
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

E N T E R P R I S E R O L L O U T S W I T H J U M P S TA R T

Jason Heiss

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Enterprise Rollouts with JumpStart
Jason Heiss – Collective Technologies

ABSTRACT

JumpStart is Sun’s solution for installing the Solaris operating system. The Custom
JumpStart feature allows the installation process to be automated. However, configuring boot
and NFS servers and the appropriate name services for JumpStart is a time-consuming and
error-prone process. The scripts that Sun provides do not help this process much. This paper
will talk about how to better automate the configuration steps needed to perform JumpStarts
over the network, emphasizing speed and accuracy as well as simplicity from an operator’s point
of view. The infrastructure needed to perform large numbers of simultaneous JumpStarts is also
discussed. By automating the actual rollout process, it is possible to JumpStart several hundred
machines at once. Techniques for doing so are presented. The improvements presented in this
paper allowed one company to improve the speed of their rollouts to 600 Sun workstations by
more than an order of magnitude. This greatly decreased user downtime and saved the company
hundreds of thousands of dollars. Lastly, possible future improvements to the process are
discussed.

Introduction

JumpStart is Sun’s solution for installing the
Solaris operating system. JumpStart has three modes.
The Interactive and Web Start modes are for interac-
tive installs. While fine for installing Solaris on a sin-
gle machine, this clearly doesn’t scale to the enterprise
level. The third mode is what Sun calls Custom Jump-
Start, which allows the install process to be auto-
mated. The information in this paper is based on the
Sparc architecture. Solaris and JumpStart are available
for the Intel architecture but the limitations of that
architecture make large-scale rollouts difficult. Specif-
ically, booting a PC off of the network is generally not
possible. Instead, booting off of a floppy is usually
required. This requires generating hundreds of boot
floppies and visiting each machine to insert one.

Configuring a Custom JumpStart is already well
covered in Sun’s book Automating Solaris Installa-
tions [Kas95], with Asim Zuberi’s article ‘‘Jumpstart
in a nutshell’’ [Zub99] presenting some useful
updates, as well as Sun’s documentation in the Solaris
Advanced Installation Guide [SAIG]; thus those topics
will not be covered here. Instead, this paper will talk
about how to automate rollouts using JumpStart.
While Custom JumpStart makes it possible to auto-
mate the process of installing Solaris (partitioning
disks, installing packages, etc.), it is still a manual pro-
cess to configure boot and NFS servers and name ser-
vices so that the workstations can boot off of the net-
work and start the Custom JumpStart. Automating that
configuration process and performing the rollout itself
are the topics of this paper. The infrastructure required
for large-scale rollouts will also be discussed.

Interactive Installs
There are a number of problems with interactive

installs (either Interactive or Web Start) on an enter-
prise scale. First, they are very laborious. Interactive

installs take at least one hour per machine. While
good for system administrator job security, this is
expensive and tiresome. It also makes it difficult to get
timely upgrades to the users. Second, with interactive
installs it is tempting to customize the install for each
user. This inconsistency in the installs makes future
maintenance more difficult. A little more design and
research work up front will usually allow an adminis-
trator to develop a standard installation that meets the
needs of all users.
Custom JumpStart

Let’s review how a Custom JumpStart works.
Custom JumpStart makes it possible to automate the
entire installation process. A Custom JumpStart begins
with the client workstation booting off of the network
in exactly the same way as a diskless workstation.

The first thing the client needs to do is get its IP
address. This allows it to send IP packets onto the
local subnet. The client gets its IP address using a pro-
tocol called RARP, or Reverse Address Resolution
Protocol. The client knows its ethernet address but not
its IP address. So it broadcasts a packet out on to the
subnet that says, ‘‘My ethernet address is
xx:xx:xx:xx:xx:xx, does anyone know my IP
address?’’ With Solaris (and most other operating sys-
tems), you need to be running a special server to listen
for and respond to RARP packets. This server is called
in.rarpd in Solaris. The server listens for RARP pack-
ets, and when it receives one it attempts to lookup the
ethernet address in /etc/ethers or the ethers NIS/NIS+
map (depending on the ethers setting in /etc/nss-
witch.conf). If that is successful, the server gets the
hostname for the machine. Next, the server attempts
to lookup the IP address for that hostname. If that is
successful, the server responds to the client with a
packet saying ‘‘Hello xx:xx:xx:xx:xx:xx, your IP
address is xxx.xxx.xxx.xxx.’’ Note: the presence of a
/tftpboot directory causes the standard Solaris

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 267

Enterprise Rollouts with JumpStart Heiss

initialization scripts to run in.rarpd and rpc.bootparamd
(more on bootparams later).

The client now has its IP address and the next
thing it needs is the inetboot boot block. This is a very
basic kernel that knows how to do enough IP network-
ing to NFS mount a root directory and load the real
Solaris kernel. The client downloads the inetboot file
using a protocol called TFTP, or Trivial File Transfer
Protocol. It has no authentication or security and very
basic error handling. This makes it easy to implement
TFTP in the limited memory of the Sun PROM but
also makes the protocol very slow and a security risk.
Speed, however, is not an issue with the size of the
inetboot file (˜150 kB). The security implications of
TFTP will need to be handled in a way that complies
with local security policy. In general, hosts don’t run
TFTP servers. Under Solaris, the TFTP server is
started by inetd. By default, the entry in /etc/inetd.conf
for in.tftpd, the Solaris TFTP server, is commented out.

Once the inetboot file has been transferred, the
client executes it. The first thing that the inetboot file
does is to send out a bootparams ‘‘whoami’’ request.
bootparams is a protocol that allows the transfer of
key:value pairs from a server to the client. The client
sends out a request for the value associated with a key
and the server responds with that value. The boot-
params server under Solaris is called rpc.bootparamd.
The server listens for bootparams requests and when it
receives one it tries to lookup the hostname corre-
sponding to the IP address in the request. If that suc-
ceeds then the server tries to look for an entry match-
ing that hostname in either /etc/bootparams or the boot-
params NIS map (depending on the bootparams entry in
/etc/nsswitch.conf). If that succeeds then the server
sends a response packet back to the client with the
value for the key that the client requested. A
‘‘whoami’’ request is special, however. The boot-
params server responds to a ‘‘whoami’’ request with
the client’s hostname, NIS/NIS+ domainname and
default router. The client next sends out an ICMP
address mask request. Using the netmask from the
ICMP request and the default router from the boot-
params request, the client finishes configuring its net-
work interface and routing.

The client then makes a bootparams request for
the root key. The server returns the NFS path for the
client’s root directory and the client performs an NFS
mount of that directory. At this point, the client loads
the regular Solaris kernel. The JumpStart root direc-
tory and startup scripts are different from the standard
Solaris configuration so the rest of this process differs
from a normal diskless boot process. The startup
scripts repeat all of the network configuration steps
that the inetboot boot block performed. They then NFS
mount the install directory, which is a copy of the
Solaris media, at /cdrom. The path to the install direc-
tory is found via a bootparams request for the install
key.

The client then NFS mounts the profile directory,
found via bootparams using the install_config key. This
directory contains the rules and profiles as well as the
begin and finish scripts for a Custom JumpStart con-
figuration. At this point the JumpStart scripts collect a
few bits of information, like the local timezone and
locale, from NIS or NIS+. Starting with Solaris 2.6,
this information can also be configured through a local
file. The rules file is then searched for a set of rules
that matches the client’s hardware. If a matching rule
is found then a corresponding begin script, profile and
finish script are selected. The begin script, which is
run before anything on disk is changed, is typically
used to save things like local calendar files or
crontabs. The profile dictates how the disks in the
client are partitioned and which Sun package cluster is
installed. The clusters range from the Core cluster,
which is the minimum software needed to boot
Solaris, up to the Entire Distribution cluster. Typically
the End User or Developer clusters are selected,
depending on whether support for compiling programs
will be needed. The packages associated with the
selected cluster are installed once disk partitioning is
completed. Then Maintenance Update patches are
installed if available. Maintenance Update patches are
what differentiate an FCS (First Customer Ship, i.e.,
the first release shipped to customers) release of
Solaris from a later dated release of the same version.
Once the Maintenance Update patches are installed,
the finish script is executed. This is typically where
site-specific customizations would be located. One
very common finish script task is to install the latest
Recommended Patch Cluster from Sun. Once the fin-
ish script exits, the client reboots and the JumpStart is
complete.

The network booting and JumpStart processes
require some network and system infrastructure in
order to work. The network boot process primarily
depends on a "boot" server. The clients need a server
on their subnet to make requests to until they possess
enough information to properly handle routing. As
such, a boot server must be connected to each subnet.
A boot server would run RARP, bootparams and TFTP
servers as well as being a NIS slave in a NIS environ-
ment. It is possible to configure JumpStart to handle
an environment without NIS+ replicas on each subnet.
The other important piece of infrastructure is the NFS
server. We will discuss how to size NFS servers for
JumpStart later in this paper.

Figure 1 shows an example JumpStart environ-
ment. The NFS server, which serves as a boot server
as well, is located on the engineering subnet. Market-
ing is on their own subnet so they need a separate boot
server. They will then use the same NFS server as the
engineering group.

The Old Way

When I first started working with JumpStart, the
company I was working at had two employees

268 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Heiss Enterprise Rollouts with JumpStart

assigned to performing Solaris updates on deployed
workstations. The process at that time was manual and
significantly error-prone. JumpStart configuration was
done using the add_install_client script provided by Sun.
On days when a JumpStart was scheduled, the two
operators would attempt 10-20 JumpStarts during the
lunch hour. On average, the JumpStarts failed on 30%
of the machines, usually due to errors in the NIS maps
or hardware that didn’t match any of the JumpStart
rules.

Given the high failure rate, the process generated
much distrust and resentment in the user community.
Managers knew that this was going to cost them
downtime and did their best to avoid having their
users’ machines upgraded. The process was costing
the company a lot of money. After the second day of
watching this, I realized several things:

Figure 1: Example JumpStart environment.

• People make a large number of typos. Booting
a machine off of the network requires a number
of files and NIS/NIS+ maps to be configured
exactly right. A single error will cause the
entire JumpStart to fail in various, difficult to
diagnose, ways.

• Users are greatly annoyed when they come
back from lunch and their machines are not
functional. The 30% failure rate resulted in this
happening to a number of users. Each failure
typically took at least a few minutes to diag-
nose. Since the JumpStart itself took at least an
hour, if anything went wrong the user’s
machine was down during part of their normal
working hours. This frustrated the users and
cost the company money.

• The whole process was mind-numbingly slow.
There was a lot of repetitive typing that went
into configuring each machine using the
add_install_client script. Additionally, there was

quite a bit of manual error checking to do
because add_install_client does only limited error
checking. Further, visiting each machine to
start the JumpStart took a long time because
they were frequently spread out over a large
area.

• The mix of NIS maps and local name service
files created a great deal of confusion and prob-
lems. add_install_client checks the appropriate
NIS map for entries but if it doesn’t find one
then it adds the entry to the local name service
file on the boot server. This meant that the
operator had to check both NIS and the local
files when searching for missing or incorrect
entries.

• The process didn’t get the OS upgrades to users
in a timely fashion. When I started working
with the two employees, they were just finish-
ing up a rollout of an updated version of the
JumpStart image. It had taken them close to six
months to do this for the roughly 600 standard
Sun workstations in use. If a serious bug had
been found in the image, it would have taken
another six months to roll out a new version.
The process in use clearly was not scaling to
the number of machines to which it was being
applied.

So, I set about to devise a better mousetrap. My goals
for the new process:

• The process for configuring the JumpStart boot
process should be quick and require minimal
typing.

• Far more complete error checking should be
done in order to reduce or eliminate JumpStart
failures.

• The scripts developed should fully support the
use of NIS or NIS+ and not create entries in
local name service files.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 269

Enterprise Rollouts with JumpStart Heiss

• The process should scale to hundreds or even
thousands of machines.

• A reliable method for kicking off the Jump-
Starts without physically touching the machine
should be developed.

The New Way
Over the course of the next several rollouts at

this company, I was able to develop scripts and pro-
cesses that allowed me to accomplish all of my goals.
At the time I left we were able to JumpStart 200
machines in an hour. A complete rollout of a new
image to all 600-650 machines could be completed in
about 10 hours over the course of several evenings.
This was a great improvement over the six months it
used to take to perform a rollout.

Config

The first thing I did was to develop a replace-
ment for add_install_client. I called my script config.
Given the complexity of what I wanted to do, I didn’t
think the Bourne shell was the right tool for the job.
So, I decided to write config in Perl.

The biggest advantage of config over add_
install_client is that it checks for almost every problem
that could possibly prevent a JumpStart from working.
This includes errors that prevent the machine from
correctly booting via the network and errors that
would cause the Custom JumpStart to fail.

There are several things that can go wrong with
the first step, the RARP request. First, the client’s eth-
ernet address must be correctly mapped to its host-
name in the ethers map. There should only be one
entry for each ethernet address. Each hostname needs
to be in the hosts map correctly mapped to the IP
address assigned to that hostname. Again, there should
only be one entry for each hostname/IP address pair.
Also, the boot server needs to be running a RARP
server and no other host on that subnet should be run-
ning another RARP server. The reason for this is that
multiple replies tend to confuse the client. Also, if
there is more than one RARP server on a subnet, the
other servers are typically ones that we don’t control.
People have a bad habit of leaving RARP servers run-
ning with incorrect or outdated information.

The client then tries to TFTP the inetboot file. For
this to happen, the boot server must be configured to
run a TFTP server and there needs to be a boot block
in /tftpboot that matches the IP address of the client in
hexadecimal. The way this is usually done is that one
copy of the inetboot file, which is specific to each ver-
sion of Solaris and each kernel architecture (sun4m,
sun4u, etc.), is put into /tftpboot on the boot server and
then symlinks for each client are made to the appropri-
ate inetboot file. The TFTP server under Solaris is run
by inetd when a TFTP request is received; so, the tftpd
entry in /etc/inetd.conf must be uncommented. inetd
must be sent a HUP signal if a change is made to
inetd.conf. Otherwise, inetd won’t re-read the configu-
ration file. Here, again, we only want one server per

subnet. If the machine running the RARP server
doesn’t respond quickly enough to the client then the
client will broadcast any further requests. That means
that if there is more than one TFTP server on that sub-
net with the appropriately named file, they will all
respond. As with RARP, multiple TFTP replies tend to
confuse the client and it will usually hang. Also, we
want to avoid rogue servers with incorrect or outdated
inetboot files.

The client then sends out a bootparams request.
This, again, requires that the client’s IP address be cor-
rectly associated with its hostname in the hosts map.
Also, there must be an entry matching that hostname
in the bootparams map. The boot server must be run-
ning a bootparams server (rpc.bootparamd in Solaris).
Also, like with RARP and TFTP servers, there should
only be one bootparams server on the subnet. Multiple
replies don’t cause as many problems as they do with
RARP or TFTP; but, again, we want to avoid rogue
servers with incorrect or outdated information.

The client then performs an NFS mount of its
root directory. This requires that the root directory be
located on the fileserver and that the directory is
exported with the options of ro,anon=0. Exporting the
directory read-only isn’t required but it is a very good
idea. (At various times, there have been bugs in Sun’s
JumpStart scripts such that things will break if the root
directory is exported read-write. This provides even
more reason to export it read-only.)

The client then performs NFS mounts of the
CDROM image and the profile directory. This
requires that the fileserver exports the CDROM image
and the profile directories, with the same options as
the root directory.

In an NIS environment, the client will then
broadcast a request for an NIS server. This is the
default behavior in an NIS+ environment as well, but
it is possible to add an extra field to the client’s boot-
params entry to point it at an NIS+ server on another
subnet. Thus, in an NIS environment it is necessary
that there be an NIS server on the same subnet as the
client.

The last thing that can go wrong is with the
JumpStart itself. One of the first things that happens
during a JumpStart is that the machine checks its hard-
ware against what is called a rules file. The rules file
defines various hardware configurations and what pro-
files go with them. The profiles dictate how the disks
in the client are to be partitioned, as well as the Sun
package cluster to be installed. In order for this to
succeed, the machine’s hardware must match at least
one of the configurations in the rules file.

config requires root access to the NIS master in a
NIS environment. This is most easily accomplished by
running config as root on the NIS master, and that is
what we did. However, site configuration and security
policies might dictate using some other method. This
access allows config to automatically make NIS map

270 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Heiss Enterprise Rollouts with JumpStart

corrections and push the updated maps. Otherwise,
the operator is responsible for making the map
changes manually. Removing dependencies on the
operator typing information correctly is one of the
main reasons for developing config. config is very care-
ful about how it makes changes and we never experi-
enced any corrupted NIS maps due to its operation.

add_install_client does not have a built-in option
for bulk configuration. Automating bulk configuration
with add_install_client is difficult because it requires
knowledge of the client kernel architecture for each
machine. With config, I built in support for bulk con-
figuration. The script takes a list of hostnames and
attempts to configure all of the machines on the list.
config queries each machine for the information it
needs, including the kernel architecture. This requires
root login access on all of the clients. The operator
then need only create the list of hostnames.

In combination with the scripts mentioned below,
config tracks the status of each machine. This is espe-
cially useful when using the bulk configuration feature
described above. The operator compiles a list of sev-
eral hundred hostnames and runs them through config.
The script will print a report at the end of its run list-
ing which machines failed and the reason for the fail-
ure. The operator can then fix the problems and rerun
config with the same list of hostnames. config knows
which machines are already configured and skips over
them. This saves hours of waiting when working with
a large number of machines. This status tracking is
accomplished through the use of a text file listing each
machine and a numeric code indicating what state the
machine is in.

Another advantage of config is that it automati-
cally picks the boot and NFS servers for a machine
when configuring it. This allows the operator to be
blissfully ignorant of the network topology and the
various servers. With add_install_client, the operator has
to know which boot server is on the same subnet as
the machine. While usually easy to figure out, it is one
more mistake that can be made. The logic that config
currently uses to pick the NFS server is simplistic, but
could be improved to use traceroute to truly find the
closest machine. Currently config looks for an NFS
server on the same subnet as the client, if it doesn’t
find one then it picks a default server. This works well
if most clients are on a subnet with an NFS server but
would fail in an environment where this isn’t the case.

config creates a centralized place to make Jump-
Start configurations. With add_install_client in a large
environment, the operator must know which boot
server to use for each machine and log into that server
to perform JumpStart configuration. With config, the
operator always logs into the same server and doesn’t
need to know which boot server to use. This also pre-
vents uninformed operators from setting up more than
one boot server on a subnet.

With config, a method for users and administra-
tors to tag machines as non-standard is introduced.

Machines are tagged as non-standard by creating
/usr/local/do_not_jumpstart. These were usually machines
that had been standard desktop clients but then addi-
tional software or other modifications were made to
the machine. We didn’t want to JumpStart these
machines because that software would have been lost.
Tagged machines are automatically skipped over,
eliminating the need for a failure-prone, manual
method of keeping track of these machines.

As you can see there are many advantages to
replacing add_install_client with a more capable script.
Hopefully Sun will realize this and improve
add_install_client.
Infrastructure

The network and server infrastructure becomes
important when JumpStarting many machines at once.
When installing 10 machines at a time, the CD image
can be kept on a single drive on a Sparc 2 at the end of
a shared 10 Mbit Ethernet connection. However, scal-
ing up to JumpStarting several hundred machines at a
time requires more bandwidth.

The first consideration is boot servers. The
clients need a server on their subnet to make requests
to until they possess enough information to properly
handle routing. As such, a ‘‘boot’’ server must be con-
nected to each subnet. Almost any sort of machine
will work as a boot server since the total amount of
data transferred from the boot server to each client is
approximately 150 KB. Note that add_install_client
requires the JumpStart root image to be located on
each boot server. config does not require this and thus
the bandwidth is limited to the inetboot file, which is
approximately 150 KB. If you need or choose to be
compatible with add_install_client then you will need to
take into account the additional disk space and band-
width requirements of the root image. This image is
approximately 30 MB on Solaris 2.5.1 and earlier, it
jumped to approximately 150 MB in Solaris 2.6 and
later versions. If your network design already con-
tains a server on each subnet with Sun clients then
boot servers are not a concern. If not, then you will
need to put something together. We used several Sparc
5s with quad Ethernet cards. Doing so allowed a sin-
gle machine to serve up to five subnets (including the
built-in interface in the Sparc 5).

There is one very subtle trick to using multi-
homed boot servers. I mentioned earlier that the client
gets its default router via a bootparams ‘‘whoami’’
request. The boot server, like most machines, would
normally be configured with only one default router as
that is all it typically needs. This default router is what
the boot server would then send in response to a
‘‘whoami’’ request. The problem is that on a multi-
homed boot server, that default router will be correct
only for clients on the same subnet as that default
router. The solution is to put multiple entries in
/etc/defaultrouter, one for the default router on each sub-
net that the boot server is attached to. Then, when the

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 271

Enterprise Rollouts with JumpStart Heiss

boot server boots, it will create multiple default route
entries in its routing table and will return the correct
one, based on the subnet, in response to ‘‘whoami’’
requests. It is also generally a good idea to touch
/etc/notrouter on multi-homed boot servers so that they
don’t route packets between the various interfaces.

The next consideration is network bandwidth. As
a rough estimate, each workstation will transfer about
500 MB in the course of the JumpStart. The client’s
network connection is of little concern as 10 Mbit Eth-
ernet can easily handle that much data in an hour.
However, the bandwidth of the NFS servers’ network
connections must be considered. It is easy to figure
out the required network bandwidth. As an example,
say you want to JumpStart 200 machines in one hour.
200 times 500 MB divided by 1 hour is 100 GB/hr.
Network bandwidth is usually measured in Mb/sec.
By a simple conversion (1 GB/hr =˜ 2.2 Mb/sec) we
see the required bandwidth is about 220 Mb/sec.
Switched 100-Base-T is fairly common these days
and, as the name implies, runs at 100 Mb/sec. If you
can spread the load evenly over three switched
100-Base-T interfaces or three servers with 100-Base-
T interfaces then there will be sufficient bandwidth.
Keep in mind that the network traffic of JumpStarting
many machines will cause a high collision rate on
shared Ethernet, so avoid it if possible. Server inter-
faces on shared Ethernet will only produce about 10%
(at best) of the rated bandwidth during JumpStarts.

The last issue is NFS server capacity. The most
common measure of server capacity for NFS servers is
the SPEC SFS benchmark. SFS93 was also known as
LADDIS, the current version of SFS is SFS97. The
results of the test are expressed as the number of NFS
operations (NFSops) per second the server can handle.
Results from SFS93 and SFS97 are not comparable.
Brian Wong, of Sun Microsystems, estimates that each
client requires 50-70 NFSops/sec (as measured by
SFS93) during a JumpStart [Won97]. This matches
very closely with the performance we observed as
well. SPEC provides SFS93 and SFS97 benchmark
results for a wide variety of NFS servers on their web-
site at http://www.specbench.org/osg/sfs97/. Sun also
provides results from the older LADDIS benchmark
on their website. For example, a Sun Enterprise 3500
with four CPUs can handle approximately 8900
SFS93 NFSops/sec according to Sun. At 60
NFSops/sec/client, that server could serve approxi-
mately 150 clients. To achieve this level of perfor-
mance, the JumpStart data should be striped over a
number of disks using RAID 0 or 5.
Start

The last step was to develop a script to start the
JumpStart process on a large number of systems
simultaneously. The simplest form of such a script
would loop through and rsh to each machine in order
to execute reboot net – install". Unfortunately, it takes
approximately 15 seconds to make the connection and
initiate the reboot for each machine. When attempting

to start 250 machines at the same time, it will take
more than an hour just to get all of the machines
started. Additionally, a few things should be checked
on the machine first, such as whether there are any
users logged on. So now, the naive implementation of
a kickoff script will take a couple of hours just to get
all of the machines started. The start script I developed
forks into a number of processes, each of which is
assigned a group of hosts to work on. This allows the
operator to get all of the machines started within a few
minutes of each other. start also references the status
file updated by config to ensure that it only starts
machines that were successfully configured. The script
checks to see if any users are logged in. It also checks
to see if the machine has been tagged as non-standard.
Although config checks for this as well, it is possible
that someone might tag the machine in the day or two
after config is run but before the rollout is performed.
start also checks to see if the root password is the stan-
dard root password. The clients will typically all have
a common root password, but sometimes when some-
one customizes a machine he will change the root
password. This was put in as a last-ditch effort to
catch non-standard machines even if they had not been
tagged as non-standard.

Once start has started the install on a machine, it
continues to attempt to rsh in periodically and check
on the progress of the JumpStart. This progress is
recorded in the status file. This requires a minor
change to /sbin/sysconfig in the JumpStart root image
on the NFS servers to start inetd, and thus allow rshd to
start, during the JumpStart.

During a rollout we would have several people
on hand to deal with any problems that arose during
the JumpStart. To help everyone spot problems as
quickly as possible, I wrote a CGI script that refer-
ences the same status file used by config and start. The
script generates web pages with the status of all of the
machines indicated by red, yellow or green dots and a
status message. The pages automatically refresh in
order to display up-to-date information. As machines
encounter problems, they are flagged on the web page
with yellow or red dots depending on the severity of
the problem. The people on hand then read the status
field and determine if the problem needs intervention.
Most common were users who remained logged in
during the scheduled rollout. In those cases, someone
would call the user or visit the machine and ask the
user to log out. Other problems were similarly handled
in order to keep the rollout moving. This allowed the
client to scale up to performing several hundred simul-
taneous JumpStarts. We had several people on hand to
deal with the rare problems that cropped up. They
would watch the web pages for troubled machines,
figure out what the problem was and attempt to fix it.
Our record was just over 250 machines in an hour and
a half.
QuickJump

As mentioned previously, a standard Custom
JumpStart consists of a begin script, disk partitioning,

272 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Heiss Enterprise Rollouts with JumpStart

Solaris package installation, possible Maintenance
Update patch installation and then typically additional
patch installation during the finish script. Package and
patch installation on older machines, like a Sparc 5,
can be quite slow. We found that installing the Recom-
mended Patch Cluster for Solaris 2.5.1 would take
eight hours or longer on a Sparc 5. This in turn makes
the JumpStart take a long time. Mike Diaz of Sun Pro-
fessional Services developed a system for this client
we called QuickJump to speed up the JumpStart pro-
cess. Rodney Rutherford and Kurt Hayes of Collective
Technologies further refined this process.

QuickJump consists of performing a standard
Custom JumpStart once on a machine in the test lab.
Once the JumpStart completes, each filesystem on the
client is dumped using ufsdump to the NFS file server.
Then we create a separate Custom JumpStart configu-
ration for use in the rollout. In that configuration we
select the Core cluster of Solaris packages, which is
quite small, in the JumpStart profile. We also disable
Maintenance Update patches if the Solaris version in
use has them [SI15834]. Then we modify the finish
script in the JumpStart configuration to restore the ufs-
dump images onto the client. This overwrites every-
thing on disk, namely the Core cluster of Solaris pack-
ages. For even greater speed, it is possible to disable
the installation of a package cluster altogether, how-
ever this requires somewhat extensive modifications
to the Sun JumpStart scripts. The Core cluster takes
only a few minutes to install so we decided that it
wasn’t worth the effort to make those modifications.
The finish script then merely has to change the host-
name and IP address as appropriate and it is done.
This vastly speeds up the JumpStart process on older
hardware, bringing it down to 45 minutes or so for a
Sparc 5. The difference becomes negligible with
machines based on the UltraSPARC processor, so
QuickJump may not be necessary once the older hard-
ware is replaced.

The Future

It has now been a year since I worked on the pro-
ject. Although the client is still successfully using
these scripts and processes largely unchanged, I’ve
thought of some ways to improve the scripts and the
processes. Some of these suggestions are minor. Using
multicast, however, would change the process signifi-
cantly.

The main difficulty we had with the scripts I
wrote was the status file that the various scripts use to
keep track of the status of all the machines. Similar to
the problems that large webservers encounter with
their log files, this file turned out to be a bottleneck in
the middle of JumpStarting a large number of
machines. The multiple forks of the start script were in
contention with each other in trying to update the sta-
tus file. In the future, I will split the status file so that
there is a separate file for each machine. This will
eliminate the contention problems within start. It will

also allow multiple operators to configure machines at
the same time and not have to wait for access to the
monolithic status file.

Another change that will improve the system is
to split the start script into a true start script and a
script that keeps track of the status of the JumpStart on
each machine. These two scripts will run simultane-
ously during a rollout. On the other hand, helpdesk
personnel or an operator could use just the basic start
script to remotely JumpStart a single machine. This
was done at the client after I left and made the rollouts
proceed more smoothly.

The current method of tracking the progress of
the JumpStart, using rsh to log into the machine and
attempt to figure out what is going on, is somewhat
error-prone. A nice addition would be to be able to
view a real-time version of the log that is displayed on
the client’s screen while the JumpStart is progressing.
This would allow the operator to see exactly what is
going on and any errors that are displayed, without
having to visit the machine.

Earlier I mentioned that we check for rogue
bootparams servers but not rogue RARP or TFTP
servers. Checking for rogue bootparams servers is
simple because the rpcinfo program provides a feature
that makes it easy to check for all bootparams servers
on a subnet. Given an RPC service number and the -b
flag, rpcinfo will broadcast a request on the subnet for
that service and report all of the servers that respond.
Any servers other than our designated boot server can
be flagged as needing to be disabled. Unfortunately
there isn’t a similar program to check for rogue RARP
or TFTP servers. Eventually I will write programs to
do this.

In the long term I would like to investigate the
possibility of using multicasting to distribute the disk
images to the workstations. Each machine of a given
kernel architecture gets an identical image, thus this is
a prime candidate for multicasting. This would drasti-
cally reduce the NFS server bandwidth and capacity
requirements as the NFS server would only need to
serve out a couple of copies of the disk images (one
for each kernel architecture) independent of the num-
ber of clients. This technology will be one to watch
and keep in mind as it develops.
Making It Work For You

Hopefully by now I’ve interested some of you in
improving your own JumpStart environments. I
encourage you to take what I’ve done, modify it to fit
the specifics of your site and then improve on things. I
would welcome feedback on what worked, what didn’t
work and what you’ve done differently. Here are the
major steps to implementing a system such as what
I’ve described.

First, you’ll want to build up your infrastructure.
This includes placing boot servers on each subnet and
ensuring sufficient NFS server capacity and band-
width. If your clients are spread over multiple subnets,
it would be preferable to have an NFS server on each

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 273

Enterprise Rollouts with JumpStart Heiss

subnet. This reduces the amount of traffic that needs to
cross a router. If your NFS servers have sufficient
capacity, they can be attached to multiple subnets
using several network interfaces.

The other infrastructure consideration is on the
client end. Client workstations need to have standard-
ized hardware. In addition, your environment should
be designed in such a way that no data is stored on the
clients. This is usually easy to accomplish and it
makes the JumpStart process much simpler.

I would also highly recommend that you use
some sort of distributed name service. The two most
common are NIS and NIS+. The reason for this is that
it ensures uniformity across all machines and provides
a centralized location for making changes to the name
service maps. This makes it easier and more reliable
for the config script to check the accuracy of the name
service maps and correct any errors. My scripts were
written to support NIS but it should be fairly easy to
convert them to an NIS+ environment.

The server that hosts the config and start scripts
needs to have remote root login privileges on the
clients, the boot servers and the NIS master (if appli-
cable). This can be accomplished very insecurely
using rsh and /.rhosts files or more securely using
Secure Shell (SSH) and RSA keys. Login privileges
are needed on the clients in order to gather informa-
tion like kernel architecture, Ethernet address, etc.
root privileges are needed to gather some of the
required information. root login privileges are needed
on the boot servers in order to make modifications to
the links in /tftpboot and to start the RARP, bootparams
and TFTP servers if necessary. root privileges are
needed on the NIS master to edit the NIS maps and
initiate map pushes.

Once all of these items are in place then you can
work on integrating my scripts into your environment.
As I mentioned previously, the scripts are written in
Perl. Roughly 7000 lines of it, in fact. So you’ll need
to have Perl 5 available or lots of time to port the
scripts to some other language. The scripts may be had
from my web page at http://ofb.net/˜jheiss/js/ . I have
released them under the GNU Public License.

The last recommendation I have is that you set
up a test lab to test everything in. There are a lot of
pieces to getting this all working and attempting a roll-
out without testing would be, well, crazy. I would rec-
ommend an isolated subnet with at least one machine
of each model that exists in your environment. Thus if
you have Sparc 5s, Sparc 20s and Ultra 1s as desktop
machines you would have at least one of each in your
test lab. This is especially important if you plan on
using something like QuickJump as it is tricky to get
the device trees right on each platform after restoring
the dump files.

Author Information

Jason Heiss graduated from the California Insti-
tute of Technology in 1997 with a BS in Biology. He

works for Collective Technologies as a systems man-
agement consultant, specializing in Solaris and Linux
system administration, security and networking. He
can be reached via email at <jheiss@colltech.com>.
He can be reached via U.S. Mail at Collective Tech-
nologies; 9433 Bee Caves Road; Building III, Suite
100; Austin, TX 78733.

References

[Kas95] Kasper, Paul Anthony and Alan L. McClel-
lan. Automating Solaris Installations. Prentice
Hall, April 1995. ISBN: 013312505X.
This book provides detailed instructions on how
to configure a Custom JumpStart. It is essential
reading and reference for administrators new to
configuring JumpStart. However, it does not dis-
cuss how to perform a rollout, especially on a
large scale.

[Zub99] Zuberi, Asim, http://www.zdjournals.com/
sun/s_sun/9902/sun9924.htm, ‘‘Jumpstart in a
Nutshell,’’ Inside Solaris, February 1999, pp
7-10.
A quick article with the steps to configure and
use JumpStart with Solaris 2.6. As of Solaris 2.6,
Sun rearranged the Solaris CD somewhat and
this article shows the new paths you’ll need to
know. This makes a good companion to the book
when working with newer versions of Solaris.

[SAIG] http://docs.sun.com/ab2/coll.214.4/SPARCIN-
STALL/, Solaris Advanced Installation Guide.
The official Sun documentation for JumpStart.
Very good information and example scripts for
configuring Custom JumpStart but again, it does
not discuss how to perform a rollout.

[Won97] Wong, Brian L., Configuration and Capacity
Planning for Solaris Servers, Prentice Hall,
February 1997. ISBN: 0133499529.
This book provides excellent, detailed informa-
tion on capacity planning for Solaris servers. The
section relevant to sizing NFS servers for Jump-
Start begins on page 33.

[SI15834] Sun Infodoc 15834.
Instructions for disabling the installation of
Maintenance Update patches.

274 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

