
mon when a thread references a trigger autonode. The
six basic operations follow:
AUTOFS_LOOKUP

Description: Performs a lookup of a key in a
map. This request is triggered when a thread performs
a lookup of a not-yet mounted key in an indirect aut-
ofs mount.

Arguments: The request takes as argument the
name of the map, the key being looked up, and the
directory path.

Results: The automountd daemon returns suc-
cess if the entry exists in the map or an error if it does
not exist.
AUTOFS_MOUNT

Description: Performs a mount of a key from a
map at the given mount point using the specified
options. This operation is triggered under the follow-
ing conditions:

• Direct autofs mounts: Triggered when a thread
opens a direct autofs mount or performs a
lookup of a component of the direct autofs
mount.

• Indirect autofs mounts: Triggered when a
thread opens a key of an indirect autofs mount
(i.e., opendir(/home/warp)) or performs a lookup
of a component below the key of an indirect
autofs mount (i.e., stat(/home/warp/.cshrc)).
The automountd daemon matches the corre-

sponding entry in the map and performs the required
mount. For hierarchical mounts, the automountd dae-
mon builds a list of structures corresponding to the
next level mounts, each containing the necessary
information to perform an autofs mount where a new
file system mount needs to be triggered. These are
used by the autofs file system for installation of the
next-level trigger nodes. Certain types of map entries
do not require a top-level mount. For these entries,
the automountd daemon does not perform any mounts
itself and simply returns a list of mount structures to
be installed by the autofs file system as trigger nodes.

Arguments: The request takes as argument the
name of the map, the key being mounted, the mount

172 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Labiaga Enhancements to the Autofs Automounter

point, the default map options, and the type of the
map.

Results: The automountd daemon returns a sta-
tus code indicating the result of the operation and any
necessary trigger nodes that need to be installed by the
autofs file system.
AUTOFS_POSTMOUNT

Description: Adds a mount entry to etc/mnttab.
Many Unix implementations maintain the mount table
in user space (/etc/mnttab). To facilitate access to this
table, an AUTOFS_POSTMOUNT operation is pro-
vided. A request is sent to the automountd daemon to
append a path to /etc/mnttab after an autofs in-kernel
mount has been performed. This is not necessary for
OS implementations that maintain an in-kernel mount
table.

Arguments: The request takes as argument a list
of special devices, their mount point, file system type,
mount options, and device identifiers to be added to
the mount table.

Results: The automountd daemon returns a sta-
tus code indicating success or failure.
AUTOFS_UNMOUNT

Description: Unmount the path corresponding to
the specified device identifier.

Arguments: The request takes as argument the
device identifier of the file system to unmount.

Results: The automountd daemon returns a sta-
tus code indicating success or failure.
AUTOFS_POSTUNMOUNT

Description: Remove the path from /etc/mnttab
corresponding to the specified device identifier. This
is used to complete unmounts performed in the kernel
(not via the umount(2) system call). Not required for
OS implementations that maintain an in-kernel mount
table.

Arguments: The request takes as argument a list
of device identifiers to be removed.

Results: The automountd daemon returns a sta-
tus code indicating success or failure.
AUTOFS_READDIR

Description: Requests a list of entries in a map.
The automountd daemon reads these entries from the
specified map and returns an array of dirent(4) struc-
tures beginning at the specified offset.

Arguments: The request takes as argument the
name of the map, the starting offset and the total num-
ber of bytes requested.

Results: The automountd daemon returns an
array of dirent(4) structures, the total size of the
entries read, the last offset in the list, and an end of
directory indicator.

Availability

The enhanced autofs automounter is available in
Sun Solaris 2.6 and Solaris 7. The source is available

to all ONC+ licensees, which include many major
Unix vendors.

Future Work

An important limitation of automounters today
(including the enhanced autofs automounter described
on this paper) is that changes to the automounter maps
are not effective immediately if the modified map
entry has previously been mounted. For instance, if a
given server shares a new file system after a client has
already mounted a previously shared file system, the
client will not have access to the new information.
The newly exported file system will become visible to
the client after /net/server and its trigger nodes are
automatically unmounted after a period of inactivity
on the client and mounted again on subsequent access.
This is problematic to the user since newly exported
information can not be readily accessed on clients.

Clearly, one solution to this problem is to pro-
vide some kind of mechanism that notifies the autofs
file system that the mounted hierarchy has changed.
However, not all directory name services provide time
stamp capabilities, which would make it difficult for
the automounter to determine when the maps have
been updated. Some of the automounter maps are
dynamic, such a -hosts. It is not practical to continu-
ously poll servers to see if their list of shared file sys-
tems has changed. One solution would be a mecha-
nism to manually notify the autofs file system with a
list of mount points that need to be refreshed. A new
option to the automount command specifying the path
that needs to be refreshed may suffice.

Acknowledgments

The author would like to thank his colleagues
from Sun Microsystems, Inc. who have provided valu-
able ideas and discussion material for the enhance-
ment of the autofs automounter, in particular Ashok
Advani, Brent Callaghan, David Robinson, and Peter
Staubach.

Author Information

Ricardo Labiaga is a Member of Technical Staff
at Sun Microsystems, Inc. He holds a Bachelors of
Science degree in Computer Science and a Masters of
Science in Computer Engineering from The Univer-
sity of Texas at El Paso. For six years, he has worked
on a variety of projects within the Network File Sys-
tems Group at Sun Microsystems, Inc., with a primary
focus on automounting. Reach him electronically at
<labiaga@eng.sun.com>.

References

[1] Brent Callaghan, ‘‘The Automounter – Solaris
2.0 and Beyond,’’ 1992 Sun User Group Confer-
ence Proceedings.

[2] Brent Callaghan, ‘‘The Automounter – Using it
Effectively,’’ 1990 Sun User Group Conference
Proceedings.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 173

Enhancements to the Autofs Automounter Labiaga

[3] Brent Callaghan, Satinder Singh, ‘‘The Autofs
Automounter,’’ Summer 1993 Usenix Conference
Proceedings.

[4] Brent Callaghan, Tom Lyon, ‘‘The Auto-
mounter,’’ Winter 1989 Usenix Conference Pro-
ceedings.

[5] Yeong, W., Howes, T., and S. Kille,
‘‘Lightweight Directory Access Protocol,’’ RFC
1777, March 1995.

[6] S. R. Kleiman, ‘‘Vnodes: An Architecture for
Multiple File System Types in Sun UNIX,’’ Sum-
mer 1986 Usenix Conference Proceedings.

[7] Chuck McManis, ‘‘Naming Systems: A Replace-
ment for NIS,’’ September, 1991, Sun UK User
Group Conference Proceedings.

[8] Jan-Simon Pendry, ‘‘Amd – An Automounter,’’
Technical Report, Department of Computing,
Imperial College, London, England, 1989.

174 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

