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It’s Elementary, Dear Watson: Applying
Logic Programming To Convergent

System Management Processes
Dr. Alva L. Couch and Michael Gilfix – Tufts University

ABSTRACT

In an ideal world, the system administrator would simply specify a complete model of
system requirements and the system would automatically fulfill them. If requirements changed,
or if the system deviated from requirements, the system would change itself to converge with
requirements. Current specialized tools for convergent system administration already provide
some ability to do this, but are limited by specification languages that cannot adequately
represent all possible sets of requirements. We take the opposite approach of starting with a
general-purpose logic programming language intended for specifying requirements and
analyzing system state, and adapting that language for system administration. Using Prolog with
appropriate extensions, one can specify complex system requirements and convergent processes
involving multiple information domains, including information about files, filesystems, users,
and processes, as well as information from databases. By hiding unimportant details, Prolog
allows a simple relationship between requirements and the scripts that implement them. We
illustrate these observations by use of a simple proof-of-concept prototype.

Introduction

Lately, the task of system configuration has been
greatly eased by tools that automatically enforce com-
pliance with a model of proper system operation and
health via ‘convergent processes’ that detect and cor-
rect deviations from the model. System management
then becomes a matter of crafting the model of appro-
priate behavior or configuration. This model contains
‘rules’ that specify proper behavior and configuration
together with ‘actions’ that specify what to do to cor-
rect any discovered lack of compliance with a given
rule.

Unfortunately, crafting such a model is difficult
due to the number of different kinds of rules and
actions involved in creating a complete model. These
range from high-level operating policies to specifica-
tion of dynamic operating behavior. First we must
specify operating policy, a high-level description of
how the system should behave and what services
should be offered. We must then translate this high-
level behavioral description to a description of the
contents and disposition of system files that will
insure this behavior. We can call this description the
static configuration of the system, because the
requirements it describes should not change over time,
and typically we can insure these requirements are met
with a single script or scripts, executed once. The sys-
tem then begins operation and interprets these files in
order to operate, so that other content does change
over time. We can call the things that change over
time part of the dynamic configuration of the system.
To conform this to our requirements, we can craft con-
vergent processes that observe the dynamic

configuration of the system and modify system perfor-
mance to match our models.

Static Configuration
There are now an endless variety of tools avail-

able for incrementally assuring desired static configu-
ration of a system or network, beginning with the
legacy of make [22] and rdist [8], both of which con-
trol file state based upon incremental generation and
copying rules. The ideas in these tools are now perva-
sive and have made their way into almost all tools for
configuration management. Package managers such as
the RedHat Package Manager (RPM) [2] and Depot
[7, 21, 28] only install requested software packages if
those packages are not already present. Our own tool
Slink [9, 10] and its relatives, including GNU Stow
[14], incrementally modify a symbolic link tree to
conform to a desired structure, while our own tool
Distr [11] allows ‘push’ and ‘pull’ convergent file dis-
tribution, utilizing filters to translate file formats for
differing platforms.

Cfengine [3, 4, 5] makes it possible to define and
converge to very complex and expressive models of
system state. Cfengine provides a powerful configura-
tion language with built-in operations that act on files,
links, directories, mounts, and even processes. Exten-
sive built-in stream editing commands allow us to
incrementally edit system files to conform with
requirements, freeing us from having to store file pro-
totypes on a master server.

All these static configuration tools share the
same strengths and limits. Configuration files are rel-
atively simple and easy to construct. The process by
which one assures conformance with a configuration
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file is obvious and automatic. However, with the
exception of a small number of database-driven proto-
types, these tools specify system configuration at a
fairly low level of abstraction, telling what to do to
specific file contents.

One would like, instead, to simply list desired
services and have the tool determine what to place in
each file to implement each desired service. An ideal
tool would query a distributed database or directory
service, such as the Lightweight Directory Access
Protocol (LDAP), for a high-level description of the
services required on the system in question. Based
upon the list of services to be offered, the tool would
then proceed to modify all files requiring changes in
order to provide that service. This kind of configura-
tion power would require that the configuration tool
know the mapping between services and file contents
for each target operating system. This, in turn, requires
maintenance of rather simple, detailed databases of
system information that have little or nothing to do
with operating policy: where files are, how configura-
tion files are structured, etc.
Dynamic configuration

Historically, dynamic configuration has been
preserved and enforced by a completely different set
of tools than those used for managing static configura-
tion. While static configuration tools rely heavily on
databases, lists, and other declarative mechanisms for
specifying configuration, dynamic configuration tools
have relied upon user-crafted scripts. To use a tool, the
administrator specifies behavioral patterns to detect
and scripts to execute when each pattern is detected.

Current dynamic configuration tools allow moni-
toring of dynamic state, including processes, logfiles,
and filesystems. Early tools were system log monitors,
such as Swatch [15] and the more recent LogSurfer
[18], which can page operators or run other scripts
when potentially harmful events are posted in the sys-
tem logs. These simple monitors have evolved into
powerful tools that can monitor global system state,
including TripWire [16, 17], which checks whole
filesystems for compliance with a previous recorded
state, and SyncTree, which can restore previous states
of a system even if they are changed maliciously by a
hacker [19].

Many system administrators resign themselves to
writing custom scripts to monitor and correct prob-
lems in UNIX networks. These scripts interact with
the same UNIX commands, and perform the same
tasks, but must be customized for each site and plat-
form, leading to massive duplication of effort. PIKT
[24] (pronounced ‘picket’) greatly reduces the effort in
writing scripts for multiple platforms and tasks, by
providing a class mechanism for determining applica-
bility of script parts and a powerful set of built-in
parsing primitives (reminiscent of command parsing
available in Tcl/TK [23]) for accessing the text output
of UNIX status commands such as ls and netstat. Sim-
ilar scripts for different platforms can be organized

into a single script with class qualifiers, where appro-
priate lines in the script will be utilized for each target
platform.

PIKT works well but, like the custom scripts it
allows one to catalog, there is an uncomfortable dis-
tance between the scripts that implement policy and
the policies they implement. A policy that is relatively
simple to describe, such as ‘‘delete all core files more
than three days old’’ might be written as the find com-
mand:

find /home -name core -mtime 3 \
-exec rm -rf {} -print;

or something even more esoteric. It can be quite diffi-
cult to work backward from an arbitrary script to its
meaning.

Ideally, we should be able to document operating
policy and automatically translate the documentation
into scripts that implement the policy. Ironically, the
typical administrator in a hurry will document only the
scripts. To determine what operating policies are, one
must read and interpret what the scripts mean. Most
administrators are not paid to write scripts, but to
insure quality of service, so that script writing is done
in great haste and with no attention to readability or
potential software life-cycle. So documenting the
actual operating policy for a network requires reverse-
engineering the operating policy from the scripts on an
ongoing basis.

Again, we need some way to automatically trans-
late between a high level description of operating pol-
icy and the script that implements it, so that we no
longer have to read and understand a script to under-
stand the policy it implements. There must be a way to
craft scripts that is in some way ‘closer’ to the natural
way we would describe policy: a language closer to
specifying what we want rather than how to accom-
plish it.

Databases
Many administrators have come to rely on

databases [12], both normal and directory-based (such
as LDAP or NIS+), to describe static network state. A
database is a structured data storage and retrieval
method, consisting of tables of information, where
each table is organized into rows and columns.
Database information is usually manipulated and
accessed by use of Sequential Query Language (SQL),
which specifies how to access individual rows and
columns, and how to create new tables whose rows
and columns can then be accessed.

Databases have several advantages over plain
files. They can be accessed from anywhere in a net-
work using standardized network access methods.
Isolated parts of a database table can be incrementally
modified with no chance of corrupting other parts of
the table. When information is volatile, but must be
modified and accessed in small chunks, databases pro-
vide more reliability than unstructured files.
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Databases become very useful in maintaining
information about the external world outside the sys-
tems being maintained, such as information on each
user ’s true identity and function. A typical application
would be to record information about each user in a
database, and then use that information to compute
appropriate filesystem and mail quotas for the user.

Unfortunately, normal database access methods
such as SQL do not allow one to specify how to act
based upon database contents. One must call SQL
from another language empowered to take action. So
to use databases, we are forced to learn both SQL and
a scripting language (such as Perl [26]) for crafting
actions based upon SQL queries. How, then, can we
utilize databases without having to simultaneously
write in two scripting languages: one for database
access and another to react to content?

Toward a ‘Glue Language’

We seek to fulfill Burgess’ dream of ‘Computer
Immunology’ [5], in which a description of computer
‘health’ empowers computers to ‘immunize’ them-
selves against poor function, thus becoming self-
repairing and correcting. We began the work of this
paper by searching for a common language that one
could use for specifying both static and dynamic con-
figuration. If we could find such a ‘glue language,’ we
would be one step closer to being able to write scripts
that describe operating policies with true platform
independence. The language had to be able to provide
at least a superset of the combined capabilities of
Cfengine and PIKT. As well, we desired a language
that:

• allows both static and dynamic requirements,
limits, and convergent processes to be specified
with the same syntax.

• is extensible to provide interfaces to all con-
ceivable kinds of data and actions.

• allows specification of high-level rules that
codify all steps in providing one user service,
so that users can simply ask for the service
rather than describing its low-level modifica-
tions.

• interoperates well with structured forms of
information storage such as databases and
directory services.

We came to a surprising conclusion, even for us, that
the closest existing language fitting that description is
Prolog!

Prolog As a Database Query Language

Prolog [6] is a much misunderstood language
with an somewhat undeserved reputation for ineffi-
ciency and difficulty of programming. In reality, Pro-
log is one of the most efficient mechanisms for mak-
ing queries into databases and writing action scripts
based upon database queries. As well, Prolog has
unique implicit properties that make programs shorter
and easier to read, by omitting details that the

language can handle by itself. For example, both con-
ditional statements and loops are implicit in Prolog,
and their use is determined by context.

We explored the powers of this language by con-
structing a prototype interface between Prolog and the
operating system on a single host, with the intent of
creating Prolog utilities that duplicate the functionality
of Cfengine and PIKT. Then, we experimented with
the prototype to determine its strengths and weak-
nesses.

Prolog syntax
Programming in Prolog is very different from

programming in a normal scripting language. Rather
than saying what should happen, one declares what
should be true. The Prolog interpreter translates those
declarations into actions to perform. This is called
declarative programming.

A Prolog ‘program’ consists of facts and rules. A
fact can be thought of as a line entry in a table in a
database. The fact:

login(couch).
says that there is a user whose login name is couch. It
has a functor name of login and a single argument
couch.

Facts can be pre-recorded in Prolog’s databases,
or can be computed by external functions written in C
or other languages. For example, in our prototype, we
compute facts of the form

passwd(couch,
’3hit2839482912’,
1000,
40,
’Alva L. Couch’,
’/home/couch’,
’/usr/bin/tcsh’).

with an external function (written in C) that scans the
password table (as an NIS+ map) and reports its con-
tents. This function implements the functor passwd of
arity seven (seven arguments). This functor is named
passwd/7 to distinguish it from other functors with the
same name and differing numbers of arguments,
which need not be related to it.

A Prolog rule tells how to make more complex
facts from simpler ones. For example, the rule:

pig(Login):-
passwd(Login,_,_,_,_,Home,_),
du(Home,Usage),
Usage>20000.

says that ‘‘Login is a pig if Login is a login name with
home directory Home, Usage is the disk usage for that
directory, and the disk usage is greater than 20
megabytes (approximately).’’

A rule has a left hand and right hand side sepa-
rated by :-. The left-hand side specifies the goal of the
rule, which in this case is to find a value for the vari-
able Login. The right-hand side consists of subgoals
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needed to accomplish a goal. The symbol :- is read
‘if ’, and commas between terms on the right hand side
represent ‘and’. Login, Home, and Usage are variables
because they begin with capital letters. The special
symbol ‘‘_’’ (the anonymous variable) is a place
holder that indicates that a value in a query should be
ignored. In this rule, for example, we can ignore the
user ’s password, uid, gid, name, and shell.

Queries

In order to get Prolog to actually do anything,
one has to execute a query. This is a request to com-
pute values of variables based upon known facts and
rules. For example, to request a list of pigs, from the
rule above, we could type this in the Prolog inter-
preter:

?- pig(X).
Prolog might respond:

X=couch ;
X=bgates ;
No.

The symbol ?- can be read as ‘prove’. This query
instructs Prolog to ‘‘find all X’s such that pig(X) is
true.’’ Prolog responds with the first of these, couch.
After each response, we type a ‘‘;’’ to tell Prolog to
find the next value for X. The final No. indicates that
there are no more matches.

Whenever Prolog needs to determine who is and
who is not a pig, it uses the rule above to compute who
all the pigs are. Prolog begins with no idea of who a
pig is, and evaluates the subgoals in the rule on the
right hand side of the ‘if’ from left to right. The first
subgoal, passwd(Login,_,_,_,_,Home,_) sets Login to each
login name in turn, and sets Home to the corresponding
home directory of Login. Then the second term,
du(Home,Usage) computes the disk usage for that direc-
tory (by scanning the home directory) and sets Usage
to that value. The last subgoal, Usage>20000, checks
the value Usage. If it is greater than 20000, the goal
pig(Login) succeeds. This has the result of returning
whatever Login value we found as the result of the
query. In this case, we wanted X’s, so each match is
assigned to X and printed for us.

Backtracking

Queries are repeatedly satisfied through back-
tracking. To backtrack, Prolog backs up from right to
left in the list of subgoals it is attempting to complete,
and tries new values for variables. For example, we
implemented passwd/7 so that when backtracking,
passwd(Login,_,_,_,_,Home,_) will set Login and Home to
the information for each user in the system, one per
try. Through backtracking, the rule above can poten-
tially check 2000 users for pigdom. After finding a
new value for Login and Home, Prolog then continues
trying to execute goals from left to right. Whenever it
satisfies all subgoals of a goal, and gets to the end of
the rule, Prolog returns a match.

In this way, Prolog enumerates all possible
matches for each rule, as demonstrated above. Every
Prolog goal potentially tries all reasonable values for
each variable, so that one never has to write a ‘for’
loop in Prolog. This also means that the easiest pro-
gram to write in Prolog is an infinite loop!

Backtracking is as tricky and dangerous as it is
powerful. Suppose that instead of the preceding rule
for pig/1, we wrote:

pig(Login):-
du(Home,Usage),
passwd(Login,_,_,_,_,Home,_),
Usage>20000.

This never succeeds in finding any pigs, because Home
and Usage are unbound when du(Home,Usage) gets
called. The passwd/7 call must go first.

Performance is seriously affected by the way in
which we write a Prolog rule. The original pig/1 rule
finds all the pigs in a system roughly as quickly as a
Perl script written to do the same thing. But suppose
we instead write:

pig(Login):-
passwd(Login,_,_,_,_,_,_),
passwd(Login,_,_,_,_,Home,_),
du(Home,Usage),
Usage>20000.

This means the same exact thing as the original rule;
the first subgoal requires that Login be a login name,
while the second requires that Home be the corre-
sponding home. Depending upon the cleverness with
which we implement passwd/7, however, executing
this query can take between twice and thousands of
times as much time to execute, compared to the origi-
nal rule.

Our first version of passwd/7 read and cached the
whole NIS+ password table before returning each
entry. This meant that the rule above did that twice.
First, it backtracked through all values for Login, and
then checked them against all values for Login in order
to find a matching one and determine its Home. Since
we have about 1000 users, the rule thus checked 1000
entries 1000 times in backtracking to satisfy both sub-
goals. This took forever.

We then re-implemented passwd/7 so that if Login
is initially bound to a value, passwd/7 uses getpwnam
rather than getpwent to match information instantly.
The second subgoal passwd(Login,_,_,_,_,Home,_) thus
does not try all combinations, but instead instantly
returns the appropriate home directory. This change
made the above example execute several thousand
times faster, but it still takes about twice the time of
the original, more efficient rule with one subgoal for
passwd/7.

Unification
In converging toward system health, we wish to

force our idea of what should be true to actually be
true. In Prolog nomenclature, we wish to unify our

126 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Couch and Gilfix It’s Elementary, Dear Watson: Applying Logic Programming . . .

idea of what reality should be with the state of a par-
ticular machine.

In a Prolog rule, variables begin their lives hav-
ing no value whatsoever, and are called unbound.
Variables become bound, or set, by being unified with
constants or other variables. The way this works
depends upon how built-in and external functions are
designed, and functions can behave differently
depending upon whether variables given to the func-
tion are bound or unbound. In evaluating the goal:

passwd(Login,_,_,_,_,Home,_)
much depends upon the prior state of the variables
Login and Home before the goal executes.

1. if Login and Home are unbound, then the query
tries to bind Login and Home to each valid pair
in the password table (in our case, via NIS+
naming service).

2. If Login is bound but Home is unbound, then
Home is unified with the corresponding home
directory, if any.

3. If Home is bound but Login is unbound, then
Login is unified with each login name with that
home directory in turn (and there may be more
than one)!

4. If Login and Home are both bound, then the
query ‘succeeds’ if they are a valid pair, and
‘fails’ if they are not paired correctly.

The result is that after any ‘success’, Login and
Home form a valid pair, regardless of how that pair
arose. A general-purpose goal like this can be used in
many contexts, with variables known and unknown,
and will adapt to the context and respond appropri-
ately. Given a small amount of information, of any
kind, this rule determines the rest if possible. Prolog
goals (the left hand sides of rules) are called functors
(rather than functions) precisely because they are
capable of setting variables in a very flexible way, and
using the same variables as both input and output.

Goals That Modify Configuration
In using SQL to manipulate tables of configura-

tion information, one must use a different language for
actions than for queries. Not so in Prolog. There is no
reason that a goal cannot modify the external world in
order to satisfy a query. Consider the simple example
of a goal that returns the owner and group of a file
specified as a pathname:

path_owner(Path,Owner,Group).
This could be implemented in Prolog in several ways.
For simplicity, and to avoid implementing too many
external functions, we chose to implement the goal so
that unbound attributes for a path are read from the
filesystem, while the filesystem is modified to match
bound attributes if possible. The query

?- path_owner(’/etc/motd’,
Owner,Group).

unifies Owner and Group with the true owner and group
of the file /etc/motd, and reports them, while the query

?- path_owner(’/etc/motd’,0,0).
attempts to change the file’s owner and group to 0
(root) if they are not already both 0! The same function
serves a dual purpose: it can query system state or
modify that state to unify it with specifications. Thus
unification need not only concern Prolog variables,
but can be extended to modify the environment in
which Prolog executes!

The ambiguity between goals and actions in Pro-
log can be exploited to construct many rules that
implement both at once. If we write a goal
copy(Source,Target) that insures that the file Source is
identical with node Target, then goal succeeds if it can
make the files identical and fails if it cannot. Then we
can write:

?- copy(’/Master/etc/motd’,
’/etc/motd’).

to check and perhaps make a copy of a master file.
Goals like this, which blur the distinction between
doing something and checking it, are ideal for use in
creating a configuration engine.

Such lingual power comes with a price. Struc-
tured programmers should cringe, because we have all
been taught that programs should not contain ‘side-
effects’ that change things other than program vari-
ables. In the above, we are executing ‘ambiguous’
goals that check and assure system states solely for
their side effects! This can make Prolog programs dif-
ficult to interpret and maintain.

Careless implementation and use of convergent
Prolog goals can lead to disaster. Suppose that we
implemented the passwd/7 functor so that it was able
to set any field to a desired value, as a side effect, as
well as iterating over all password records. Then the
query:

?- passwd(_,_,30,_,_,_,_).
would set everyone’s user ID to 30! For our peace of
mind, we have refrained from writing functors that are
both iterators and convergent modifiers. Each of our
custom functors either enumerates options or tries to
assure individual conditions, not both!

Implicit Iteration

Suppose we want to tell all pigs what we think of
them. In Prolog, iterating over all matches for a vari-
able is implicit. One never has to write a for or foreach
loop; any query will search through all possible
options. For example, if we type:

?- pig(Login),
email(Login,

’you are a pig!’,
’oink!’),

fail.
Prolog will mail the message ’you are a pig!’ (with sub-
ject ’oink!’) to all possible pigs, as determined by the
rule above! First the goal pig(Login) tries to find a pig.
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When one is found, the goal email mails a message to
that pig. The magical thing here is the built-in Prolog
goal fail. This goal forces Prolog to backtrack through
all possible solutions to the preceeding goals. Thus all
pigs get the message!

Implicit execution is both a curse and a blessing.
The good news is that one never needs to write a ‘for’
loop again. But interpreting what Prolog code actually
does can be difficult. A safe way to interpret a Prolog
program is to mentally put the phrase ‘‘for all values
of variables so that’’ in front of every goal.

Controlling Implicit Loops

Sometimes we may wish to prohibit this behav-
ior, e.g., make an example of one pig. The special goal
! (the cut) tells Prolog not to try to backtrack to the
goals on its left-hand side. We could type:

?- pig(Login),!,
email(Login,

’you are a pig!’,
’oink!’),

fail.
This would find one pig, but the fail would not cause
backtracking to find others. The cut’s general meaning
is actually a bit more subtle: when backtracking over a
cut, the parent goal fails. The cut operates on the
problem Prolog is trying to solve (in this case, the
whole query), not the sequence of goals being utilized
to solve the problem.

Prolog and Cfengine

So far we have shown only how to construct spe-
cific queries that have particular effects, by manually
interacting with the Prolog interpreter. How, then,
does one automate the process of configuring a com-
plete system? As with Cfengine, we must craft a set of
rules that describe when the system is healthy. We can
learn much from how Cfengine rules accomplish the
same task.

Cfengine is ‘almost as powerful’ as a real Prolog
interpreter, and only falls short in its handling of vari-
ables and extensibility. To control whether and how to
do something with a particular machine, Cfengine
uses ‘classes’. A ‘class’ is a variable that is either true
or false, depending upon the machine in question. In
configuring Cfengine, one qualifies each action with
the conditions under which it should occur, expressed
as a boolean expression of classes. For example, in the
Cfengine code:

links:
solaris.victim::

/etc/sendmail.cf
->! mail/sendmail.cf

the link is only made if the classes solaris and victim are
both true (‘.’ represents logical ‘and’).

Classes in Cfengine correspond roughly with
Prolog facts of arity 0. Facts are present (and thus

‘true’) if they depict the current operating environ-
ment. When Cfengine starts executing, it discovers as
many facts as it can about the system upon which it is
executing. For a machine hillary, running Solaris 5.7,
these include classes equivalent to the Prolog facts:

hillary.
solaris.
sunos_5_7.

as well as much other information about the machine
and operating environment.

Cfengine variable assignments, such as

groups:
victim = ( bill hillary monica )

appear to set victim to a string of names, but in actual-
ity only determine whether the class victim is true or
false. The class victim is true if one of the facts in the
parens is true, false otherwise. These are not really
assignment statements at all, but represent the Prolog
rules:

victim:-bill.
victim:-hillary.
victim:-monica.

This says simply that anywhere victim appears, it is
true if bill, hillary, or monica is true. Each of these is in
turn true only if it represents the current machine
name.

This simplicity gives Cfengine incredible speed,
as it never needs to deal with classes with values other
than true or false: true if a fact is true in this environ-
ment, false if not. Prolog is slower, but as a result of
this slowness, gains the ability to customize adminis-
trative process far beyond Cfengine’s capabilities.

Cfengine class qualifications correspond with
qualification goals in Prolog rules, where all qualifica-
tions have arity 0. For example, the Cfengine rule:

links:
solaris.victim::
/etc/sendmail.cf
->! mail/sendmail.cf

/etc/services
->! inet/services

(which makes a link from /etc/sendmail.cf to mail/send-
mail.cf) corresponds with the Prolog rule:

links:-solaris,victim,
link(’mail/sendmail.cf’,

’/etc/sendmail.cf’).
links:-solaris,victim,

link(’inet/services’,
’/etc/services’).

Roughly translated: ‘‘If you want to do links, and
you’re executing under Solaris, and you’re a victim,
do these.’’

The control: section of Cfengine’s configuration
file specifies the sequence in which individual goals
are assured. For example, the Cfengine configuration:
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control:
actionsequence = ( links copy )

(which says to do only symlinks and file copies, in
that order) corresponds roughly to the Prolog code:

health:-links,fail.
health:-copy,fail.
?- health,fail.

We create an artificial goal health that represents the
health of the whole computer. To assure health, we
look at all aspects, including links and copy. The fail
directives assure that we check all possible rules for
each of these through backtracking.

Genericity

Cfengine has been a great inspiration to us, and
is a crucial element in day-to-day operation of our site,
but its limitations forced us to look elsewhere for a
truly general-purpose language for configuring sys-
tems. Cfengine is fantastic for manipulating files, but
is very difficult to use to create generic, platform-inde-
pendent, reusable configuration instructions for imple-
menting high-level services.

Using any tool, any time a system file can vary
in location or format, one must construct a new special
case rule or macro to handle the deviations. In
Cfengine this process becomes unwieldy very quickly,
as macros in Cfengine all inhabit one name space, and
one must remember the meanings of all of them in
order to write new rules.

For example, let us learn to deal with an
inetd.conf file that moves between /etc/inetd.conf and
/etc/inet/inetd.conf depending upon operating system.
One can cope with this in Cfengine as follows:

editfiles:
ftp.solaris::
{ /etc/inet/inetd.conf
AppendIfNoSuchLine \
"ftp stream tcp nowait root \
/usr/sbin/in.ftpd in.ftpd"

}
ftp.osf::
{ /etc/inetd.conf
AppendIfNoSuchLine \
"ftp stream tcp nowait root \
/usr/sbin/ftpd ftpd"

}
To avoid unwieldy typesetting, we take some liberties
with Cfengine examples; the \ is not recognized by
Cfengine as a line break.

Using Cfengine macros, it is possible to code the
same operation somewhat more neatly:

control:
solaris::
inetd = ( "/etc/inet/inetd.conf" )
ftpd = ( "/usr/sbin/in.ftpd" )
ftpd_base = ( "in.ftpd" )

osf::

inetd = ( "/etc/inetd.conf" )
ftpd = ( "/usr/sbin/ftpd" )
ftpd_base = ( "ftpd" )

editfiles:
ftp::
{ $(inetd)
AppendIfNoSuchLine \
"ftp stream tcp nowait root \
$(ftpd) $(ftpd_base)"

}
The variables $(inetd), $(ftpd), and $(ftpd_base) repre-
sent varying quantities in an otherwise unvarying
script.

This works fine, but has two significant draw-
backs. These variables are macros, created by hand,
and one cannot write a script to discover their values.
Variables live in a flat name space, so that repeating
this process leads to many variables and much to
remember when writing configuration entries.

Using Prolog, one can accomplish the same task
somewhat more neatly. First, we code a relation con-
fig_path(Name,OS,Path) into Prolog that relates the
canonical name of a file with its location in the
filesystem. This relation might start, e.g., with the
tuples:

config_path(
’inetd.conf’, osf,
’/etc/inetd.conf’).

config_path(
’inetd.conf’, solaris,
’/etc/inet/inetd.conf’).

config_path(
ftpd, osf,
’/usr/sbin/ftpd’).

config_path(
ftpd, solaris,
’/usr/sbin/in.ftpd’).

This information concerns the nature of operating sys-
tems themselves, not their configuration, so that it
does not change with policies and should not vary with
use. By nature, thus, this information is fundamentally
different than configuration information and should
not be present in your policy description.

Then, using a functor os/1 that returns the generic
name of the current operating system, one can write
the rule:

editfiles:-
os(Os),
config_path(’inetd.conf’,Os,Path),
config_path(’ftpd’,Os,Ftpd),
file_base_name(Ftpd,FBase),
appendIfNoSuchLine(Path,
[ftp,stream,tcp,nowait,
root,Ftpd,Fbase]).

In English, ‘‘If we know our operating system, and
can determine the path of inetd.conf and ftpd, and can
find the base name of ftpd, and can put a record into
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inetd.conf for it, we’re done!’’ This series of goals
queries for the correct location for inetd.conf and ftpd,
computes the base name of the file from the ftpd loca-
tion, dynamically constructs a line for the file by con-
catenation, and places that line into inetd.conf (after
constructing the line from a Prolog list).

config_path(
’inetd.conf’, _, ’/etc/inetd.conf’):-
path_type(’/etc/inet/inetd.conf’,file),!.

config_path(
’inetd.conf’, _, ’/etc/inetd.conf’):-
path_type(’/etc/inetd.conf’,file),!.

config_path(
ftpd, _, ’/usr/sbin/ftpd’):-
path_type(’/usr/sbin/ftpd’,file),!.

config_path(
ftpd, _, ’/usr/sbin/in.ftpd’):-
path_type(’/usr/sbin/in.ftpd’,file),!.

config_path(
ftpd, _, ’/usr/etc/in.ftpd’):-
path_type(’/usr/etc/in.ftpd’,file),!.

Listing 1: Rules to probe filesystem actively.

This does the exact same thing as the Cfengine
example, but the Prolog code can be modified to do
considerably more. Consider the rules in Listing 1.
These rules compute the paths for these files by
actively probing the filesystem for their existence This
covers all cases without having to hand-code the loca-
tions for each operating system, using tests similar to
those used by configure and autoconf.

Now let us go to an even higher level of abstrac-
tion: we should only do this when ftp is required. First,
let’s only use the rule when we need that service, by
adding a ’guard clause’ to the Prolog code:

editfiles:-
service(ftp),
os(Os),
config_path(’inetd.conf’,Os,Path),
config_path(’ftpd’,Os,Ftpd),
file_base_name(Ftpd,FBase),
appendIfNoSuchLine(Path,

[ftp,stream,tcp,nowait,root,
Ftpd,Fbase]).

Then we write rules telling when a particular machine
deserves the service:

service(ftp):-hostname(monica).
service(ftp):-os(osf).

This means that we should provide that service if our
hostname is monica or our operating system is OSF!
We have the full power of Prolog available for decid-
ing which machines get the service. We could, e.g.,
write:

service(ftp):-not passwd(bgates,
_,_,_,_,_,_).

to install ftp only on machines where Mr. Bill does not
have an account!

The rule that actually adds the appropriate line to
inetd.conf is not part of operating policy. It is a
reusable method that works in most cases. The actual
policy is embodied, instead, by the rules for service/1.
Ideally, we should be able to write the former once
and never touch it again, then modify the latter to taste
for each site and application.

This represents a major difference between using
Prolog and other languages for configuration. Typi-
cally, when one gets to a high-enough lingual level to
describe policy, low-level details (such as your user
database!) become inaccessible. Prolog allows one to
craft high-level, service-based policies that utilize data
from all facets of the running system.

Configuring High-level Services

While Cfengine does a good job of implementing
policies regarding individual files, it is quite awkward
to describe how to implement high level services
using Cfengine’s syntax. Take, for example, the case
of setting up an entire FTP server. Everyone knows
that there are at least three actions involved in setting
up a typical server within a UNIX-like operating sys-
tem:

1. Add an appropriate line to inetd.conf.
2. Add appropriate port descriptions to services
3. Send a HUP signal to inetd.

In Cfengine, to define ftp on three machines bill,
andhillary, monica, a mix of Solaris and OSF machines,
these actions could be declared as follows:

control:
solaris::
inetd = ( "/etc/inet/inetd.conf" )
ftpd = ( "/usr/sbin/in.ftpd" )
ftpd_base = ( "in.ftpd" )
services = ( "/etc/inet/services" )
osf::
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inetd = ( "/etc/inetd.conf" )
ftpd = ( "/usr/sbin/ftpd" )
ftpd_base = ( "ftpd" )
services = ( "/etc/services" )

groups:
ftp = ( bill hillary monica )

editfiles:
ftp::
{ $(inetd)
AppendIfNoSuchLine \

"ftp stream tcp nowait root \
$(ftpd) $(ftpd_base)"

}
{ $(services)
AppendIfNoSuchLine "ftp-data 20/tcp"
AppendIfNoSuchLine "ftp 21/tcp"

}
processes:
ftp::
"inetd" signal=hup

The control section describes locations of files for each
platform. The groups section defines hosts that need to
provide ftp as a ‘logical macro’ that is true if the cur-
rent host is a member, false if not. The editfiles section
tells what to do to inetd.conf and services for these
hosts. Within this, there are variations depending upon
whether the operating system for the host is Solaris or
OSF. Finally, the processes section describes what to
do to running processes, i.e., send a HUP signal to
inetd.

This approach has several advantages. Each
action is done at most once, even if needed in several
cases, e.g., inetd is only HUP’d once even if several
changes are made to inetd.conf. Once ftp configuration
is described for each operating system, one need only
list the machines that should support it.

But there are several problems with this
approach from our perspective. It is difficult to spec-
ify parameters that modify implementation, e.g., using
TCP wrappers for security [25], passing parameters to
daemons, etc. Each variant requires that a new class
and/or macro be created, and these exist in a global
name space. Actions of each type are done ‘all
together ’ with no concept of installing ‘one service at
a time’. Thus there is no concept of transaction
integrity or transaction rollback if necessary for any
reason. Variables and classes have global scope, so in
every section of the file, we must remember that solaris
represents an operating system, while hillary represents
a machine name, and we cannot name a machine
solaris without serious problems!

How does the same complex example look in
Prolog? First, let’s list the hosts that should have ftp
service in Prolog rules:

service(ftp):-hostname(bill).
service(ftp):-hostname(hillary).
service(ftp):-hostname(monica).

We add code to the above example specifying where
extra files are:

config_path(’services’,solaris,
’/etc/inet/services’).

config_path(’services’,osf,
’/etc/services’).

Then we add a list of goals that implement ftp service,
in the manner of the above:

ftp:-
service(ftp),
os(Os),
config_path(’inetd.conf’,Os,Inetd),
config_path(’ftpd’,Os,Ftpd),
config_path(’services’,Os,Services),
file_base_name(Ftpd,FBase),
appendIfNoSuchLine(Inetd,
[ftp,stream,tcp,nowait,root,
Ftpd,Fbase]),

appendIfNoSuchLine(Services,
[’ftp-data’,’20/tcp’]),
appendIfNoSuchLine(Services,
[’ftp’,’21/tcp’]),
kill(inetd,hup).

In English,
‘‘If we have a host name;

and we know our operating system;
and we know where inetd.conf, services, and ftpd live;
and we can put a record into inetd.conf;
and we can put two records into services;
and we can send a hup to inetd;
then ftp is installed.’’

Each clause guards against poor installation, by mak-
ing constant ‘sanity checks’ and aborting if any one
check fails.

In this example, we have done something that is
very difficult to accomplish in any current configura-
tion tool. The actual script that implements the ftp ser-
vice is generic and independent of architecture. It will
work for any host provided that file location tables are
kept up to date. Customization is only required for ser-
vice(ftp), which must be changed to reflect current poli-
cies and desires.

We chose in the prototype to describe services
and system attributes very differently from in the way
they are described in Cfengine. The class hillary in
Cfengine is the goal hostname(hillary) in Prolog, while
Cfengine’s fact solaris becomes os(solaris). Thus facts
are no longer filed in a flat name space, and we can
distinguish between solaris the operating system and
solaris the host name, if any. This extra work sidesteps
inherent ambiguities in the meaning of Cfengine’s
class names.

Atomicity and Rollback

Another significant cost to Cfengine’s remark-
able efficiency is that there is no provision for recov-
ery from partial configuration failures. Let’s craft a
Prolog example that undoes a configuration if any part
of it fails. This will have the effect of making the
installation more of an atomic act, one indivisible
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thing in which several changes are coordinated to
achieve one effect. If any change fails, a rollback
script will undo the other changes so that system
integrity is maintained.

This example will contain two goals for ftp, one
that installs it and one that removes it if anything goes
wrong. First, we add a Prolog cut ( !) as the last goal
in the above installation script. This tells Prolog that
when all subgoals are complete, the ftp goal itself is
complete and no further work should be done on it.
We then follow this rule with another that only gets
executed if the cut is not encountered:

ftp:-
service(ftp),
os(Os),
path(’inetd.conf’,Os,Inetd),
path(’ftpd’,Os,Ftpd),
path(’services’,Os,Services),
file_base_name(Ftpd,FBase),
deleteLinesContaining(Inetd,Ftpd),
deleteLinesContaining(Services,

’20/tcp’),
deleteLinesContaining(Services,

’21/tcp’),
kill(inetd,hup).

When Prolog tries to do something, it tries every rele-
vant rule in its database of rules, in the order in which
they appear in its program. When asked to handle the
rule for ftp, Prolog will begin by trying the initial rule
we crafted. If that rule succeeds, then because of the !
(cut) at the end, Prolog will stop working on that goal.
If the initial rule fails, it will try the next rule, which
uninstalls ftp service.

This example shows the true power of implicit
goal execution. As a script, this behavior would be a
nightmare to describe, but in Prolog, it is a simple
series of two rules, each of which is tried if the last
one fails. Thus a rather complex logical chain of
deduction is reduced to a relatively simple list of
requirements.
Cfengine and Dynamic Policy

Cfengine only implements dynamic policy where
the map from policy to process is relatively obvious,
or the user is willing to allow Cfengine to make arbi-
trary decisions concerning the mapping. For example,
if a user has temporary files that are too old, most
everyone agrees that the obvious thing to do is to
delete them, and Cfengine can do this easily. If, how-
ever, one wishes to archive them on tape or writeable
CDROM, Cfengine cannot help very much, and one
must write a custom script.

As a worst-case example, it is not so obvious that
everyone should use the NFS disk management strat-
egy imposed by Cfengine simply because Cfengine
supports only that strategy. Unless one conforms
somewhat precisely to a rather elaborate scheme,
including a naming convention for network directories
containing the name of the server, several features of
Cfengine are unavailable. As we feel that mount

points should be machine-independent (from bitter
experience in moving user files and having to repair
user scripts), we choose not to utilize these Cfengine
features. Cfengine tries to impose a rather significant
operating policy decision upon us – one we cannot
afford to allow.

In implementing most dynamic policies, the map
from policy to convergent process is so ill-defined that
it becomes a policy decision itself. For example, at
our site, users can gain access to a ‘temporary storage’
area that has no quota, for the purpose of doing things
that require more storage than will fit into their home
directories. But we would like to impose a time limit
on peoples’ use of that storage that is different from a
normal quota. Suppose we find out that a user is using
a large amount of temporary storage for too long. How
do we ‘correct’ that state? We could:

1. Delete some files randomly from temporary
storage and mail a message.

2. Mail a warning, wait a week, then lock the
account until the user comes by to talk about
the problem.

3. Invoke a temporary quota on the temporary
storage area for this user, to force the user to
clean up.

4. Write email to a system administrator describ-
ing the problem.

Clearly, the option we choose determines much about
how users work and feel.

Prolog and PIKT

We chose Prolog as our prototyping language
partially because of the intimate relationship between
it and Cfengine. But we also wished to be able to con-
trol dynamic state, including manipulating user files,
filesystems, and processes. The powers and ease of
use of PIKT [24] inspired us to attempt to add those
powers to the prototype without compromising
Cfengine-like behavior.

There are remarkable similarities between
Cfengine and PIKT. Both implement roughly the same
idea of classes, but to slightly different ends. In
Cfengine, a class is a guard mechanism that deter-
mines which rules apply. In PIKT, a  class instead
determines which lines are used in a script. In both,
classes are primarily a portability mechanism. In
Cfengine, classes insulate one from differences in file
layout and location, while in PIKT, classes determine
which scripts apply to which operating systems, and
help one cope with differences in command output
formats between operating systems. Cfengine’s classes
are logical variables, while in PIKT, classes are vari-
ables in the C preprocessor that become defined or
undefined for each platform. Portability in PIKT’s
scripts is accomplished much like portability in C pro-
grams, by enclosing variants in preprocessor #if...
#endif directives.

Like Cfengine, PIKT’s configuration is separated
into several distinct parts. While Cfengine operates on
files, links, and processes, PIKT acts to detect alarm
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conditions and perform appropriate actions. In under-
standing how we can implement PIKT functions in
Prolog, there are four parts to consider: classes,
macros, alarms, and actions.

PIKT classes are specified much as in Cfengine.
The class of three machines bill, hillary, and monica
(from before) might be constructed as:

watch
members bill hillary monica

However, PIKT interprets classes only on a master
script server, not on the target machine being config-
ured. This server uses class definitions and preproces-
sor directives to adapt generic master scripts to exe-
cute on the target machine, and then ships a class-free
script to the target machine for actual execution.

The resulting scripts are very efficient, because
many decisions have been made before shipping the
script to the target machine. However, this also means
that PIKT scripts cannot rely on any form of knowl-
edge discovery in creating classes, as in Cfengine and
Prolog. Classes that Cfengine and Prolog can discover
automatically must be explicitly declared by hand in
PIKT, including machine type and operating system
version.

In PIKT, as in Cfengine, macros can be used to
code file locations and other local dependencies. For
example, in the PIKT file macros.cfg, one might write:

#if solaris
fstab /etc/vfstab
#endif
#if osf
fstab /etc/fstab
#endif

This makes the macro =fstab evaluate to /etc/vfstab
when executing within Solaris and /etc/fstab within
OSF.

Alarms in PIKT are specified by listing, for each
host, a set of scripts to be run periodically to check for
system problems. Each script is configured to execute
regularly and take action if needed. This feature can-
not be emulated by our prototype, but the Prolog inter-
preter can always be run periodically under control of
the cron periodic execution daemon.

Scripts in PIKT operate on variables read from
logfiles and the output of UNIX commands. For
example, the script:

AnnoyBill
init

status active
level critical
task "Harass Bill"
input proc "=w | =grep clinton"
dat $tty 2

rule
exec wait =write \

clinton $tty < =mesg

will check periodically whether Mr. Bill is logged in,
and write an undisclosed message to each terminal on
which he is working!

The init section describes conditions under which
to do something. The input statement describes a filter
that only generates input to which the rule should be
applied. In this case, the rule will be applied whenever
any line in the output of the w command contains the
string clinton. The second field of that line (the tty
field) will be assigned to the variable $tty before
invoking the rule. The rule will call the program write
to send a message to that tty, where the macros =write
and =mesg must describe the locations of the write
command and message file, respectively.

It is not surprising that such a rule-based execu-
tion is very easy to accomplish in Prolog. In our proto-
type, an equivalent rule looks like this:

annoyBill:-
os(Os),
command_path(w,Os,WPath),
output_tail(WPath,1,Out),
split(Out,’[ \t][ \t]*’,[clinton,Tty|_]),
command_path(write,Os,WritePath),
file_path(message,Os,MessPath),
concat_atom(
[WritePath,clinton,Tty,

’<’,MessPath],’ ’,Command),
system(Command).
?- annoyBill,fail.

The command_path/3 and file_path/3 goals compute
where needed commands and files live. output_tail/3
executes a command and then binds Out successively
to each line after the first during backtracking. split/3
splits this line into fields at spaces, assigning the sec-
ond field to Tty only if the first field is clinton. When
this happens, the write command is built and executed.

Because each Prolog subgoal acts as a natural fil-
ter that limits further operations to valid data, Prolog
easily emulates the function of the PIKT script while
adding additional safeguards against erroneous opera-
tion. The PIKT script will misbehave if one forgets to
define =w, for example, while the Prolog rule will stop
executing in that case. Admittedly, this is much less
efficient that computing system dependencies before
running the script, as PIKT does, but PIKT functions
can be emulated with some performance loss.

Unlike PIKT, however, it is easy to write this
rule ‘at a higher level of abstraction,’ by hiding system
dependencies in subgoals. Consider the rule:

w(User,Tty):-
os(Os),
command_path(w,Os,WPath),
output_tail(WPath,1,Out),
split(Out,’[ \t][ \t]*’,[User,Tty|_]).

This rule tells how to execute a w command and pre-
sent the results through backtracking. Once this is
written, the above script can be written:
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annoyBill:-
w(clinton,Tty),
os(Os),
command_path(write,Os,WritePath),
file_path(message,Os,MessPath),
concat_atom(
[WritePath,clinton,Tty,’<’,

MessPath],’ ’,Command),
system(Command).

Just like writing a subroutine in a script, writing the
w/2 subgoal allows one to forget about the details of
running the w command and concentrate on the action
to take. One can do the same with the action of writing
the message to make the rule even more readable:

annoyBill:-
w(clinton,Tty),
file_path(message,Os,MessPath),
write(clinton,Tty,MessPath).

The Prototype

Our prototype Prolog system administration
interface is based upon SWI-Prolog 3.7.2 [27], a freely
available interpreter that executes both under UNIX
and NT. Its many features include built-in functions
for manipulating files and the ability to call dynami-
cally loaded C functions from within Prolog programs.
This made it easy to adapt the language for adminis-
trative tasks.

We explored the potential of using logic pro-
gramming for configuration control by writing rather
simple ‘interface’ rules, like the ones in the above
examples, that expose system configuration and
dynamic state, and perform common actions. Then we
tried to do the same things with Prolog that we would
do with normal tools and scripts.

The prototype’s system interface began as a very
simple hack. When a kind of system fact was needed,
the Prolog program executed a Perl utility called
‘‘glue.’’ This utility queried the system and provided
the results as Prolog facts. Whenever any fact of a cer-
tain kind was needed, all such facts were loaded, to
minimize external system calls and avoid program
execution overhead. This was a very rough approxi-
mation to what should really be done, and with great
effort, we converted the prototype to use the shared
library support built into the SWI-Prolog interpreter.
This allows information to be transferred directly from
system calls into the interpreter with no script execu-
tion overhead. The current prototype can access sys-
tem information as quickly as a C program using the
same system calls.

Alas, this is only a prototype and has several
serious limitations. The prototype only compiles
under Sun Solaris (which the bulk of our hosts utilize),
and little effort has been made to port it to other archi-
tectures. There is no provision for file transfer
between hosts, and file editing is extremely primitive

by Cfengine standards. The interface implements very
few of the capabilities built into Cfengine: just enough
to perform some convincing tests, as above. Results of
these tests, however, strongly encourage us to imple-
ment more features as time allows.

Performance
It may seem, from the preceeding examples, that

programming in Prolog is easy. This is false! Our pro-
totype simply hides the details of real programming
from the administrator, by providing predefined rules
one can use. These predefined rules are actually quite
complex to craft with any kind of efficiency.

Prolog excels at implying complexity from form.
Usually, a simple statement of what should happen is
enough to make it happen: Prolog infers the process to
do this from the needs one describes. It is very diffi-
cult, however, to make Prolog do something effi-
ciently, because there are many valid descriptions of
how to achieve the same effects, with great variations
in performance.

In any high-level approach, we trade specificity
and control for ease of use. One of the reasons Prolog
is so attractive to us is that describing an instance suf-
fices to operate on all instances. Because of this
power, however, we lose the ability to easily control
iteration in the way to which we are accustomed when
writing scripts. In particular, there is no easy way to
craft a nested loop that iterates over all pairs in the
same set.

Here is a real life example of something difficult
to do in Prolog. We have a directory full of electronic
submissions of homework that we would like to check
for similarity. To do this, we would like to run diff on
all pairs and locate pairs with few differences. We
could write:

diff:-
expand_file_name(’*’,Nodes),
member(File1, Nodes),
member(File2, Nodes),
concat_atom_chars([’diff’,File1,

File2],’ ’,Command),
system(Command).
?- diff,fail.

In this code, we first obtain a Prolog list of all files in
the current directory, then select File1 and File2 from
this list and compare them. It is not so obvious that
this does twice as much work as necessary, because
the two implied loops for selecting files not only com-
pare files against themselves, but also against all other
files in both orders. This does more than twice as
many comparisons as we need.

The most efficient implementation of this loop
is:

pair([File1|Rest],File1,File2):-
member(File2,Rest).
pair([_|Rest],File1,File2):-
pair(Rest,File1,File2).
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diff:-
expand_file_name(’*’,Nodes),
pair(Nodes,File1,File2),
concat_atom_chars(
[’diff’,File1,File2],
’ ’,Command),

system(Command).
?- diff,fail.

In English,
‘‘To diff all files,

get all filenames in a list;
select pairs from that list;
and diff them.’’

The complexity here is in pair/3: ‘‘To select a pair,
make it the first element of the list along with some
other, or repeat that process with some suffix of the
original list.’’ Prolog efficiency is not an oxymoron,
but it takes an expert Prolog programmer to consis-
tently generate non-trivial and efficient Prolog code.

Conclusions

In no way is our prototype the equal of Cfengine
or PIKT, but it does have very important capabilities
not present in either. Using the prototype, one can con-
centrate on what should happen in each case, and
leave scripting of the actual changes to Prolog itself.
With a few more relatively simple extensions, Prolog
can in principle accomplish anything that either of
these tools can do. Prolog programs are not subject to
either the assumptions built into Cfengine or the lack
of dynamic probing capabilities in PIKT. Prolog
scripts are roughly the same length as scripts in either
Cfengine or PIKT, but much easier for an expert Pro-
log programmer to refine for readability and extend
for new capabilities. The chain of logical deduction
involved in Prolog execution is a close match with the
way configuration processes should work. Goals to be
used in that chain can be crafted to force the system
into compliance with requirements, or to actively
probe for system problems. Custom scripts to accom-
plish special purposes can be written in Prolog without
recourse to external scripting languages.

The basic programming metaphor for Prolog,
unification, matches exactly what we have to do in
creating a convergent process: to unify the rules with
the system so that both ‘‘describe the same thing.’’
This is not an easy task in any sense, but the fact that
the language in some sense ‘‘matches the problem’’
makes crafting complex processes easier than when
using normal scripting languages or less flexible con-
figuration languages.

Our prototype illustrates several important
lessons about the problem of configuration and the
power of language. It is possible to configure a system
using a language in which describing a single instance
of a problem suffices to repair all instances. It is possi-
ble to craft service installation scripts that are truly
generic, so that the administrator need not program,
but simply correctly populate databases describing the

system and desired behavior. It is possible to separate
data concerning the invariant system from data
describing operating policies. It is possible to describe
invariant system data once and reuse it for all similar
cases. It is possible to describe both static and
dynamic configuration issues with a single language.

The prototype also reiterates lessons we have
learned whenever we attempt to operate ‘at a higher
level’ than existing tools. Simplicity of a language
reduces the ability to craft efficient programs. Lan-
guage flexibility increases the potential for confusion
in reading programs. Undisciplined use of a flexible
language leads to unpredictable results.

We do not suggest that every administrator
should learn to program in Prolog! Prolog programs
are difficult to write correctly and efficiently. Even in
this simple prototype, one must often repeat code in
several rules in order to emulate classes utilized in one
or two lines of Cfengine or PIKT configuration. We do
not view Prolog as a language for administrators to
use directly, but as an assembly language into which
even higher level descriptions can eventually be com-
piled. This common language for both static and
dynamic configuration management, though cumber-
some in its raw form, can be made much more friendly
by some relatively simple syntactic translations.

Ideally, a true Prolog configuration tool would
handle all the low level details and portability issues,
leaving us to decide the high-level policies to imple-
ment. File and command location databases could be
built with configure, to be used in generic implementa-
tion routines as needed. Configuring the system would
consist of deciding which services to offer and which
periodic configuration tests to enable. Custom Prolog
programming would only be needed if an administra-
tor wished to extend the tool’s capabilities by adding
new services or tests. Our prototype is nowhere near
this ideal, but shows us that this ideal is possible to
attain with effort.
Future Work

Our work on the prototype has only just begun.
We have a long ‘wish-list’ of features to add, all of
which are relatively straightforward to implement.
This list includes giving the Prolog interpreter:

1. generic interfaces to SQL, LDAP, and NIS+
database services, both to request and modify
data.

2. domain-specific interfaces to system files, both
for scanning and updating file contents.

3. extensive, Cfengine-like file editing capabili-
ties.

4. a generic interface to the Simple Network Man-
agement Protocol (SNMP) [20].

5. the ability to request master files from Cfengine
configuration servers.

We are also involved in writing a preprocessor
that will translate easier-to-use configuration instruc-
tions into Prolog, avoiding the need for anyone but the
system designer to code in Prolog directly.
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A Simple Dream

Everyone working in configuration management
would like to find a way to simplify and perhaps obso-
lete this dreary job. The ‘impossible dream’ is that
everyone writing configuration scripts can use the
work of the whole community instead of re-inventing
the wheel for each site and purpose. But so far, while
configuration tools proliferate, it has been difficult to
convince people to distribute and maintain reusable
scripts for configuring systems and implementing
common services. There seem to be ‘‘too many
options,’’ ‘‘too many system dependencies,’’ and ‘‘too
many site-specific assumptions.’’

Our work shows that using logic programming,
one can break the problem of service installation into
small steps so that the deliverables at each step will be
maintainable. These steps can be coded in a single lan-
guage with wide applicability. This language may not
be Prolog, but all evidence suggests that it will have
quite similar capabilities. We will know we have suc-
ceeded when ‘unification’ is something we can do to
human effort as well as system behavior.
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