
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

N E T M AP P E R : H O S T N A M E R E S O L U T I O N
B A S E D O N C L I E N T N E T W O R K L O C AT I O N

Josh Goldenhar

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

NetMapper: Hostname Resolution
Based on Client Network Location

Josh Goldenhar – Cisco Systems, Inc.

ABSTRACT

Large buildings, sprawling campuses and multiple remote sites have led to an explosion in
the number of IP networks for corporate computing. Workgroups are spread over multiple
networks. Servers are configured with multiple network interfaces in an attempt to optimize
access. When geographic or capacity issues arise, separate servers which replicate desired
functionality are placed in network proximity to their clients. Some of these servers provide
tool trees which have operating system (OS) and architecture specific binaries. The optimal
server or server interface for a given client may or may not have a presence on the client’s
network. In such an environment, how can an administrator guarantee a network client is
utilizing the desired network interface or server?

NetMapper provides a framework for resolving hostnames (real or virtual) based on the
client host’s location within a network hierarchy. For servers with multiple network interfaces,
NetMapper chooses the best interface. For multiple servers providing replicated services via a
virtual hostname, NetMapper chooses the best server. For file servers providing OS and
architecture specific filesystems, NetMapper chooses the best server taking into account client
OS, architecture and network attributes. In all cases, ‘best’ is defined by the NetMapper
administrator. As a side benefit, NetMapper allows systems and network administrators to view
their network hierarchy at-a-glance.

The core of NetMapper functionality is a Perl module (NetMapper.pm) and a configuration
daemon (nmconfd) which serves the configuration information to NetMapper clients. NetMapper
has been implemented in the Cisco engineering environment by developing a small program
called localmapper which runs on all UNIX clients and generates entries in the client’s local
/etc/hosts file. localmapper optionally generates a small NFS automounter map for OS and
architecture specific remote partitions. This fairly small collection of tools allows systems
administrators to choose which servers UNIX network clients use based on geography,
workgroup or any arbitrary rationale that can be defined via groups of networks.

Introduction

Imagine working for a company that has thou-
sands of UNIX computers distributed over hundreds
of networks at various sites worldwide. All work-
groups demand the ability to NFS mount each other’s
servers. Automounter maps contain thousands of
keys. Add to this picture a mixture of license, com-
pute, revision control, NTP and various other servers
which are scattered throughout these networks. Lastly,
imagine a user base that demands their access to these
services be based on workgroup, network and geo-
graphic topologies. In this age of explosive growth for
technology companies, many systems and network
administrators don’t have to imagine such a situation,
it is reality.

As a network environment grows, it is common
to replicate services by adding additional servers.
Multiple network interfaces are added to servers to
increase network bandwidth or provide streamlined
access for a set of clients. As soon as an additional
server or interface is brought online, a question arises:
How does the administrator ensure network clients are
utilizing the preferred distinct server or interface?

There are several existing products and methods
that aid in the optimal resolution of server hostnames.
Usually, these solutions make their choices based on a
measurable quantifier such as number of simultaneous
connections, network load or latency. These methods
are acceptable when there is no differentiation
between servers (such as replicated WWW servers).

In today’s corporate compute environment there
are often reasons to differentiate servers based on
abstract policies. What if only certain file servers con-
tain the OS and architecture specific binaries a client
needs? Geographic, political, departmental or other
arbitrary conditions sometimes necessitate a group of
clients connect to a certain server based on those con-
ditions. If these conditions can be split along network
divisions, NetMapper provides a solution where server
hostnames can be resolved in a somewhat arbitrary
nature based on the desires of the administrator.

Existing Solutions

Hostnames that resolve to multiple IP addresses
usually fall into one of two categories: multiple inter-
face hostnames or virtual hostnames. Within the
scope of this paper, these terms are defined as follows:

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 155

NetMapper: Hostname Resolution Based on Client Network Location Goldenhar

Multiple interface hostnames are defined as real
hosts which have multiple active network interfaces.
The hostname itself resolves (using the name service a
site chooses) to one or more of the IP addresses of its
interfaces. Additionally, each interface should have a
distinct interface specific hostname. In Figure 1,
resolving the hostname ‘masses’ would return both
interface IP addresses. The hostname ‘masses-115’
would resolve to 123.45.69.115. The hostname
‘masses-156’ would resolve to 123.45.68.156. Thus,
the administrator has a straightforward way of specify-
ing an individual interface without having to use dot-
ted notation.

NFS Ser ve r
(wai t er)
/ co ff ee

Compu t e Ser ve r
(patr on)Po i n t −t o−Po i n t

connec t i on

192 . 168 . 100 . 33 192 . 168 . 100 . 34

Rou t er

Desk t op
(r i f −r af)

123 . 45 . 67 . 0 / 24123 . 45 . 68 . 0 / 24

Mai l Ser ve r
(masses)

. 17 (patr on−17). 133 (wa i te r −133)

. 156 (masses −156)

Rou t er
123 . 45 . 69 . 0 / 27 123 . 45 . 69 . 128 / 27

. 115 (masses −115)
. 143

NFS Ser ve r
(bus−boy)

/ co ff ee

Headqu ar t ers Remot e Si t e

WAN l i nk

Desk t op
(gen i us)

Rou t er

123 . 45 . 71 . 64 / 26

123 . 45 . 71 . 128 / 26

. 152

. 78

(p a tr on −pp)(wa i t er −pp)
Note : Host a nd i n terface

 names are i n pare nt heses .

Figure 1: Example Hosts and Network Topology.

Virtual hostnames are those that are intended to
resolve to the IP address or hostname of one of a set of
real hostnames. In Figure 1, two hosts (‘waiter’ and
‘bus-boy’) serve a replicated file system called /coffee.
A virtual hostname ‘folgers’ could resolve to the name
or IP address of either ‘waiter’ or ‘coffee’. There is no
computer actually named ‘folgers’.

There are several existing methods and products
to aid in the optimal resolution of hostnames that
resolve to multiple addresses. These methods do not
make a distinction between multiple interface host-
names and virtual hostnames. Some of these existing
methods are described below as well as the reasons
that NetMapper was chosen over them.

Domain Name System (DNS) Solutions
DNS [1] and BIND [2] solutions are most often

used to resolve a multiple address hostname. While
these work well for general conditions, they are less
than optimal for returning addresses based on the
client’s network address.

It is possible to tailor BIND and DNS to return
addresses based on client network location. Often, this
requires many sub-domains or relies on a questionable
BIND feature which returns an appropriate response
based on the requester’s IP address [3,4]. The latter
feature has come and gone from BIND in different

versions and is not viewed as reliable over time. In
general the network address of the client requesting
name resolution is not considered by the name server
and thus answers are not tailored to the client [5].
While DNS servers have knowledge of the requesting
host’s IP address, they do not necessarily have any
knowledge of other network interfaces on that client.
Thus, even a modified DNS server would only be able
to consider the source address of the request – even if
the client has another interface that might provide a
better path to the server hostname in question.

There are occasions when a server interface
address should not be advertised by DNS for general
use. Figure 1 shows two hosts, ‘waiter’ and ‘patron’,
which are linked by a point-to-point connection.
‘Waiter ’ serves /coffee to ‘patron’. Optimally, when
‘patron’ does a name lookup on ‘waiter’, the IP
address of ‘waiter-pp’ would be returned. DNS should
not return the point-to-point address of ‘waiter’ to any
other host. Therefore, the point-to-point address can’t
be included in the DNS configuration as an address
(‘A’ record) for ‘waiter’.

Lastly, DNS has no knowledge of the requesting
client’s OS or architecture. Therefore, it can’t take
these elements into consideration when returning an
address for a hostname.

Automounter Variables Solution
If you want to take client OS and architecture

needs into consideration for NFS [6] mounting, auto-
mounter [7] variables are a suggested solution to this
problem. Automounter variables can be initialized at
daemon run-time to change mount paths and server
names. This method suffers from lack of compatibility
across platforms and the fact that it only addresses the
issue of hostnames for automounted NFS services.

Commercial Solutions
One solution that is applicable for practically any

IP based protocol is Cisco’s LocalDirector [8,9]. This
is a great product for pure load-balancing. It works

156 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Goldenhar NetMapper: Hostname Resolution Based on Client Network Location

especially well to simply have network traffic auto-
matically divided between multiple servers which all
provide equal functionality. All traffic from the clients
to the server(s) passes through the LocalDirector unit.
This works well when the servers in the ‘‘pool’’ are in
equal network proximity to the LocalDirector unit and
the client network location is not an issue. LocalDirec-
tor can’t take client OS and architecture needs into its
consideration of which server to direct traffic to.
While we use LocalDirector for certain applications, it
can’t cope with all the conditions we require.

Cisco’s own DistributedDirector [10,11] over-
comes LocalDirector’s shortcomings in regard to net-
work topology issues. DistributedDirector works as a
DNS server. It uses knowledge of routing tables and
network latency to resolve hostnames on a per-client
basis. This solution is a great product for load balanc-
ing and directing traffic to hosts which provide dis-
tributed services. Because it operates as a DNS server
though, it could not be used for the same reasons
explained in the ‘Domain Name System (DNS) Solu-
tions’ section above.

‘Home-Grown’ Solutions
Our previous solutions for optimally mounting

NFS file systems involved a convoluted process using
rdist [12], a Perl [13] script and m4 [14] to customize
the auto.indirect automounter map on every client.
This method worked for our largest automounter map
but did nothing for other maps, processes or general
name lookups. As the number of networks and hosts
grew large it became obvious that this method was
becoming too difficult to maintain.

After determining that no one existing solution
could cope with all of our requirements, it was
decided to build upon the beginnings of our own
home-grown solution. NetMapper built on the ground-
work of earlier attempts to solve this host/interface
selection problem. The NetMapper methodology can
be used as part of any number of solutions to
host/interface resolution and location problems. The
remainder of this paper will focus on a suite of scripts
which address the problem of how a UNIX network
client chooses the appropriate hostname or host spe-
cific interface when there are multiple possibilities.

Design Phase – Goals

In the NetMapper design phase there were sev-
eral goals for base level functionality. The goals, and
the reasoning behind them are explained in more
detail below.

• A mechanism that ensures UNIX clients con-
nect to the desired interface of a multiple inter-
face server, or to a specific server for dis-
tributed and/or replicated services.

• Server hostnames that serve architecture or OS
dependent partitions need to be selected by par-
tition availability as well as client network loca-
tion.

• Distribute as little as possible in the way of pro-
grams, source and configuration files to the
clients.

• An easy to use administrative interface with
basic error checking. The interface should aid
in understanding the concepts behind the solu-
tion.

• The mechanism for choosing a hostname had to
be well defined.

The first goal was one of the easiest to formulate,
yet hardest to meet. We had to use a method to
resolve hostnames that was fairly simple, yet worked
on a wide variety of UNIX platforms. We did not want
to implement a solution that involved replacing vendor
libraries or significantly altering the operating system.

The second goal arose from the fact that in our
environment we have NFS servers that provide archi-
tecture and OS specific binary tool trees. These
servers are not guaranteed to contain all architecture
and OS variants for these trees. When resolving a
server hostname that serves such trees, it is crucial that
the solution consider the client’s OS and architecture.
Furthermore, the solution must choose a server that
has the appropriate file system available.

The third goal (distribute as little as possible)
came into being from experience with our previous
solutions. We were distributing automounter files, m4
definition files and Perl scripts to every UNIX client.
This process took too long and was often not very reli-
able.

The fourth goal (ease of administration) was also
based on previous experience. Our previous solutions
involved multiple text configuration files which were
sensitive to syntax and prone to error. We needed an
interface to provide basic error checking so mistakes
such as invalid hostnames did not make their way into
the configuration. This interface needed to simplify
the concepts behind NetMapper so that new systems
administrators needed much less training than was
required with previous solutions.

The final piece of the puzzle was the mechanism
by which hostname and interface choices were to be
made. It was decided that all decisions would be based
on knowledge of the overall network hierarchy. Our
sites, buildings and workgroups were all split among
distinct networks or groups of networks. This would
make it easy to resolve hostnames by many different
conditions.

Design Phase – Decisions

After clearly defining our goals, we moved to the
next phase which was deciding the best methods to
achieve them.

To achieve our first goal, it was decided the easi-
est way to optimize hostname resolution for all ser-
vices across multiple operating systems was to modify
the client’s local /etc/hosts file. Modern UNIX

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 157

NetMapper: Hostname Resolution Based on Client Network Location Goldenhar

systems can be configured to use one or more methods
of hostname resolution: /etc/hosts is an option to all,
and is local to the client. Older UNIX systems that are
not configurable default to using /etc/hosts. As long as
/etc/hosts is consulted first, any program that performs
a gethostbyname call will ‘use’ the NetMapper pre-
ferred address.

The second goal would be achieved by creating a
naming convention for file systems that contain OS
and architecture specific binaries. When defining a
server hostname that provides such filesystems,
NetMapper configuration would store which OS and
architecture specific filesystems are available on that
server. The client portion of NetMapper could then
take this information into consideration when choos-
ing hostnames that are defined as multiple OS and
architecture file servers. This could be used to provide
both hostname and path resolution for NFS mount
commands.

The third goal (distribute as little as possible)
would be met by making NetMapper configuration
information a client/server process. The NetMapper
Perl module would get its configuration information
from a configuration server. If parts of NetMapper
have to be installed on the client’s local filesystem,
they should be capable of updating themselves when
necessary.

The fourth goal (ease of administration and error
checking) was to be accomplished by providing a
web-based administration interface. NetMapper con-
figuration information would be manipulated via a
browser to facilitate centralized administration and
avoid syntax errors in the main configuration file.
(NetMapper configuration would be stored in a Perl
interpreted file; syntax errors could be catastrophic.)
The choice of a web-based interface for configuration
would allow the NetMapper network hierarchy infor-
mation to be displayed in a way which would aid
understanding. CGI forms and Javascript would also
allow control over what information could be
changed, how it would change and would assure that
dependencies are honored.

The mechanism by which hostname resolution
decisions would be made was to be based on a knowl-
edge of the network hierarchy. All networks that con-
tained potential NetMapper clients would need to be
entered into the NetMapper configuration using Class-
less Inter-Domain Routing (CIDR) [15-18] format.
Networks could be grouped together under a logical
name. Logical groups would contain networks and
other network groups. Each NetMapper hostname
would be defined by mappings that specify which real
hostnames, or interface specific hostnames should be
used based on a network client’s location within the
network hierarchy. Architecture and OS specific vir-
tual host definitions would contain a record of server
candidates and which platforms those candidates are
capable of serving. Together, these pieces would

allow NetMapper to find a client’s place in the net-
work hierarchy and determine an appropriate server
hostname for that network client.

Implementation

In order to achieve the goals and specifications
of the design phase, NetMapper was split into parts
and built on the existing infrastructure. Once all the
functionality goals were finalized, the actual imple-
mentation took shape rather quickly. The design was
implemented with a complete suite of Perl scripts.
Details of the implementation are described below.

Enter LocalMapper
The manipulation of local /etc/hosts files is per-

formed by localmapper. This method relies on the fact
that /etc/hosts is searched from top to bottom and
returns the first match it finds. Therefore, this script
has a prerequisite which can have no exceptions –
clients must have a static, truncated hosts file. That is,
it must contain only ‘localhost’, its own hostname(s)
and a bare minimum of other hosts.

The localmapper script appends a delimiter and all
defined NetMapper hostnames to the hosts file. Thus,
all localmapper modified hosts files will contain the
same hostnames but possibly different IP addresses
after the delimiter. If the localmapper delimiter is found
in an existing hosts file, all entries after the delimiter
are removed and replaced with the current NetMapper
selections. This allows for overrides and other cus-
tomized information to remain in the client’s hosts file
(above the delimiter).

The localmapper script is careful to avoid corrupt-
ing or truncating the /etc/hosts file. It uses a temporary
file to construct the new hosts file. If there are any
fatal errors the script aborts, leaving the existing
/etc/hosts intact.

Sample /etc/hosts files based on the hosts in Fig-
ure 1 are included in Listing 1. The hostname ‘folgers’
is virtual – there is no actual host named ‘folgers’. The
hostname ‘folgers’ is defined in NetMapper (see Fig-
ure 2) to be either ‘waiter’ or ‘bus-boy’. The desktop
‘genius’ at the remote site will be served /coffee by
‘bus-boy’. Any host at headquarters will be served
/coffee by ‘waiter’. It should also be noted that the
host ‘patron’ has the point-to-point IP address for
‘waiter ’ in its /etc/hosts file, while all other hosts use
the ‘public’ address for ‘waiter’.

The localmapper script is the only program that
needs to run on the client. If the localmapper script is
installed on a client’s local file system and is out of
date, it can update itself when necessary.

OS and Architecture Specific Server Names
When resolving a virtual hostname which serves

multiple architecture and OS partitions, it does no
good to use the ‘best’ server for a network client if
that server does not have the specific file system that
the client needs to access.

158 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Goldenhar NetMapper: Hostname Resolution Based on Client Network Location

In our compute environment we support various
OS and architecture specific versions of /usr/local.
There are multiple NFS servers throughout our net-
works which provide these OS and architecture spe-
cific file systems. On a UNIX client, /usr/local is
actually a link to /auto/usrlocal. The directory /auto is
an automount point defined by the auto.indirect auto-
mounter map. Thus, ‘usrlocal’ is an automounter key.
The idea behind all this is that UNIX clients will
dynamically mount /usr/local from their departmental
or network closest server via a common pathname:
/usr/local.

/etc/hosts file for desktop system rif-raf (Headquarters - Figure 1)
127.0.0.1 localhost
123.45.69.143 rif-raf
LocalMapper Auto-Generated Entries Below
Changes made below this line will be lost
123.45.68.133 folgers waiter
123.45.67.17 patron
123.45.68.133 waiter
123.45.69.115 masses masses-115

/etc/hosts file for server system patron (Headquarters - Figure 1)
127.0.0.1 localhost
123.45.67.17 patron
192.168.100.34 patron-pp
LocalMapper Auto-Generated Entries Below
Changes made below this line will be lost
192.168.100.33 folgers waiter-pp
123.45.67.17 patron
192.168.100.33 waiter waiter-pp
123.45.68.156 masses masses-156

/etc/hosts file for desktop system genius (Remote Site - Figure 1)
127.0.0.1 localhost
123.45.71.78 genius
LocalMapper Auto-Generated Entries Below
Changes made below this line will be lost
123.45.71.152 folgers bus-boy
123.45.67.17 patron
123.45.68.133 waiter
123.45.68.156 masses masses-156

Listing 1: Sample /etc/hosts files for three hosts in Figure 1.

LocalMapper Auto-Generated automount table - changes will be lost
key mount options hostname:mountpath
usrlocal -ro,soft,noquota waiter-pp:/export/usrlocal.sparc-sunos5
sw -ro,soft,noquota waiter-pp:/export/sw.sparc-sunos5

Listing 2: Sample auto.netmapper automount map for SunOS 5 host ‘patron’.

The virtual server name for the example above is
simply ‘usrlocalhost’. This virtual hostname must be
resolved to one of several real server hostnames that
serve copies of /usr/local. The problem is that not all
variants of the /usr/local tree are available on every

server. The NetMapper library takes this into consider-
ation when asked to resolve such a hostname. When
localmapper in invoked with the ‘-a’ option, it produces
a small indirect automounter map written to
/etc/auto.netmapper. This file is overwritten if it
already exists. It contains the keys, hosts and mount
paths for these special file systems and servers. This
allows all hosts to access these shared trees via a com-
mon name regardless of client OS or architecture.

Using the hosts in Figure 1, the /etc/auto.netmap-
per file for the host ‘patron’ is shown in Listing 2.
There are various ways to make use of this map. It can
be used as a separate map for a unique automount
point. It could be included from another automounter
map with a ‘+’ entry. Modern UNIX systems could be
configured to use this map before or after a NIS or
NIS+ map.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 159

NetMapper: Hostname Resolution Based on Client Network Location Goldenhar

Configuration Server
The NetMapper configuration server (nmconfd)

aids in the effort to distribute as little as possible to
network clients. The nmconfd script serves the Perl
interpreted configuration file (netmapper.conf) to net-
work clients at runtime. The NetMapper Perl module
(NetMapper.pm) attempts to communicate with
nmconfd on a hostname ‘nmconfhost’, port 13000.

Figure 2: NetMapper configuration interface for sample host ‘folgers’.

For scalability, it is possible to have multiple
NetMapper configuration servers by setting up
‘nmconfhost’ as a NetMapper hostname itself! The
hostname ‘nmconfhost’ should have an entry in DNS
that is the default address of the configuration server.
In this manner, when localmapper runs for the first time
(or has failed) a lookup of ‘nmconfhost’ will not result
in a ‘host unknown’ error. (This is also the suggested
way to add a default for all NetMapper hostnames.)
The first time localmapper connects to nmconfd, it will
use the default (DNS record) address. Once localmap-
per runs, later invocations will connect to the desired
configuration server.

The nmconfd script can also provide the latest
version of localmapper to enable self updates. The

version information for localmapper is kept in netmap-
per.conf along with the network hierarchy, NetMapper
hostnames, known architectures and OS’s, interfaces
to be ignored and a serial number.

Administrative Interface and Configuration Files

The information contained in netmapper.conf is
stored in various Perl structures such as anonymous
references to hashes and arrays. This information can
be tricky to edit and is prone to syntax errors. The web
administration interface was developed to greatly
reduce this risk of corruption as well as presenting a
more intuitive view of the network hierarchy and
members (see Figure 3). The main CGI configuration
script, netmapperconfig.pl, makes use of the CGI.pm,
Net::DNS and Data::Dumper Perl modules for inter-
face, name resolution and configuration file output. It
was necessary to use Net::DNS for hostname resolu-
tion in case the host that was running netmappercon-
fig.pl was also a NetMapper client. (Calls to gethostby-
name would use the /etc/hosts file for hostname reso-
lution. If localmapper had previously modified the
/etc/hosts file, the lookup of a hostname that it was
trying to resolve would return whatever was

160 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Goldenhar NetMapper: Hostname Resolution Based on Client Network Location

previously resolved. Thus, if a host address changed,
the new address would never be known.) This inter-
face allows the NetMapper administrators to change
any information in the netmapper.conf file as well as
providing some tools for testing and debugging.

Architecture/Internals

Version 1.0 of NetMapper is based on previous
work along the same lines. This work was all done in
Perl. The simple elegance of Perl hashes and powerful
pattern matching kept Perl as the language of first
choice for NetMapper. The previous work also used a
Perl interpreted file to store configuration information.
Availability of modules such as Data::Dumper to write
Perl data structures out to a file made the decision to
keep using this method a simple one.

Figure 3: NetMapper network hierarchy displayed in configuration interface.

Several data structures are used within the con-
figuration file:

• A hash whose keys are the hostname ‘aliases’
which the NetMapper package is responsible
for processing. The values of this top-level hash
are anonymous references to other structures
such as hash and array references. These other
structures include such information as the
default hostname or interface specific host-
name, preferred hostnames based on network
group names or CIDR format network
addresses, available OS/architectural dependent
partitions and possibly other information to be
determined later.

• A hash representing the network hierarchy
which consists of network IP addresses in

CIDR format as well as symbolic names for
groups of networks. The hash keys are either
networks or network group names. The hash
values are network group names of the parent
of the key.

• A hash representing which OS’s and machine
architectures NetMapper knows about.
NetMapper uses this data to produce the OS
and architecture specific mount paths for indi-
rect automounter map entries. An explanation
of the OS/architecture specific partition naming
is detailed in the NetMapper documentation.

• A scalar containing the version number of the
NetMapper package/program (localmapper)
which runs on the clients. (If the client program
is not up to the current version, it can attempt to
update itself via the network.)

• Various other pieces of information which
would be maintained by the NetMapper admin-
istrator and should not be modified by NetMap-
per users (system administrators). This infor-
mation might include interface names and error
reporting email addresses.

NetMapper uses these structures to determine the
desired hostnames for a network location in the fol-
lowing fashion:

1. localmapper runs on the client and initializes the
NetMapper library which obtains configuration
information as previously described.

2. NetMapper library functions examine network
interfaces to obtain the client’s active IP
addresses and network lineage. (IP addresses

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 161

NetMapper: Hostname Resolution Based on Client Network Location Goldenhar

are obtained via standard UNIX commands
such as netstat and ifconfig.) All CIDR format
networks in NetMapper are reverse sorted by
the number of significant network bits. The
client’s IP addresses are then compared to each
element of the list of networks with a match
occurring when the significant portion of the
interface address and the network address are
equal. The network lineage is then derived from
the network hierarchy based on the matched
networks. The lineage proceeds from most spe-
cific to most general network. Using the host
‘rif-raf ’ from Figure 1 and the network hierar-
chy displayed in Figure 3, the lineage for ‘rif-
raf ’ would be as follows:

123.45.69.143/32
123.45.69.128/27
SJDESKTOPS
HEADQUARTERS
CISCO
default

The lineage (within the NetMapper network
hierarchy) is derived via a NetMapper function
(DeriveNetwork). This process yields a list of
networks and network groups that this client
belongs to.

3. For each hostname defined in NetMapper, a
comparison is made between the lineage
described above and the preferences defined in
the NetMapper hostname structure. If no
matches are found in the hostname definition
the default will be used. If no default is found
(or some other error occurs), the hostname alias
will not be defined by NetMapper. (Thus host-
name resolution for this entry would be deter-
mined through a NIS, NIS+ or DNS lookup.)

4. If the NetMapper hostname is determined to be
an NFS server which serves architecture and
OS dependent file systems, the preferred host-
name will have additional match criteria
applied – the preferred hostname must have the
desired target file system available. If it does
not, the first server candidate that does have the
desired file system is selected. This fail-safe is
a weak one and needs to be improved in later
versions.

5. This process is recursive – If the resulting host-
name is itself a NetMapper hostname, the
lookup will repeat. For a distributed service,
this assures selection of not only the best server
for a client, but also the best interface on that
server.

If part of this process fails, the NetMapper administra-
tors are notified via email. The message contains
information such as the hostname of the client and
what type of error occurred. This allows NetMapper
administrators to be notified of new unknown net-
works, machine architectures and OS’s.

The NetMapper Perl module itself makes use of
other modules available on the Comprehensive Perl

Archive Network (CPAN) [19] such as Net::DNS and
Net::Cmd. It’s use and available functions can be
viewed via perldoc or pod2text.

The NetMapper configuration server, nmconfd, is
a very basic interactive script. It is currently written to
be run via inetd. It supports a small set of commands
and returns results in plain text. The command set and
results are compatible with the Net::Cmd Perl module.
Both reading and writing of netmapper.conf are pro-
tected by file locking to prevent reading a partially
written file or simultaneous writes from the adminis-
trative interface.

The web configuration interface is not extremely
complex. It makes extensive use of the CGI Perl mod-
ule. It does rely on Javascript to work with frames and
pop-up text lists of networks with certain mouse-
overs.

Other Uses!

This paper has discussed hostname resolution in
the context of modifying a client’s local /etc/hosts file.
It is important to point out that NetMapper is actually
a Perl module. The localmapper script utilizes the
NetMapper module to perform its host file manipula-
tions, but this is only one possibility. In the following
example, the NetMapper module is used to select a
specific hostname in a script that will modify
/etc/resolv.conf.

A systems administrator might want to populate
client /etc/resolv.conf files with different nameserver
addresses depending on network location. He or she
could define some virtual NetMapper hostnames, per-
haps something as creative as ‘nameserver1’ and
‘nameserver2’. The new script could use the NetMap-
per module and call the appropriate function to return
the specific real server hostnames of the appropriate
‘nameserver1’ and ‘nameserver2’ for the network(s) a
client is on. The real code to lookup ‘nameserver1’
follows:

use NetMapper qw(:standard);
print

ResolveHostname(
’nameserver1’,
[BuildNetworkList()]

),
"\n";

That’s it! Practically one line of code (plus the ‘use’
statement) is all it takes to make use of the NetMapper
library. The script could then build a new
/etc/resolv.conf based on the results. Other possibili-
ties might be choosing a print or NTP server.

Conclusions

What makes NetMapper unique is that the
administrator makes the decision about where network
clients are directed via name resolution. NetMapper
can be used to ‘load balance’ [20,21] among servers,
but there are other products available that might do a

162 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Goldenhar NetMapper: Hostname Resolution Based on Client Network Location

better job. NetMapper works best when decisions have
to be made along some very ‘human’ aspect of com-
puting - something an administrator knows that the
computer can’t easily figure out. A great example of
this is license servers. Two groups might each have
their own individual pool of licenses for the same
product. Each group has their own license server. If
the two groups can be split into distinct networks, an
administrator could create one NetMapper virtual
hostname – perhaps ‘dmv’. The licensed software
need only be told to look to a server named ‘dmv’ for
its license. One group (of networks) would resolve
‘dmv’ to one server, while the other would use the
second server. Users and administrators would not
have to configure environment variables or ‘dotfiles’.

Availability and Compatibility

The NetMapper module and localmapper script
have been tested on SunOS 4, SunOS 5, HPUX 9 and
HPUX 10. It is believed to work on IRIX, AIX,
HPUX 11 and Linux. The Perl code requires Perl 5 or
better. The Perl module and associated scripts (and
whatever else I put in there...) are available in a
tar/gzip file via anonymous FTP at ftp://ftpeng.cisco.
com/josh/NetMapper.tgz .

Future Directions

The future of NetMapper depends on many
things. (Like the results of this paper...) Without
knowing what the future holds, I can only mention
some of the things I have thought about changing.

Version 1.0 is not very smart about picking a sec-
ondary host if the first selection of an architecture and
OS specific host does not have the desired target file
system available.

The nmconfd Perl script should probably be made
into a full-fledged binary daemon. It currently is slow
due to being run by inetd and then compiled.

The algorithms NetMapper uses to determine the
appropriate hostname could be re-written in ‘C’ or
some other compiled language. (I keep hoping I can
put this off long enough for the Perl compiler to reach
maturity.) This way they could be incorporated into a
renegade DNS server (if someone wanted to do such a
thing). For a majority of cases, this would remove the
client portion of NetMapper.

Acknowledgments

Lanny Ripple – for writing some of the central
functions within the NetMapper module that perform
the network matches.

Steve Bower – for convincing me early on that
CIDR style network addresses would make things bet-
ter and that Perl anonymous references were a ‘good
thing’.

Krish Sivakumar – for walking into my cube and
saying something along the lines of ‘‘...why don’t you
just tweak the local hosts file?’’

Mark Baushke – for letting me copy the method
by which we split up architecture and OS specific par-
titions.

References

[1] RFC 819, The Domain Naming Convention for
Internet User Applications, Zaw-Sing Su, Jon
Postel. August 1982, http://www.isi.edu/in-notes/
rfc819.txt .

[2] James M. Bloom, Kevin J. Dunlap, University of
California, Berkeley, ‘‘Experiences Implement-
ing BIND, A Distributed Name Server for the
DARPA Internet,’’ Proceedings of the Summer
1986 USENIX Conference.

[3] comp.protocols.tcp-ip.domains FAQ, Section 5,
Question 5.14, Order of returned records, http://
www.intac.com/˜cdp/cptd-faq/section5.html#order .

[4] comp.protocols.tcp-ip.domains FAQ, Section 5,
Question 5.24, Different DNS answers for same
RR, http://www.intac.com/˜cdp/cptd-faq/section5.
html#diferentRR .

[5] RFC 1123, Requirements for Internet Hosts,
Application and Support, Chapter 6. R. Braden,
Editor, Internet Engineering Task Force, October
1989, http://www.isi.edu/in-notes/rfc1123.txt .

[6] RFC 1094, NFS: Network File System Protocol
Specification, Sun Microsystems, Inc., March,
1989, http://www.isi.edu/in-notes/rfc1094.txt .

[7] Brent Callaghan, Tom Lyon, Sun Microsystems,
Inc., ‘‘The Automounter,’’ Proceedings of the
Winter 1989 USENIX Conference.

[8] Cisco Systems, Inc., Load Balancing: A Solution
for Improving Server Availability, http://www.
cisco.com/warp/public/cc/cisco/mkt/scale/locald/
tech/lobal_wp.htm .

[9] Cisco Systems, Inc., LocalDirector in the Data
Center, http://www.cisco.com/warp/public/cc/cisco/
mkt/scale/locald/tech/ldir_wp.htm .

[10] Kevin Delgadilloi, Cisco IOS Product Market-
ing, ‘‘Cisco DistributedDirector,’’ http://www.
cisco.com/warp/public/cc/cisco/mkt/scale/distr/
tech/dd_wp.htm .

[11] Cisco Systems, Inc., The Effects of Distributing
Load Randomly to Servers, http://www.cisco.
com/warp/public/cc/cisco/mkt/scale/distr/tech/
ddran_wp.pdf .

[12] Michael A. Cooper, University of Southern Cali-
fornia, ‘‘Overhauling Rdist for the ’90s,’’ Pro-
ceedings of the Sixth Systems Administration
Conference (LISA ’92).

[13] Tom Christiansen, ‘‘Perl 5.0 Overview,’’
USENIX ;login magazine, Nov/Dec 1993, Vol-
ume 18, http://www.usenix.org/publications/login/
christiansen.html .

[14] Free Software Foundation, m4 Online Manual,
http://www.fsf.org/manual/m4/index.html .

[15] RFC 1517, Applicability Statement for the Imple-
mentation of Classless Inter-Domain Routing

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 163

NetMapper: Hostname Resolution Based on Client Network Location Goldenhar

(CIDR), Internet Engineering Steering Group, R.
Hinden, September, 1993, http://www.isi.edu/
in-notes/rfc1517.txt .

[16] RFC 1518, An Architecture for IP Address Allo-
cation with CIDR. Y. Rekhter, T. Li, September,
1993, http://www.isi.edu/in-notes/rfc1518.txt .

[17] RFC 1519, Classless Inter-Domain Routing
(CIDR): An Address Assignment and Aggrega-
tion Strategy, V. Fuller, T. Li, J. Yu, K. Varadhan,
September, 1993, http://www.isi.edu/in-notes/
rfc1519.txt .

[18] RFC 1520, Exchanging Routing Information
Across Provider Boundaries in the CIDR Envi-
ronment, Y. Rekhter and C. Topolcic, September,
1993, http://www.isi.edu/in-notes/rfc1520.txt .

[19] Comprehensive Perl Archive Network (CPAN),
http://www.cpan.org .

[20] Internet Software Consortium, DNS, BIND and
load balancing, http://www.isc.org/view.cgi?/products/
BIND/docs/bind-load-bal.phtml .

[21] Roland J. Schemers, III, SunSoft, Inc., ‘‘lbnamed: A
Load Balancing Name Server in Perl,’’ Proceedings
of the Ninth System Administration Conference
(LISA ’95).

Related Papers and Information

Cheng-Zen Yang, Chih-Chung Chen, and Yen-Jen Oyang,
Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, ‘‘Clue
Ta b l e s : A Distributed, Dynamic-Binding Naming
Mechanism,’’ USENIX Summer 1994 Technical
Conference.

Chad Yoshikawa, Brent Chun, Paul Eastham, Amin Vahdat,
Thomas Anderson, David Culler, University of Califor-
nia, Berkeley, ‘‘Using Smart Clients to Build Scalable
Services,’’ Proceedings of the USENIX 1997
Annual Technical Conference.

Giray Pultar, ‘‘Automatically Selecting a Close Mirror Based
on Network Topology,’’ Proceedings of the 12th
Systems Administration Conference, (LISA ’98).

164 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

