
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

M O V I N G L A R G E F I L E S Y S T E M S O N - L I N E ,
I N C L U D I N G E X I T I N G H S M F I L E S Y S T E M S

Vincent Cordrey, Doug Freyburger, Jordan Schwartz, and Liza Weissler

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Moving Large Filesystems On-Line,
Including Exiting HSM Filesystems

Vincent Cordrey, Doug Freyburger, Jordan Schwartz, and Liza Weissler – Collective Technologies

ABSTRACT

Since the advent of Logical Volume Managers [LVM], larger individual disk drives, and
high uptime expectations, it is no longer possible at some sites to schedule downtime windows
long enough to move some very large or very critical filesystems to new hardware. Hierarchical
Storage Management [HSM] systems share this problem. While at some sites, users continue to
enjoy the functionality of HSM based on their specific usage patterns, sites whose usage
patterns do not match HSM’s strengths have a more acute case of the same problem when
moving their data to new hardware. This paper presents a unique approach to moving
filesystems that permits a system to remain on-line and accessible. New terminology is also
introduced to assist discussion: Forward Relocation, Reverse Relocation, and Hybrid
Relocation are defined and basic algorithms are presented. While it is true that the total
throughput rate of a traditional dump and restore is higher, the methods presented here require
nearly zero downtime.

The authors have used these techniques to relocate data on filesystems with many small
files during the working day at several sites, as well as to exit HSM systems as part of standard
technology refresh programs. Three case studies, where both types of data were relocated, are
described in their basic detail as successful (and ongoing) implementations. The authors know
of no prior works on this topic and hope to foster further discussion and refinement of the
techniques.

Introduction

In plotting the rehosting of large filesystems long
outage windows seem inevitable. With the ideas pre-
sented here, the authors hope to expand the rehosting
debate by potentially reducing gaps in data availability
traditionally associated with a relocation of data from
one server to another or even within the same server.
While not a perfect solution for all filesystem reloca-
tion projects, some installations may find the nearly
continuous data availability attractive enough to con-
sider implementing one of these techniques.

Background and Terms

Uptime Expectations

As the total user population increased, comput-
ing pervaded the corporate desktop and email is now a
mission critical service. Thus, users have come to
expect production uptime from fileservers. These
users are not interested in computers for their own
sake; rather, they use their systems as tools, so they
are less tolerant of outages. The standard has gone
from users who viewed their computers as sports cars
that they expected to tinker with, to users who view
their computers as telephones with screens. This leads
to the expectation of a ‘‘dial tone’’ whenever they
reach for their keyboards.

So Many Files, So Little Time . . . For Now

Users accumulate very large numbers of files
because they hoard their data and email messages for

years. Nearly all methods for copying filesystems take
much longer with large numbers of files than with
fewer files taking up the same amount of total storage.
The longer copy times can mean that it may take an
entire shift to copy a large filesystem (even when a
full weekend is prepended to the outage window) and
users will not tolerate that much downtime.

Logical Volume Managers [LVM] aggregate
many disks into very large filesystems. Also, some
systems use automounters to supply home directories
to their users from many filesystems. In either case,
the users now demand high uptimes, and long sched-
uled outages are not acceptable at some sites. Thus,
the ability to relocate filesystems On-Line during the
day shift is important, especially at some sites that are
short-handed in support personnel.

As faster filesystems and networks are designed,
this trend will reverse, but for the moment, the pendu-
lum of changing technology has given rise to filesys-
tems too large to relocate off-line during an acceptable
outage window, and has created the need for On-Line
Relocation.

Terminology

Early work with this subject revealed that, to pre-
vent confusion, we needed to establish some fairly
strict terminology. Even this paper required careful
corrections of usage.

This subject deals with the movement of files,
directories, and indeed, whole filesystems. Whether it

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 187

Moving Large Filesystems On-Line, Including Exiting HSM Filesystems Cordrey, et al.

is a discussion of HSM, our new techniques, or tradi-
tional methods, data and files ebb and flow from one
place to another. Thus, we have tried to choose lan-
guage that permits the type of movement to be differ-
entiated. We have adopted vendor specific terms,
industry usage, and attempted to eliminate overload-
ing.
Basic HSM Terms
medium (pl. media) – the smallest discrete storage unit

addressed as a whole; a tape volume, optical
platter, physical disk, logical volume, etc.

migration – the movement of files to deeper levels
within HSM Systems; implies the probable
return of the file to its original location.

migrated – absent from the medium (level) being
examined as a result of migration.

resident – opposite of migrated; object is present on the
medium (level) being examined.

stage-in – to recall from a deeper level of HSM and
make resident.

stage-out – to migrate to a deeper level of HSM and
remove from source medium.

Paper Terms
full on-line – both source and destination filesystems or

directories remain in read-write mode.
semi on-line –at least one of the source or destination

filesystems or directories is not read-write.
relocation – movement of a file or files from one

filesystem or directory structure to another as
different from migration; implies a single, per-
manent movement of the file.

scatter gather – placed and retrieved from non-contigu-
ous locations, different media, or different direc-
tories.

systematic – placed and retrieved from contiguous
locations, the same medium, or the same directo-
ries.

HSM General Principles
Hierarchical Storage Management [HSM] refers

to software that permits automatic migration of data
from on-line storage, usually magnetic disk, to lower
cost secondary and perhaps tertiary storage such as
optical disk or tape. UNIX implementations of HSM
came to the fore in the late 1980’s. HSM helped
answer the call for very large storage systems at a time
when large capacity spinning disk servers for UNIX
systems were expensive and not commonly available
outside of the realm of super computers.

HSM systems work very well for some types of
data, and many sites continue to enjoy excellent ser-
vice from them. However, some early HSM adopters
now find themselves with aging systems that are at or
near the end of their useful life, plotting the relocation
of files either to large fileservers, newer brands of
HSM, or true archival systems.

HSM systems perform well with a small number
of large files but are commonly used at installations
where there are a large number of small files. HSM

systems have a high storage processing overhead and
are therefore inappropriate for small files.

HSM is philosophically different from true
archival systems, but it is commonly abused as such.
Multiple copies back to a baseline or some limitation
on the number of copies is an ‘‘oops’’ recovery fea-
ture, not an archive, and an ‘‘undelete’’ feature is not
explicitly supplied on many systems. A trash can
recovery feature is also not an archive. More to the
point, an HSM system is designed to keep accessible
nominally one most recent copy of a file. Archiving
involves keeping a specific copy of a file that repre-
sents the state of the file at a specific time. Addition-
ally, an archiving system allows access to a large num-
ber of versions of a given file that represent specific
versions accumulated over time. While this may sound
like a revision control system, archiving can be used
even with files that are too large for reasonable differ-
encing, and archiving normally also involves storage
on less expensive media that may be near-line or off-
line. Good archive systems also index all of the ver-
sions of the files that have been archived – they keep
track of multiple versions of the same file with the
same name.

What Changed?

Several factors have changed the technologies so
that large capacity fileservers are now common, and
HSM systems are no longer the only choice for stor-
age of large amounts of data:

• Spinning disk media is far less expensive and
much larger single disk drives are now avail-
able.

• LVMs are now available that allow systems to
aggregate many disks together into very large
filesystems.

• There are now vendors that specialize in large
capacity, high performance fileservers.

• On the user interface front, ‘‘drag and drop’’
GUIs encourage misuse as users copy entire
directory trees wholesale from place to place
without regard to where the data might be
stored.

• The labor costs to maintain HSM systems are
high: the systems are multilayered, complex,
and require highly skilled labor to keep them
running.

• An unanticipated aspect of HSM labor costs is
the fact that both media volumes and databases
require manual garbage collection. This
requires a high degree of skill to accomplish,
and without it, performance gradually declines.

Why Relocate in the First Place?

The simple motivation to relocate the data rather
than abandon it is that you want to keep it. At sites
running large non-HSM fileservers, a constant tech-
nology refresh program is required to stay current:
additional, larger, faster disks are installed; different
filesystem software is added (such as journaled

188 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Cordrey, et al. Moving Large Filesystems On-Line, Including Exiting HSM Filesystems

filesystems); and entire servers are replaced. In these
cases, data on previous generations of hardware and
filesystems must be relocated. This was previously
done during a scheduled outage window. Given large
amounts amount of data and the time it takes to relo-
cate it, the ability to relocate data on-line during the
working day has become extremely useful.

Contemporary with the changes in technology,
several reasons to exit HSM systems have surfaced.
HSM systems, by their very nature, do not provide
real-time access to all of the data. With everything a
click away, waiting is no longer acceptable. Diminish-
ing HSM expertise makes the systems hard to main-
tain in an operational state – everyone who knew how
to deal with it left,, and you’re stuck holding the bag.
Backups on some HSM systems can be slow to com-
plete and add extra layers to a backup scheme, as a
full backup now only represents data resident on spin-
ning disk. The internal complexity of HSM systems
can make them unstable; HSM systems have several
failure modes. Some systems suffer from inter-compo-
nent communications failures which lead to an inter-
ruption of service that may require a full system
reboot to clear. Media failures plague some installa-
tions, while index databases and data files can be cor-
rupted by filled filesystems on some others. Lastly,
because the systems were designed in the late 1980s,
some of them are not Y2K compliant.

Techniques

The technique used to relocate the data from a
filesystem depends on three basic choices:

• File selection (scatter gather vs systematic)
• Data availability (Full On-line through Off-

line)
• Relocation algorithm choice (Forward,

Reverse, Hybrid, or Just Plain Copy)

File Selection
File selection algorithms largely do not matter

when non-HSM systems are being relocated: the files
are usually on the same medium, and there is a very
small penalty for selecting them at random. With
HSM systems, however, the algorithm used can have a
significant impact on the time required to relocate the
data. While this section discusses two basic file selec-
tion algorithms as they apply to HSM systems, there
may be some cases when the concerns addressed here
should be applied to non-HSM systems.

A Word About Scatter Gather Versus Systematic

HSM media volumes, be they tape or optical, are
created as needed. This means that the mapping
between files in an HSM medium and files in a direc-
tory appears to be random. Some HSM systems delib-
erately try to distribute the files onto a larger number
of media to limit the impact of losing any one medium
by spreading the migrated files across many media. So
any given directory or tree will likely have files on
many media volumes.

The definition of the Scatter Gather technique is
to ignore the underlying HSM architecture and file
distribution. The basic strategy of Scatter Gather is
Just Plain Copy. Variations are to copy the entire sys-
tem all at once or one chunk at a time, usually by
directory. With one chunk at a time, planning must be
done to avoid frequent mount table changes. Both of
these variations require the system to be healthy and
take a very long time, because they churn the system
at all of the different HSM levels.

The definition of Systematic for this paper is to
not cross media boundaries by using a knowledge of
the underlying HSM architecture. This implies a lay-
ered approach scoped within migration levels. Sys-
tematic file selection tends to be much faster because
it deliberately controls media mounts. It can also clear
filesystem space permitting the stage-in of files at
deeper migration levels without triggering new migra-
tions to make space available.

Approaches are tailored to the level being evacu-
ated. Any approach at one migration level may appear
Scatter Gather at other levels. The main strength of a
Systematic approach is that the HSM system is not
required to be healthy. Non-healthy systems can have
the healthy parts evacuated first and this can improve
the health of the system. The Systematic approach can
skip over the non-healthy parts of an HSM system,
permitting creative [NON-Front-Door] approaches to
be used for this ‘‘inaccessible data.’’

User Data Availability
Taking the system Off-Line is often the first

strategy considered. On some non-HSM systems, the
outage window required to relocate all of the data is
small enough to be acceptable. This is the standard
dump-restore paradigm not covered by this paper. Very
large, very critical, or HSM systems require too much
time to copy to be able to relocate the data in an out-
age window short enough for their uses or users.

Putting the system in Read-Only mode is a Semi
Off-Line strategy. This prevents new data from being
added to the system. However, it does not end migra-
tion churning on HSM systems, because users con-
tinue to access their own files as a part of their regular
usage. It also means a significant change in work pro-
cess for some sites which use their filesystems as a
primary working area.

Leaving both the old and new storage Read-
Write is a Full On-Line strategy and is the primary
focus of this paper. New data can be created during the
relocation process, and the work process is minimally
impacted. In particular, this strategy was used while
developers were actively running make in their filesys-
tems. An example of moving a critical filesystem
would be relocating /usr [describing the freeing of
blocks for running programs is left as an exercise for
the reader]. This technique can be used to eliminate
downtime, or to turn a long outage window into a
quick reboot. On the other end of the spectrum, some

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 189

Moving Large Filesystems On-Line, Including Exiting HSM Filesystems Cordrey, et al.

HSM systems can take months to relocate their data
which is why a single outage window is unacceptable.

Algorithm Descriptions

Just Plain Copy

The basic mechanism is to use a standard copy-
ing tool like cpio, tar or dump, and replace entire direc-
tories or sections with symbolic links as each directory
or section is completed. This is similar enough to
common Systems Administration practice that no
pseudo code is presented.

Pros

• ‘‘Really Easy’’

Cons

• Very slow (jukebox trashing, filesystem churn-
ing).

• Requires Read-Only or Off-Line mode (down-
time).

• Since process is slow:
• Requires new mount points or remount-

ing of new storage on old mount point.
• Requires user retraining for changed

mount points.
• Requires user education regarding access

to old files.

Forward Relocation

The basic mechanism is the individual replace-
ment of files on the old storage with symbolic links
pointing to the new storage after each file has been
copied. The authors have used this option on all of the
non-HSM filesystems in the case studies.

Pros

• No downtime
• New storage doesn’t require pre-population
• Don’t have to reboot any clients before starting

Cons

• Directory collapses can lead to stale NFS han-
dles

• New files in non-collapsed directories written
to old storage

• Hard Linked files left for last
• Special handling required for emacs and mh

Forward Relocation Algorithm Pseudo Code

• Force Flag
• Unconditional Flag
• emacs problem
• mh problem

find source objects on old storage
this may mean a list of files
just staged-in on HSM Systems

while (source)
does source not exist?

ignore it and get next object
pointless to relocate nothing

is source a relocation link?
check to see if it has been renamed
(basename of link text != basename)

might be emacs, mh or mv...
if renaming wouldn’t overwrite
existing file on dest,

rename destination
if source is a directory

use cpio to duplicate it
if duplication successful,

set ownership and permissions
loop until no further changes:

renames_needed = 0
compare all relocation links
(link text !˜ basename)

renames_needed++
if wouldn’t overwrite

rename dest.
end loop
if renames_needed != 0

report error:
link renaming problem

get next object
is directory empty
or only leave behind links?
yes: if collapse flag is set

collapse it with rm -rf
and replace with
leave behind link,

no: ignore it
and get next object

general check for all remaining types
if target exists and not force flag

ignore it and get next object
prevent overwrites
helps with "emacs"
and "mh" problem

if source older than target
and not unconditional flag

ignore it and get next object
prevent double relocation

if source is a symbolic link
is it actually safe to relocate it?

two pages of discussion
and comments in the code

yes: relocate it with cpio
and replace with link

no: ignore it
and get next object

if source is a file
if ignore migration flag

is file migrated?
ignore it
and get next object

190 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Cordrey, et al. Moving Large Filesystems On-Line, Including Exiting HSM Filesystems

if link_count > 1
if name not in inode table

record inode num and
name in inode table

count instances in inode
table for inode number
(in_table >= link_count)
yes: names listed valid?

copy and replace all
remove from inode tbl

no: get next object
any other file type

use cpio to duplicate it
and replace with leave behind link

end while

Reverse Relocation

The basic mechanism is to pre-populate the new
storage with the tree of directories without copying
any files and make symbolic links pointing to the files
on the old storage. While it is not required, transparent
access to the new storage can be provided by remount-
ing the old storage on a different mount point and
mounting the new storage on the original mount point.
Finally, the links are replaced on the new storage with
files from the old storage. Because there is a poten-
tially large outage window during the pre-population,
the authors have only utilized this method on systems
that can be placed in an Off-Line or Read-Only state.
However, following pre-population and client reboots
as necessary to remount the new storage, the systems
can be returned to the Full On-line state.

Pros

• New files written to new storage.
• Access to new storage does not go through old

storage.
• Handles emacs and mh problem better.

Cons

• Requires pre-population of entire filesystem
with directories and symbolic links (really hard
with 500,000+ files to do in one outage win-
dow.)

• Requires outage window or read-only during
pre-population with symbolic links.

• Requires Client reboot if new storage is
mounted transparently on old mount points.

• Requires User training if new storage is on a
new mount point.

• Not transparent to user (extra outage window or
read-only).

• Hard Linked files left for last.
• Open files may produce stale NFS handles.

Reverse Relocation Algorithm Pseudo Code

• Assume primary user reference point is through
new storage

• Then new storage has true names

duplicate directories only
on new storage

make symbolic links in new storage
pointing to files on old storage

find reverse links on new storage
this may mean a list of files
just staged-in on HSM Systems

while (rev_link)
if rev_link points to a symbolic link

is link a relocation leave behind?
no: if safe,

pull it over
using rev_link’s name
and delete it

yes: delete it
if rev_link points to a file

is file migrated?
if not force copy,

get next rev_link
if link_count > 1

if src_name not in inode table
record src_inode num,
src_name, and rev_link
in inode table

count instances in inode
table for src_inode number
(in_table >= link_count)
yes: src_names listed valid?

rev_links listed valid?
pull over all
using rev_link names
and delete
remove from inode tbl

no: get next rev_link
this might leave
a few behind, but
the inode table
shows which ones...

pull it over
using rev_link’s name
and delete it

if rev_link points to a directory
we really should not see any
directories passed to us
but we can handle them...
if error_on_directory

report an error
get next rev_link

is src directory is empty
or only leave behind links?
yes: collapse it with rm -rf
no: get next rev_link

any other file type
pull it over
using rev_link’s name
and delete it

end while

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 191

Moving Large Filesystems On-Line, Including Exiting HSM Filesystems Cordrey, et al.

Hybrid Relocation

The basic mechanism is to use Forward Reloca-
tion for all rapid access media and switch to Reverse
Relocation for slower media. The Pros and Cons and
pseudo code are as described in the two cases above. This
is useful for very large HSM systems, or ones that have
more than one migration level.

Another Hybrid technique uses a modified
Reverse Relocation which acts more like a Forward
Relocation in that it leaves behind forward relocation
links on the old storage when it replaces the reverse links
on the new storage. This technique can be used to permit
valid access through both the old and new storage and
allows a Reverse Relocation to be used without
remounting the new storage on the old mount point.
However, having both paths available to users can be
somewhat problematic and this technique eliminates the
inherent emacs and mh compatibility of Reverse Reloca-
tion. [The code starts to look very much like Forward
Relocation.]

Pitfalls

Double Relocation Problem

When doing multiple passes over the source filesys-
tems, careful checking must be done to avoid relocating
relocation links destroying valid data on the destination
storage by creating self referential relocation links. This
is especially the case when directories are being deleted
and folded into single symbolic links, where it is easy to
cross into the new storage without noticing. The actual
scripts or programs used must check for this at several
points.

Pathological Filename Problem

With files created by PCs, Macs and GUI applica-
tions, filenames that contain shell special characters have
become common. (In this case, white space is considered
a shell special character since it is a field separator.)
These can be handled in a number of ways. If there is a
small number of such files, find them first and correct
their names in place. If there are no ‘‘quote’’ characters,
try to protect them from being interpreted by the shell. A
more general approach is to use STDIO instead of com-
mand line parameters to pass all filenames. This last sug-
gestion works for everything except filenames that have
embedded carriage returns, newlines or nulls.

emacs and mh

These applications present special challenges
because they rename files rather than reusing the inode
on the other end of a symbolic link. At some sites, front
end interfaces to mh have an additional behavior that
makes use of Forward Relocation difficult: these front
end programs fork and change their working directories
to the mh directories. When these directories are col-
lapsed they become symbolic links and the front end pro-
grams exit. Thus, in some cases, it is best to do directory
collapsing when users are logged off.

If mh only deleted files by renaming them, that
would not be too bad, but it then reuses the filenames it
has cleared up. The effect is that mh renames its files for
most operations and will desynchronize the two filesys-
tems. To keep the filesystems synchronized, an additional
step must be taken, and the relocation worker process
must not relocate newer versions of the files with the
same names.

cpio under SunOS

On SunOS, cpio always returns a zero exit status, so
its exit status cannot be used from within scripts or pro-
grams. The System V version of cpio does not have this
problem.

Post Copy Checksumming

Post copy checksumming using md5 would be a
good feature to implement on unreliable networks and for
the justifiably paranoid.

Inode Creation Optimizations

For better performance, each symbolic link can be
created prior to directory collapse or file copy and mv
used to shift it into place following removal. [mv is
slightly faster than creating an inode with ln -s.]

End Game

Forward Relocation

When relocations have completed, the source
filesystem will have been collapsed down to a single or at
most a few symbolic links for top level directories. The
final goal is to have the new filesystem mount from the
same point as the old filesystem. This is where even For-
ward Relocation may require some client outage.

In an automounted environment where the filesys-
tem is occasionally quiescent on the client (not held open
by some process on the client) the automounter can be
made to perform the remounting of the new storage on
the old mount point transparently. Changing the auto-
mount tables (and signaling the automounters on the
clients) to have the new storage mounted both on the new
or temporary mount point and the original mount point of
the old storage will cause the client machines to use the
new storage exclusively the next time they access and
remount the original reference mount point.

A day or a week later, most of the clients will have
ceased using the old storage. Those clients that have not
remounted the new storage on the old mount point can be
determined by inspection of the old server’s showmount
output. Direct intervention can sometimes be done on the
client: killing the process that has the old storage open
and waiting for the automounter to unmount it before
restarting the process avoids a client reboot. If this fails,
those few clients that remain can be rebooted, but no
server outage is required. Once the old storage has been
unmounted from all clients, it can be taken off-line.

In statically mounted environments, remounting
can also be done one client at a time. With a bit of skill
and luck, only a few clients will require reboots.

192 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Cordrey, et al. Moving Large Filesystems On-Line, Including Exiting HSM Filesystems

Reverse Relocation

At completion, the new storage will have no reverse
links left in it. Any files left on the old storage are proba-
bly abandoned (deleted on new storage) or replaced by
newer versions on the new storage.

If the new storage was mounted on the old mount
point before relocation was started, then the desired
appearance has been attained. If a temporary mount point
was used for the new storage then some remounting may
be necessary. However, if the new mount point can
become a permanent reference, then only an unmounting
of the old storage is required. If remounts are required, a
client outage may need to be scheduled, and user retrain-
ing undone (since the new storage used a temporary
mount point).

In an automounted environment, the automount
tables can be changed and client automounters signaled.
With static mounts, clients will have to be individually
unmounted from the old storage. As with Forward Relo-
cation, the old server’s showmount can be used as a start-
ing point for finding clients who need to be unmounted.

Case Studies

Case 1: Northrop Grumman Corporation

Seminal Case: The Genesis of On-line Relocation

The Northrop Grumman case was the genesis of
Full On-line Relocation techniques. On the system
there, the multi tiered HSM software had deadlocked at
the first HSM level. This level filled to capacity and was
unable to migrate files to deeper levels and, lacking
space, was unable to retrieve files from the next deeper
tier. With the backing store locked up, continuing file
creation on the primary media caused them to fill to
capacity and refuse to take new data. With the primary
media full and the first tier storage deadlocked, no
retrievals of staged-out files could be completed. Any
client systems that referenced staged-out files or tried to
create new files would suffer permanent NFS timeouts
(they used hard mounts for robustness) and would even-
tually hang.

A replacement fileserver large enough to accommo-
date all of the data was already in place, but there seemed
to be no way to relocate the data to it. At that time, over a
hundred thousand of the half million files managed by
HSM were in this state. On a multi-vendor UNIX LAN
of around 200 regular users, at least twenty percent
(20%) of the workstations had to be restarted each day to
circumvent HSM NFS hangs. Something had to yield.

After a month of trying to repair the system, Frey-
burger and Cordrey were seeking a way to avoid aban-
doning all of the inaccessible data. That was when the
innovation to relocate the files on-line by replacing them
with symbolic links was made. At the time, all issues of
losing small amounts of data because of race conditions
became secondary to recovering as much inaccessible
data as possible and resolving client system hangs. All
resident files were relocated one at a time to the new

server and replaced with symbolic links in the hopes that
some of the inaccessible data could be retrieved once
space became available on the old storage.

In the first phase, find and the vendor supplied ver-
sion of ls were used to identify resident files, with cpio
being used to relocate them. As it turned out, freeing
space on the primary media was enough to relieve the
pressure on the HSM system. In the process, more and
more files that had previously been inaccessible became
available again. It was also necessary to manually recre-
ate the HSM databases several times as the filesystems
were evacuated, but that was a well documented process,
already in the manuals supplied by the HSM vendor.
This phase alone was sufficient to completely evacuate
one of the filesystems.

In the second phase, a script was written to iterate
through the database for each filesystem and force relo-
cate those staged-out files that were local to the first tier
HSM storage. Since only a few dozen files remained
when this phase was completed, ‘‘fingerprinting’’ tech-
niques were used to locate, for recovery by hand, those
last few files.

No third phase was needed to recover files from the
second tier HSM storage because the evacuation was
complete. This was despite the fact that the robot was
80% full – all of the data in the robot was stale, repre-
senting deleted and prior versions of current files,
because garbage collection had never been done.

Race Conditions and Problems

No data was lost to race conditions! Some users
even ran make and similar programs in their directories
while those directories were being swept clear of files.
Since the relocation involved about a half million files in
active use by two hundred developers, this came as a
pleasant surprise to Freyburger and Cordrey.

One unsurprising anomaly was encountered: some
executables (web server daemons in this case) exited
when their binaries were relocated.

During the development of the software to do Full
On-line Forward Relocation, two main problems were
encountered: Double Relocation and Pathological File-
names, both of which are discussed in the previous sec-
tion.

Non-HSM Filesystem Relocation

There were two filesystems on the old servers that
were not HSM managed or had never had files staged-
out. Since the servers were slated for decommissioning,
that data had to be relocated as well. One of those two
contained several web sites which supported the entire
corporation, so it had to be available at all times with no
outage.

Having used Full On-line Forward Relocation on
filesystems under HSM management, the authors applied
their software to those normal and critical filesystems.
The relocations completed in a single pass, during the
production day. Further, because the binaries for the http
daemons were stored local to the front end web server

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 193

Moving Large Filesystems On-Line, Including Exiting HSM Filesystems Cordrey, et al.

which served its content from the NFS mounted volume,
the daemons continued serving with no interruptions due
to having their binaries moved out from under them.

Case 2: Hughes Space and Communications

As part of a standard technology refresh program,
an obsolete, non Y2K compliant Convex 3240 was
replaced and the filesystems on it were rehosted to a new
file server. Most of the data was destined for a read-only
section of the new storage, while home directories were
placed in a filesystem with strictly enforced quotas.

Non HSM File Systems

One filesystem had never staged-out files to HSM
tapes. This filesystem was evacuated to the read-only
‘‘legacy’’ disk space in one pass using Forward Reloca-
tion during the production day.

Home directories were handled differently. Since
large numbers of project files had been stored under
home directories, most of those files were destined for
read-only storage. Only dot files and dot directories were
relocated to the new, read-write, home directory storage.
Similar to a Reverse Relocation, directories and files
appearing in the top level of each user’s home directory
were pre-populated with reverse links pointing to the old
storage. The old storage was set to read-only mode by
management request. After this, the users were free to
replace those links with actual files; the reverse links had
been created to reduce the impact of home directory relo-
cation.

HSM File Systems

The system was still working, but the media and
tape drives were aging and failing. It was also too slow
for users to relocate their own data. Due to the extremely
large number of files (approximately 997,000) pre-popu-
lating the new storage with that number of symbolic links
was not practical. Therefore, to minimize user impact,
relocation of resident files was started using Forward
Relocation.

Shortly after the data movement began, manage-
ment requested that the old system be placed into a read-
only state. This changed the availability state to Semi
On-line, and data relocation continued using the For-
ward Relocation algorithm.

Relocation was paused after the resident files were
completed. The Convex was taken Off-line and the pri-
mary reference point for the user community became the
new ‘‘legacy’’ mount point. Shortly thereafter, the HSM
system was rehosted on a physically smaller system.

Following rehosting, the new old server was placed
On-line in Read-Only mode. In this optional step, a
Hybrid Linkder populated the ‘‘legacy’’ storage with
Reverse Relocation links. This permitted users to read
copies of their files even before they were relocated,
reducing the burden of by hand recovery and relocation.

Data movement resumed using Reverse Relocation
by retrieving all files on a particular medium and feeding
their names to the relocation worker program. Some

repair of damaged tapes was done and files from the
repaired tapes were retrieved. Backup tapes were also
used to retrieve files whose HSM tapes had degraded
beyond usability.

On the new storage (a read-only legacy filesystem),
files older than about one year were archived to DLT
tape. Once archived, these files on the new storage were
replaced with symbolic links pointing to the nonexistent
object, archive, so that users browsing the filesystem
would be able to view the names of all files available.

Case 3: RAND

Non HSM Home Directories: Forward Relocation by
Request

All UNIX account home directories (over a thou-
sand) resided on non-Y2K compliant servers, which had
to be upgraded as a part of a standard technology refresh
program. The replacement servers were separate file-
servers with large RAID boxes at each campus.

mh is used pervasively at RAND, thus, because the
resynchronization of the source and destination file sys-
tems was not built into Version 2 of the Forward Relo-
cation algorithm, it was not used to move UNIX account
home directories to the new servers.

However, users could request an early relocation of
their home directories by contacting their help desk. As
part of this standard help desk procedure, Full On-line
Forward Relocation is used to move their home direc-
tory to one of the new servers.

HSM systems: Enhanced Just Plain Copy

This HSM exit was accomplished by Weissler. It is
included for completeness to demonstrate that highly suc-
cessful File System Relocations do not require Forward
or Reverse Relocation.

RAND acquired two Epoch optical hierarchical
storage management systems in 1989-1990. The initial
systems were Sun 4/75 workstations with a proprietary
Epoch operating system based upon SunOS 4.0.3. Epoch
used Ingres as the supporting relational database with
Hewlett-Packard and Hitachi optical Jukeboxes popu-
lated with WORM [write once, read many] media. A
series of upgrades brought the systems up to Sun Sparc
20 workstations running SunOS 4.1.3 with erasable opti-
cal media.

By 1996, it was clear that the systems would have
to be replaced. Backups had become increasingly diffi-
cult as the amount of data increased: it was common for a
full backup to run several days, rendering it of question-
able integrity. Staff turnover left RAND with little exper-
tise in HSM which in turn led to the deterioration of
administration. On going garbage collection efforts
decreased with the staff turnover, resulting in many of the
1200+ optical media being under 50% utilized. The ven-
dor stopped supporting the non-Y2K compliant hardware
which rendered relocation of the data mandatory.

The system was running, healthy, old, and slow.
Because it was healthy, a PR campaign was necessary.

194 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Cordrey, et al. Moving Large Filesystems On-Line, Including Exiting HSM Filesystems

Some users were convinced to buy their own disks, some
wanted the ‘‘higher performance’’ of not having to wait
for stage-ins, and others had to be shown the lower over-
all support cost of newer technology storage systems.

Analysis was conducted to find usage patterns.
Three patterns emerged and data that followed these pat-
terns was copied to different target servers. However,
because the replacement servers did not arrive on site at
the same time, a systematic draining of each optical
media was not possible since only a portion of each
media could be relocated to a given server. The first
server arrived and a portion of the data was moved, and
the process was paused. Relocation temporarily resumed
after the second server was delivered. When third server
arrived, the last of the data was evacuated, some three
months after the process began.

The system was placed in a Read-Only or Semi
On-line state during the relocation. The Epoch utility,
epls, worked rapidly enough to allow media preparation
in the form of pre-load lists per directory. To avoid
thrashing, all files were staged-out to optical storage
leaving the file systems largely empty. Files in the pre-
load lists were then staged-in in bulk using epbsi. Data
was then manually copied using tar in relatively small
chunks. These improvements on the Just Plain Copy
technique virtually eliminated jukebox thrashing. This
makes this example much higher performance than a
brute force Just Plain Copy approach.

Summary

The Forward and Reverse algorithms described in
this paper offer a different approach to data relocation
that does not appear to be in common use. Since they
offer options for providing data availability during the
relocation process, there are benefits to be reaped by sites
choosing to employ these methods. The intent of the
authors is to seed these techniques into the thinking and
planning of Systems Administrators and Managers.

Performance Comparisons

The performance of an On-Line fileserver is
infinitely higher than the performance of an Off-Line
fileserver. While the On-Line Relocation methods pre-
sented here take longer to run on a fileserver when com-
pared with previously available methods, those previ-
ously available methods generally require filesystems to
be made unavailable to users during the copy. At sites
with high uptime requirements, no comparisons of wall-
clock times are relevant.

Since Reverse Relocation requires Read-Only
mode or some downtime, it suffers the same problem as
previously available methods, and should only be used at
sites that can tolerate these changes in data availability
(generally lightly used HSM systems or non-healthy
servers).

Non-HSM Uses

Server replacements can be done during the produc-
tion day using a Full On-Line technique. As the

availability of large capacity disk systems brings them
into wide deployment, the time required to relocate the
files from one server to another is becoming longer. With
these long duplication times, and availability demands,
Full On-Line Relocation algorithms can be used to
reduce the impact of such transitions by minimizing out-
age windows and allowing data to be relocated during the
production day. These techniques can even be used to
relocate files within the same server as would be required
to move from a traditional filesystem to a journaled
filesystem or to relocate large directory trees. Given the
choice of large outage windows or near 100% availabil-
ity, some administrators can reduce the impact of their
relocation projects with techniques similar to these For-
ward and Reverse algorithms.

Limitations

These techniques are not appropriate for all filesys-
tem relocations. They fail to prevent stale NFS handle
errors for environments where the directories are held
open by a process being cd’ed there for long periods of
time. Files used by programs that keep them open for a
long time and change them regularly, like databases, are
likewise inappropriate.

The construction of the programs required to per-
form these tasks is within the capabilities of Sage Senior
(Level 4) administrators. However, caution and fore-
thought must be applied to the construction of the code to
avoid the pitfalls of double relocation and pathological
filenames.

Ongoing Work

Work is under way to enhance the algorithms by
recoding them in C++ with advisory file locking and post
copy check summing. This work will also be published
with significantly expanded pseudo code and will include
a full discussion of when a symbolic link may be safely
relocated.

Author Information

Vincent Cordrey <cordrey@acm.org> first experi-
enced UNIX in 1981 on a PDP 11/45 running Version 7.
He did Systems Administration and wrote custom busi-
ness software from 1984 through 1987, porting the solu-
tion to UNIX in 1988. That was when his work became
almost exclusively UNIX Systems Administration.

Doug Freyburger <freyburger@ieee.org> started in
the computer industry in 1978, working on projects from
custom VLSI design for spacecraft at the Jet Propulsion
Laboratory to stereoscopic video games for a start-up. In
1986, after doing Systems Administration as a sideline
for five years, he switched to doing it full time, and has
been at it ever since.

Jordan Schwartz <jordan@colltech.com> started
his career in data processing as a third shift computer
operator at RAND in 1989, and was promoted to the Sys-
tems Administration group in 1993. He has been a con-
sultant with Collective Technologies since 1998.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 195

Moving Large Filesystems On-Line, Including Exiting HSM Filesystems Cordrey, et al.

Liza Weissler <liza@colltech.com> worked as a
technical writer at Systems Development Corporation
and RAND, but moved to Systems Administration at
RAND in 1987 when she decided it was more interesting
to do things rather than write about them. She joined Col-
lective Technologies in 1999.

196 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

