
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Automation of Site
Configuration Management

Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

Although there are countless tools to track and manage the configuration of large numbers
of Unix systems, there seems to be a lack of tools to manage the interaction and dependencies
between systems. As our site has grown, many machines provide services that are required for
the operation of other machines and applications. We have been unable to maintain accurate lists
of services and servers, and even routine system upgrades have resulted in unexpected service
outages.

To address this problem, we are developing a system to automatically detect many of these
service dependencies, and generate up to date server listings. In addition, it provides a general
framework for indexing and accessing troubleshooting, operational, installation and a number of
other types of documentation. The system also assists in verifying the configuration of systems
being installed, and assists with the real time testing of services.

Introduction

As the number of Unix machines being sup-
ported grows, support groups develop or install more
and more tools to automate and streamline the system
installation and update process. These range from
moderately simple file copying tools such as rdist or
package1 to commercial products such as ‘‘Tivoli,’’ to
any number of individual development efforts such as
Config [12], or GeNUAdmin [9] and others that can
be found in the proceedings from past LISA confer-
ences. Like these sites, we have also developed and
installed tools to manage system configuration.

In addition to managing system configuration, it
is often useful to collect system configuration (both
hardware and software) and state information in a cen-
tral location. This can be done in a number of ways,
such as with syslog [14] or SNMP [11] or via the file
system (see the section on My-State).

While we would all like to work in a problem
free environment, that is often not possible. Failing
that, it is desirable to at least detect system problems
before our users do. Since services are often spread
over many machines, tools have been developed to
detect problems on these machines, either by waiting
for error messages with tools such as swatch93 [8], or
by going out and testing things with tools like pong
[10].

While all of these tools fill important roles in
managing large numbers of workstations, where they
are generally lacking is in dealing with the dependen-
cies between the applications and servers, and with

1Package is a tool supplied with AFS that pulls in files and
directories to a machine based on a configuration file. It de-
tects new versions and installs them as needed.

the maintenance of the configuration files. For exam-
ple, while pong is a great tool for testing large num-
bers of services, it can’t test servers that no one told it
about. While there has been some work in the area of
detecting these dependencies, these have either been
limited in scope to the network configuration such as
Fremont [15] or Ined [13], or have it as part of general
configuration management system, and is restricted to
checking just what is managed via that system [1].

An often repeated request from our Network
Operation Center (NOC), was an up to date version of
the Server List. This was a list of all of our server
machines, and the services each one provided. These
services ranged from domain name service, to print
servers, to license servers (with multiple applications
per server), authentication servers, time servers, mail
servers, file servers, PC and Mac servers and so on. To
make matters worse, there were often multiple ser-
vices per machine, and services were moving from
one machine to another machine to accommodate
changes in OS level, changes in network topology,
security and performance concerns. In addition, short
term test services would often be set up in odd places
to provide a new service, or attempt to isolate a prob-
lem with some other service, and be left in operation
accidentally. This has resulted in a number of
unplanned service degradations or complete failures,
when one staff member takes a machine down for ser-
vice or redeployment, not knowing that someone else
had set up some special service on it. The most recent
example, is a week after the successful upgrade of two
DNS and license service machine, we remembered
that the machine was also the YP master for our site. It
wasn’t until we created a batch of userids for a special
class and no one could sign on, that we discovered the

1997 LISA XI – October 26-31, 1997 – San Diego, CA 155

Automation of Site Configuration Management Finke

problem. The YP master function has been moved
there a year ago when the real YP master machine had
a CPU failure, and never got moved back. Oops.

Name Value Method

hostname simonsrv.sss.rpi.edu hostname
hostid 0x8071640c hostid
ipaddress 128.113.100.12 grepped from /etc/hosts
gateway 128.113.100.244 netstat -r
ypmaster asher.its.rpi.edu ypwhich
memory 128M lscfg
macaddress 08.00.5a.cd.5d.42 netstat
arch power assigned to all rs6000s
model rs6000 250 uname -a
os AIX 4.1 uname -a
swap 256M lsps -a
disk 5596M lspv

Table 1: Sample /etc/MyState file contents

Since this was not the first time something like
this happened, and that the request from the NOC was
quite reasonable, we decided it was time to come up
with a solution. For the past six years, the RCS2

userids at RPI have been managed with a locally
developed package called Simon [2, 3] which is built
on top of an Oracle relational database. In addition to
managing userids, this system also managed other
aspects of our site such as the printing configuration
file [4], the host table and DNS files, and even such
mundane things as our telephone directory [6].

Given our past success with using Simon (and
Oracle) to solve any problem, the direction for this
solution became pretty clear. While the request from
the NOC was for a ‘‘server list,’’ given the nature of
the data, a hypertext document would be better for
general use as you navigate from service to server
instance to client and back. Between the telephone
directory project, and other projects that required the
generation of HTML pages from the database [5], we
had the underlying technology to approach the prob-
lem.

MyState
Like many other sites, we had the desire to be

able to track system configuration in a central loca-
tion. To this end, we wrote a Self_Exam script that
maintains a file called /etc/MyState which holds
a number of records with information on that particu-
lar system. This file would then be moved back into
our central file system as part of the standard
Post_Package3 run and placed in a

2RCS, the Rensselaer Computing System, a collection of
700 workstations and Unix timesharing machines available
to all students, faculty and staff.

3After a successful package run, a post package script was
run that would restart servers, and clean up installation de-
tails that can not be handled by simply copying in a file.

ShippedBackFiles/MyState directory, using
the hostname as the filename.

Each record in the file consisted of three fields,
the item name, the item value, and the method used to
obtain the value. This was important as different OS
versions would report the same item in different ways
or in different units. The data from a typical
/etc/MyState file is shown in Table 1.

These MyState files were useful just as stand
alone files. Since we had them all in the central file-
system, all stored in the same directory, you could
make quick searches for things by using simple UNIX
tools such as grep *, or just simply cat out the file
for the host of interest. Unfortunately, that was about
all you could do with it. Other information such as the
location of the machine, the owner, maintenance sta-
tus, and so forth was not readily available. In addition,
we often were interested in grouping machines by dif-
ferent attributes. For example, OS upgrades often
required that we identify all machines of a certain
type, with less than a certain amount of disk or ram.
In addition, there was no facility for tracking changes
in configuration, or even knowing when a particular
file was obtained (knowing when the configuration of
a machine changed is handy when you have memory
thieves operating at your site!).

In addition to the MyState files, there are often
other interesting machine configuration available on
some platforms. For instance, under AIX, you can
issue an lscfg command and get lots of useful infor-
mation about the hardware configuration of a
machine. We often find ourselves juggling machine
configurations, moving interface cards, disks and
memory between machines as our needs changes.
While the MyState file could tell you how much
RAM a machine had, it would not tell you if you had
one 32MB SIMM or eight 4MB SIMMs installed in a
machine (and how many available RAM slots were
left). Rather than visiting every machine when we

156 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Automation of Site Configuration Management

wanted to ask these questions, or expanding or dupli-
cating the existing MyState files, we decided to
dump everything into the database.

Name Type Size Description

System_Id Num 22 The Simon.Systems.System_Id of the machine in question.
Means Char 12 The facility used to obtain this information. This might be

/etc/My_State, or possible platform specific configuration com-
mands such as lscfg. All hosts should have at least MyState info
recorded.

Item_Name Char 32 The name of the particular item we are recording. For MyState
files, this would be the first column. This essentially addresses the
question ‘‘what’’

Item_Value Char 256 The value for this particular item. For MyState, this is the second
column. This tells us ‘‘how much.’’

Item_Extra Char 256 An additional field to handle extra info for this record. For the
MyState file, this is the means to obtain this particular bit of infor-
mation. This can be important when attempting to compare the
same ‘‘what,’’ since different units or methodologies may have
been employed to get the result. The specific definition of this field
depends on the means.

Date_Obtained Date 7 The date when we first encountered a record of this type. For
CHANGES to a value, this value will be carried forward.

Date_Verified Date 7 The last time we checked this information against the live system.
Date_Obsolete Date 7 This is when this record is obsolete. This can be because the value

changed, or the Item_Name no longer exists.

Table 2: System_State Oracle Table Definition

To this end we defined a new table, Sys-
tem_State, in the Simon database (see Table 2).
We make an entry in the table for each line in each
MyState file. When we first load a MyState file,
we record the System_Id 4 of the host, the means
used to collect the data (in this case, MyState), the
source of the data (in this case, the MyState file),
and for each line, the name of the item, the current
value of the item, and the third field. We also record
the current time and date in the Date_Obtained
field.

When we run the load_system_state pro-
gram on a machine, it selects all the existing records
for that particular machine and means, and sorts them
by Item_Name. It then reads and sorts the data from
the MyState file. Once both of these lists are in
place, it compares them one by one. If there is a new
entry, it is inserted as described above. If an entry is
missing, the record is marked as deleted by setting the
Date_Obsolete field to the current date. if the
Item_Names match, the Item_Value and
Item_Extra are compared. If they are still the

4The System_Id is an internal database key that corre-
sponds to one particular machine. One advantage of this, is
that the entries (except for hostname!) are not impacted by a
host name or domain change, and we can trace the history of
a physical machine.

same, the Date_Verified field is updated. If they
are different, the old record is deleted and a new
record is inserted with the updated information.

In order to handle data sources besides
/etc/mystate, the load_system_state pro-
gram has a list of items to check. Each item has either
a filename to read or a pathname to execute, a flag
indicating file or program, a standard value for the
Means, some parsing information5 to assist in decod-
ing the information and what operating system the
entry can handle. The OS information lets us collect
information using vendor specific commands, such as
lscfg under AIX.

All of this information is available to other
database applications. For instance, we will very likely
use the ‘‘OS’’ information for a machine to sort the
application usage via license server logs [7]. This will
be useful in deciding how to handle version differ-
ences of applications across the different platforms. Of
perhaps more general use to our staff, we also generate
web pages, one for each system, that include adminis-
trative information (owner, sys admin, contract status,
etc), as well as the information for that system stored
in the System_State table. We also generate index
pages for each of the common items and common val-
ues. When generating these pages, the extraction pro-
gram attempts to identify common attributes (such as
memory or disk size) and generate the page. Unique

5Currently we support fixed columns for the fields or char-
acter delimited fields.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 157

Automation of Site Configuration Management Finke

information such as a hostname or ip address do not
get index pages.

Services and Servers

The key to the entire project is identifying all of
the services we provide. These services range from
our AFS cell and DNS, to license serving for applica-
tions, to information services such as email and
usenet. These services are generally provided by one
or more server machines. It is important to maintain
the distinction between the ‘‘service’’ we are describ-
ing, and the ‘‘servers’’ (machines) that we are actually
using to provide the service.

Service Priorities

Critical Provides an essential service to the campus community. Many people
are impacted by a failure. An example would be the Domain Name ser-
vice.

Business High Likely to be an administrative service, these are needed during the busi-
ness day.

Academic High These are things used in the curriculum, often in the classroom. When
classes are in session, these have to be operational.

Moderate A failure here will inconvenience a number of people, but does not
warrant heroic efforts at recovery that the critical or high might require.

Low Services that are nice, but not needed for the overall mission. These
may be very lightly used applications, or more recreational type appli-
cations.

Experimental Generally not in the repair queue at all. The person deploying the ser-
vice may be interested in problem reports, but no one else.

Table 3: Service priorities.

Name Type Size Description

Service_Id Num 22 A Simon.Peoplecount.Nextval value that is used as a the primary key
for the service management system. Many other tables will reference
this column.

Service_Name Char 64 The actual name of the service, such as "Domain Name Server" or
"Xess License Server".

Service_Type Char 32 An optional service type to be used in ordering reports and collecting
similar function together.

Priority Char 32 A rough indication of the priority of this service in general.
Clerk Num 22 The Simon.People.Id of the person to create or last change this record.
Effective_Date Date 7 The date when this record was created or last changed.
When_Inserted Num 22 The Simon.Transcount.Nextval of when this record was inserted into

the database. This makes the Effective_Date somewhat redundant, but
that format is easier to display.

When_Updated Num 22 The Simon.Transcount.Nextval of when this record was last changed.
When_Marked_For_DeleteNum22T{ The Simon.Transcount.Nextval
of when this record is considered obsolete. It may have been replaced,
or simply considered to be deleted.

Comments Char 2000 A place to hold a short description of this service. This information is
included in some reports and on web pages and the like.

Table 4: Service_List Oracle Table Definition

Each service has a number of attributes. One of
the important attributes of each service is its priority.
The priority will help the operations staff determine
the order to try to solve problems when faced with
more than one, and even if a late night page or phone
call to the systems administration staff is appropriate.
For example, a failure of the domain name service will
result in problems all over campus, affecting hun-
dreds, or even thousands of users, as compared to a
failure of the AutoLev6 license server which will only
inconvenience a few people. Thus, we will give a

6I am not quite sure what AutoLev is, but according to the
license server logs, only a few people use it.

158 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Automation of Site Configuration Management

higher priority to restoring the DNS service rather
than restoring the AutoLev service. Our current list of

Figure 1: Service List Screen

Figure 2: Service document entry/edit screen.

priorities7 is listed in Table 3. These priorities are
likely to be revised once we have worked with them
for a while. The priority classifications could be of
interest to our users, but could potentially be a politi-
cal nightmare.

Another attribute of a service that we find useful
is a service type. These are just general categories like
‘‘File Server’’ which would include our AFS file
servers, Novell file servers, NFS exports, and so on.
Other categories include ‘‘Name Servers,’’ ‘‘License
Servers,’’ ‘‘Unix Commands.’’ These types are used
for grouping sets of services together in some of the
index web pages, or when searching for a specific ser-
vice. This information is stored in the Ser-
vice_List table (see Table 4).

All of the services need to be defined manually,
so we needed some sort of program that our system
administration staff could use. Since all of this work is
being done in Oracle, we were able to use
SQL*FORMS8 to come up with a Service List

7Since we are college, the overall mission is to educate stu-
dents and do research. With the possible exception of our
phone switch, non of our operation deals with life-safety is-
sues.

8SQL*FORMS is part of the Developer/2000 package, an
Oracle product that allows you develop GUI programs
quickly and easily. Our current release runs on both X and
Wintel platforms and the next release will generate JAVA for
web applications.

form (see Figure 1) to enter and update information on
services. The form allows our staff to define new ser-
vices, as well as search for and edit existing services.
When entering a new service, once the service name
has been entered, the priority and service type values
are selected from lists of values. This ensures some
consistency and simplifies grouping for output. There
is also a space available for comments on the service;
although the box on the form looks small, we cur-
rently allow comments up to 2000 characters long. An
editor for this field is just a keystroke away. The form
automatically takes care of recording who made the
latest change and when they did this.

There are many other things we want to associate
with services. Unlike that attributes listed above,
which occur only once per service, the others may
have more than one entry per service. To help with
maintaining these, the form has four buttons along the
bottom that will pop up a sub window to allow you to
edit the methods, documents, contact information and
dependencies on other services. The data in these sub
windows are linked to the current record being dis-
played in the Service_List window. This makes
it simple to step through services and see the related
information. The fifth button will bring up the
Servers form, but that is a stand alone form that
does not track the current record in Service_List.
Methods and Servers will be described in later sec-
tions.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 159

Automation of Site Configuration Management Finke

Service Documents
When you press the Show Documents button

the Service_List form, a document entry/edit
window pops up (see Figure 2). Unlike the master
form which only displays a single record at a time, this
form displays up to four records at a time. If there are
more, you can use the scroll bars to move through
them. Each document has four attributes of interest,
the document type, a rank, a format and the actual text
or reference.

As with service types, document types (see Table
5) are generally used for sorting and indexing on the
output pages. However, it would be trivial to generate
lists of services that are missing specific types of doc-
uments, such as ‘‘Troubleshooting.’’ From a manage-
ment perspective, this could go a long way to ensuring
that we have at least some troubleshooting information
for each of the services we offer. If we generalize our
definition of ‘‘service,’’ we can also use this to pro-
vide a general framework to hold much of our system
documentation.

Document Types

Installation Information on how to install the given service; generally from the ven-
dor.

Local_Install Local notes on installing the service here.
Local_User_Doc Locally produced documentation that might be of interest to a user of

this service.
Operational Document for use by operations or systems administration staff; stan-

dard procedures
Overview A document that briefly describes WHAT this service is.
References Pointers to other relating information that may be of interest.
Troubleshooting Information on correcting problems with this service.
Vendor_User_Doc Documentation supplied by the vendor that might be of interest to users

of the service.

Table 5: Document types.

Document Formats

Dvi File Document in DVI (TeX) format. (File Reference)
External Contains a general reference to a book or other offline document.
File Contains a pathname that points to the file, presumably in AFS space. This is

used when due to location or file permissions, the doc in question is not reach-
able via a web server/browser.

Html Contains HTML formatted text.
PostScript File Document in Postscript format (File reference)
Text Contains plain text, no HTML or other formatting information.
Url Contains a URL to the actual information. Should be extracted as a hot link

where appropriate.

Table 6: Document formats

The next document attribute is the Rank field.
This is a number between 1 and 999 that is used to
order documents when more of one type is available
for a specific service. Along with rank, we also
include a document format (see Table 6). Since our

primary output format for the service information is
HTML, we use the document format to determine how
to provide hot links when possible. This allows us to
link in many of our existing documents, most of which
are plain text files (‘‘FILE’’), and a few already on the
web(‘‘URL’’).

The final field in the document screen, is the
Text field where the actual reference or even the
document text can be stored. As with the Comments
field from the master screen, the text can be up to
2000 character in length, allowing for short in-line
documents or very long URLs.

Service Contacts
One document that is usually out of date, is our

list of contacts for each of our applications and ser-
vices. Originally, this was a flat file that would get
updated once or twice a year. An additional limit was
that it only listed technical contacts for the application.
In our current operation, primary support is often pro-
vided by one our two staff members, with other people
providing backup support. In addition, the were often
one or more folks from other departments who might
provide other kinds of support. Another problem with
this list, was that names were not always entered the
same way, so even if you used grep to find your
assigned areas, typos, misspellings and nicknames

160 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Automation of Site Configuration Management

could result in your missing some of your assign-
ments.

To automate this, we added another database
table, Service_Contact_List, which is used to
record Service_Id, Service_Type, Per-
son_Id triples. This is accessed by pressing the
Show Contacts button on the bottom of the mas-
ter form. The Service_Id field provides the link-
age to the specific service. We have defined a few
acceptable contact types (see Table 7) and the Per-
son_Id links to specific person. Since we have the
campus phone directory in the same database, when
we map back to a person’s name, we can also include
their current phone number and email address. This
also makes it trivial to generate a list of services
assigned to each person. This can be especially helpful
when someone leaves, we quickly can determine what
areas need support.

Service Contact Types

Admin-Support Person to contact for administrative change to service, in the case of the
DNS, this would be hostmaster.

Main-User Person(s) who have a special interest in the service and may need to be
notified in case of changes or long term problems.

Primary-Support Primary person(s) to contact in case of an outage.
Secondary-Support Backup to the primary person(s) to contact in case of an outage.

Table 7: Contact types.

Service Dependency Types

Operational The service is needed for regular operation.
Periodic The service is needed from time to time, but things can run for a while

before a failure will occur.
Startup The service is needed at startup, but not once the server is up and run-

ning.
Administration The service is needed to make administrative or configuration changes.

Table 8: Service dependency types

Service Dependencies
We want to record the interdependence between

services; for example, our PC printing service depends
on the proper functioning of our Kerberos authentica-
tion service. If both are down, you have to first bring
the authentication service. Interest in establishing the
service dependency chart was greatly increased when
we had a UPS failure and all of our servers were
turned off at the same time (the first time this had hap-
pened with this configuration.), and there was concern
that we might not be able to bring the whole set of
systems back up.9 Like the contact information, the
service dependency window can be accessed by

9This might seem to be rather farfetched, but we had been
faced with this exact problem a number of years ago, and
had to do some quick re-cabling in order to get our file
servers back up after a power failure.

pressing the Show Links button on the bottom of
the master form. Again like the contact info, the
dependency information is stored in Service_Id,
Dependency_Type, Service_Id triple. The
second Service_Id is in fact the service id of the
service that the current one depends on. One interest-
ing offshoot of this, is that you can now have depen-
dency chains! For example, in order for Pro/ENGI-
NEER to run, it needs to contact the Pro/E license
server. However, the Pro/E license server required that
the Domain Name service be running. As a result,
Pro/ENGINEER indirectly needs the DNS in order to
start up. Fortunately, this dependency chain is easy to
detect, so when the list of required services for
Pro/ENGINEER is generated, not only are the direct
dependencies (Pro/E License Server) listed, but the
second order dependencies (DNS), and even higher
are included automatically.

There is more than one kind of dependency
though. In the previous example, Pro/ENGINEER
needed the license server to start running, but once it
is running, it no longer needs it. Some services, such
as our SAMBA10 service requires that the AFS service
be up and running all the time. At the other end of the
spectrum, we have services like our Domain Name
service that require AFS if you want to make a config-
uration change (as the tools are stored in AFS), but
normal operation and even startup are independent of
AFS. To help keep track of this, we have defined some
dependency types as seen in Table 8.

10Samba is a software package that allows wintel users to
access their Unix files.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 161

Automation of Site Configuration Management Finke

A Method to this Madness

One of the objectives of this project was to auto-
mate the discovery of servers providing any given ser-
vices and ideally have ways of testing that the servers
are configured to provide the service and that they are
actually providing that service. There are many ways
to discover servers that are, or should be, providing a
service. Depending on the service in question, you
may be able to query some master authority such as
the Internic to find your name services, or read a
license file stored in the campus wide file system to
find license servers. If you are on a server machine,
you can look for particular configuration files, log
files, or even running processes. Other potential
servers can be detected by asking the clients of the ser-
vice. A quick look in the /etc/resolv.conf
should give you a list of machines that SHOULD be
running name servers, or a call to ypwhich should
tell you who should be running nisbind.

Method Result Types

Client_List This method returns a list of server/client pairs, either hostnames or IP
addresses.

Exit 0 Ok This method reports success by exiting with a return code of 0.
Server_List This method returns a list of server names and/or IP addresses.

Table 9: Method result types.

In addition to detecting possible servers, given a
list of servers, it would be nice to be able to test those
servers to see if they are in fact operational or at least
configured correctly. These test methods may be very
similar to the detection methods.

Attempting to write a program that can verify the
configuration of all servers at a site could be an
immense task. But many large tasks can be handled if
you can break them up into a bunch of smaller tasks.
Given that we have identified each individual service,
and identified a number of different ways to try to
detect or check a service, we can finally get around to
writing our actual methods. Each method can a short
program, a perl script, a SQL script or any other handy
technique that will perform one particular test or gen-
erate a list of potential servers. These should be easy
to write, and in many cases will incorporate tests
developed for other systems such as pong [10].

Running Methods
When the time comes to run a method, you need

to consider the runtime environment for the method.
When you define a method (using the Show Meth-
ods button in the master form, you specify both the
UNIX userid and the UNIX group that should be set
when it runs. This helps avoid running things as root
that don’t need to be root. We also make a couple of
other assumptions about the run time environment, at
least for the global cases; that it is running on the
Simon Database machine which allow access to the
database without ID/Passwords pairs and that

adequate AFS and DCE credentials exist to access
files of interest in the AFS and DFS cells. In addition
to the runtime environment, we also need to know
how to make the method report back to system. Rather
than requiring that each method invoke some program
to report results, we instead defined several method
result types (see Table 9). Depending on the method,
it can simply set the return code before exiting, or out-
put a list of values.

Global Detect Methods
A global detect method can detect a potential

server from just about anywhere. In practice, this
really means that it can look in the campus file system
(and has appropriate file access to do so), or can query
the Simon Database to extract configuration informa-
tion, or query some master server.

An example of detecting a server via the file sys-
tem, would be the Matlab license server. When a Mat-
lab client starts up, it consults a license file to find the
names of the license servers. In order to extract this
list, just issue the command in Listing 1. This returns
a list of all the license servers that Matlab clients will
try to use. In this case, we didn’t have to write any
programs at all, just use existing system commands.

We can also write methods that contact other
information servers for the list of servers. These can
be trivial, such as the first of the following examples
which determines our YP servers, or the second exam-
ple which is slightly more complicated which we use
to find our current web servers.

ypcat ypservers
nslookup www.rpi.edu | \

grep ’Addresses:’ | \
cut -d: -f2

The second example could in fact be more complex.11

Ideally, we would poll each of our name servers
(assuming we can figure out where they are!) and ask
each of them which machines they think provide our
web service. But generally, all of our name servers are
pretty good about giving out the same information.

All three of the above example return a list of
servers providing a given service. The first two give
one server per line, and the last gives a comma

11This example actually has at least one fatal flaw – if there
is only one address, the column is labeled ‘‘Address:,’’ but
the address of the server is ALSO printed with an ‘‘Ad-
dress:’’ label.

162 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Automation of Site Configuration Management

delimited list of servers. The
find_server_state program can handle both
types of lists.

Server Config Detection Methods
Another way to check for a particular service on

a machine is to the system configuration files on that
machine. For example, running a PH server12 would
require the line ‘‘%define PhServer’’ in the
/etc/package.config file. The next package
run would install all the parts for that server. Alter-
nately, we could attempt to install one manually by
making an entry in /etc/inetd.conf for the
server and a cron entry to regenerate the local PH
database. In any event, seeing any of those three
would indicate that at least an attempt was made it
install a PH server. To detect that, we could execute
the commands in Listing 2. If any one of those three
indicators is found, we flag the host as a potential PH
server (note: the three grep commands should all be
one line, joined by a logical ‘‘or ’’).

awk ’/SERVER/ {print }’
/campus/mathworks/matlab/5.0/distrib/etc/license.dat

Listing 1: Extracting license list.

grep -q ’%define PhServer’ /etc/package.config || \
grep -q ’csnet-ns’ /etc/inetd.conf || \
grep -q CreatePHDir /var/spool/cron/crontabs/root

Listing 2: Checking installation attempts

ypwhich
cd /dept/its/config/admin/etc/ShippedBackFiles/etc/MyState ;
grep ypmaster *.rpi.edu | cut -d: -f1,3

Listing 3: Finding servers.

Server Activity Detection Methods
A different approach to finding a service on a

machine, is to look for indications that the server pro-
cess is running. This could be as direct as checking ps
for a process of the appropriate name, or by looking
for traces left behind by a server such as log files, or
messages written to system log files such as
/var/adm/messages. You would want to be
careful in checking log files that you are looking at
recent log files. A quick check for an Oracle server
using the ps command could be something like:

% ps aux | grep -v grep \
| grep -q ora_smon

12‘‘ph’’ is phone directory server originally developed at
University of Illinois at Urbana

Client Server Detection Methods
Perhaps one of the best ways to discover what

servers your machines are expecting to find, is to ask
the individual machines; after all, they are trying to
use the services. These checks need to be done on the
client machine, either directly by accessing the client
file system (reading /etc/resolv.conf) or run-
ning daemons (ypwhich) or indirectly by reading
saved data from MyState or things like that. In this
case, it is important to also record which client
detected a given server, as the error may be with the
client. Two approaches to finding yp servers, the first
runs on a client and just returns the server name, and
the second runs globally and returns client/server
pairs. One danger in reading saved data, is the data
may be out of date. See Listing 3.

Global Server Testing
Instead of detecting servers, we can also use

methods to test if a server is currently providing a ser-
vice. In general, to test a service from a central point,
you need to contact it, or ‘‘ping it.’’ There has been a
lot of work in the area at other sites, and we hope to
start taking advantage of that soon. At this point, we
have not done a lot with testing services.

Server Config Verification
Another useful check of a service, is to see if it

configured correctly on the actual server. This is simi-
lar to the configuration detection methods, except you
want to verify that ALL parts are in place, and not just
some of them. However, in our current installation,
most services are installed with package, which
attempts to install all the required files and configura-
tion changes. Any failures in this process are reported
and generally corrected pretty quickly. In general, we
find that services are installed and operating, or not
installed at all; configuration errors are rare.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 163

Automation of Site Configuration Management Finke

Local Server Activity Verification
Testing services by checking for running pro-

cesses is also possible, although is often a crude check
in cases where a server is hung up, but still appearing
in ps. Most of our services fall into two categories,
‘‘reliable,’’ where they run forever, or ‘‘flaky’’ where
we have generally put something in place to fre-
quently check them and restart them if needed. In
these cases, automatic restoration of the service seems
more important than reporting the failure.

Figure 3: Server Entry/Edit Screen

Servers

Once a service has been defined, we can assign
one or more servers to that service. This relationship
can be established manually by a staff member, or can
be detected automatically using one or more of the
methods defined in the previous section. When a
server/service relationship is set up, it is assigned a
status value. For entries made by staff members, this
could be something like ‘‘PRODUCTION,’’ ‘‘TEST’’
or ‘‘OBSOLETE.’’ For entries discovered by the sys-
tem, it would get the value ‘‘UNVERIFIED.’’ This is
actually considered an error condition in most cases,

and must be changed by a staff member. Until then, it
will be included in a daily error report sent to the
admin staff. The objective here is to ensure that some
human has considered WHY we have a new server, to
help avoid dependencies on servers we do not know
about.

Since any given service may be provided by
more than one server, we need to be able to store mul-
tiple server records for each service. To this end, we
have defined the table Server_List. This table
records the relationship between a service and a par-
ticular server machine. This includes the status as
described above, the date when the status was
changed, and who changed it, along with their com-
ments. It also records an optional review date with
comments on that. It also will record automatic detec-
tion information from the methods described above.
For each method (global, server and client detect), it
records the date first detected, the date cleared (if the
last check failed), and the date the last check was
done. In addition, for client detection, the Sys-
tem_Id of the client is also recorded. Our original
intention was to have all the user interface for this

164 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Automation of Site Configuration Management

project be using a web server, but some problems with
getting that installed in a timely manner, resulted in us
developing a SQL*FORM application, Server_
List, to allow our staff to update the status values
for each server record (see Figure 3). The upper half
of the form has fields that can be updated by staff
members, and the lower half has the three sets of
detection results. One of the side effects of the client
detect process, is that we get a record for each client
of a particular server/service pair. Rather than display
all of these records on this form, there is a switch at
the bottom of the form that allows the user to include
or exclude the client detect records. However, since
client detection information may be important, when
we record client detection information (date set, etc),
we also record the status and date checked and date set
in the ‘‘master ’’ record (the record that has the global
and server detect information, as well as the manual
information. We don’t expect our staff to go in and
validate each client record individually. In order to
help with the validation process (where a staff member
changes the status from ‘‘Unverified’’ to something
else), we bring up a warning message and arrow, alert-
ing the user to the questionable status.

Figure 4: Server (System) HTML page for Netserv1

Weaving Everything Together

With the information described above, we are
able to generate the server lists requested by the NOC

staff. Not only the list of machines providing each ser-
vice (which is handy when the call comes in that says
the XXX service is broken), we can easily generate
the list of services provided by any given machine
(which is handy when we learn that a particular
machine has gone down). These lists are generated
automatically and sent to the NOC as needed.
Although hardcopy lists may seem old fashioned, they
are nice to have when you are reading them by flash-
light, attempting to determine what order to power up
things once the UPS is repaired.

Server (System) Pages
We wanted more than that though. By generating

HTML pages, we are able to include a lot more infor-
mation, not only for services, but for the servers them-
selves. We are already collecting all of the
/etc/MyState information for all machines, so
this provides the basis for servers pages, in fact, all we
need to do is add the services information as part of
the MyState page generation and we have a pretty
detailed picture of any given machine. Figure 4 is par-
tial view of one of the server (actually, system) pages.
This includes some system information (machine type,
location, serial number) drawn from the Hostmaster
database, the server information, listing two services
that this machine provides, and continues on to DNS
information, and the MyState information, allowing
our system administrators to get a pretty complete

1997 LISA XI – October 26-31, 1997 – San Diego, CA 165

Automation of Site Configuration Management Finke

picture of the machine. In order to aid navigation, we
include a lot of links. We have both generic links back
to the appropriate index pages (if you select ‘‘Criti-
cal,’’ you will go to the index page of critical priority
services.) and specific links such as ‘‘RPI.EDU
Domain Name Server,’’ which takes you to that page
(see Figure 5).

Figure 5: Service HTML page for RPI.EDU Domain Name Service

Service Pages
This page contains a lot of information about this

service. As you can see in Figure 5, it starts with some
general information about the service, a short descrip-
tion, followed by the priority, service type and contact
information. The contact information automatically
includes the person’s phone number and email address
if available. The email address is even set up as a
mailto: URL. The next section lists which
machines are providing that service, along with the

status, and who verified that status and when. Clicking
on the machine name will bring you to the page for
that machine (like Figure 4). The next section lists the
services that THIS service requires, and what type of
dependency, along with any comments on that depen-
dency. Following that, we include whatever documen-
tation we have available for that service, ordered by
type; again, we have provided hypertext links where
possible. Finally, we have a list of services that rely on
this service. As with the server(system) pages, we try
to provide all the relevant information about a service
in one neat package, and provide quick navigation to
the related topics.

Other Pages
We also generate a number of other types of

pages. We can generate document pages, sorted both
by document type (troubleshooting, operation, etc),

166 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Automation of Site Configuration Management

and by service type (Unix Command, License Server,
etc). We also generate Contact pages, so you can eas-
ily check what services are assigned to a given indi-
vidual. Using the relational database to store the infor-
mation gives us many options in organizing and dis-
playing the data; hopefully we can be all things to all
people.

Future Directions

Our immediate challenge is to populate the
database with the rest of our services. I expect we will
expand the definition of ‘‘service’’ to include all of the
applications we support, if for no other reason, than to
simplifying tracking the contact information and docu-
mentation for each application.

We will also be writing programs and SQL
scripts to provide cross checking for errors and incon-
sistencies. These will range from missing information
such as contact person and troubleshooting documen-
tation, to differences found by different types of detec-
tion. If a server is detected with one method and not
with another, there is a sure sign that something needs
to be investigated.

Once we get the latest version of the Oracle Web
server installed, I expect to make the forms available
as web pages. We will also be investigating generating
at least some of the pages in real time.

We are also considering dumping the entire ser-
vice/server web tree to a CD which would be available
for use on a stand alone machine (handy for when you
have major problems), or even for the on call person
to take home to run on their home machine. While this
has the drawback of the CDs getting out of date, they
still may be handy as a reference, especially when net-
work access is slow or missing altogether.

References and Availability

All source code for the Simon system is avail-
able for anonymous FTP. See ftp://ftp.rpi.edu/pub/its-
release/simon/README.simon for details. In addi-
tion, all of the Oracle table definitions are available at
http://www.rpi.edu/campus/rpi/simon/misc/SIM2/SIMON-
index.html .

Given that much of the output of this system is
web based, it would be very nice to be able to make all
the pages generally available. If nothing else, it would
make it a lot easier for our own staff to access it. How-
ever, before we can release the pages, we need to
assure ourselves that releasing it will not result in the
unplanned release of confidential information or
reducing site security. If there is sufficient demand, I
can release a subset of the pages for demonstration
purposes with sensitive material removed.

Author Information

Jon Finke graduated from Rensselaer in 1983,
where he had provided microcomputer support and

communications programming, with a BS-ECSE. He
continued as a full time staff member in the computer
center. From PC communications, he moved into
mainframe communications and networking, and then
on to Unix support, including a stint in the Nysernet
Network Information Center. A charter member of the
Workstation Support Group he took over printing
development and support and later inherited the Simon
project, which has been his primary focus for the past
six years. He is currently a Senior Systems Program-
mer in the Server Support Services department at
Rensselaer, where he continues integrating Simon
with the rest of the Institute information systems, and
also deals with information security concerns.
Reach him via USMail at RPI; VCC 319; 110 8th St;
Troy, NY 12180-3590. Reach him electronically at
finkej@rpi.edu. Find out more via http://www.rpi.edu/
˜finkej.

Bibliography

[1] Paul Anderson, ‘‘Towards a high-level machine
configuration system,’’ USENIX Systems Admin-
istration (LISA VIII) Conference Proceedings,
pages 19-23, USENIX, San Diego, CA. Septem-
ber, 1994.

[2] Jon Finke, ‘‘Automated userid management,’’
Proceedings of Community Workshop ’92,
Papers 3-5, Rensselear Polytechnic Institute,
Troy, NY, June, 1992.

[3] Jon Finke, ‘‘Relational database + automated
sysadmin = simon,’ Invited Talk for SUG-East
93, Sun Users Group, Boston, MA, July, 1993.

[4] Jon Finke, ‘‘Automating printing configuration,’’
USENIX Systems Administration (LISA VIII)
Conference Proceedings, pp 175-184. USENIX,
San Diego, CA, September, 1994.

[5] Jon Finke, ‘‘Sql_2_html: Automatic generation
of html database schemas,’’ Ninth Systems
Administration Conference (LISA ’95), pp
133-138. USENIX, Monterey, CA, September,
1995.

[6] Jon Finke, ‘‘Institute white pages as a system
administration problem,’’ The Tenth Systems
Administration Conference (LISA 96) Proceed-
ings, pp 233-240.USENIX, Chicago, IL, Octo-
ber, 1996.

[7] Jon Finke, ‘‘Monitoring application use with
license server logs’’ The Eleventh Systems
Administration Conference (LISA 97) Proceed-
ings, USENIX, San Diego, CA, October, 1997.

[8] Stephen E. Hansen and E. Todd Atkins, ‘‘Auto-
mated system monitoring and notification with
swatch,’’ USENIX Systems Administration (LISA
VII) Conference Proceedings, pp 145-156.,
USENIX, Monterey, CA, November, 1993.

[9] Dr. Magnus Harlander, ‘‘Central system adminis-
tration in a heterogeneous Unix environment:
Genuadmin,’’ USENIX Systems Administration

1997 LISA XI – October 26-31, 1997 – San Diego, CA 167

Automation of Site Configuration Management Finke

(LISA VIII) Conference Proceedings, pp 1-8,
USENIX, San Diego, CA, September, 1994.

[10] Helen E. Harrison, Mike C. Mitchell, and
Michael E Shaddock, ‘‘Pong: A flexible network
services monitoring system,’’ USENIX Systems
Administration (LISA VIII) Conference Proceed-
ings, pp 167-171, USENIX, San Diego, CA,
September, 1994.

[11] Todd Miller, Christopher Stirlen, and Evi
Nemeth, ‘‘satool – a system administrator’s
cockpit, an implementation,’’ USENIX Systems
Administration (LISA VII) Conference Proceed-
ings, pp 119-130, USENIX, Monterey, CA,
November, 1993.

[12] John P. Rouillard and Richard B Martin, ‘‘Con-
fig: A mechanism for installing and tracking sys-
tem configurations,’’ USENIX Systems Adminis-
tration (LISA VIII) Conference Proceedings, pp
9-18, USENIX, San Diego, CA, September,
1994.

[13] J Schonwalder and H Langendorfer, ‘‘How to
keep track of your network configuration,’’
USENIX Systems Administration (LISA VII) Con-
ference Proceedings, pp 189-193, USENIX,
Monterey, CA, November, 1993.

[14] Rex Walters, ‘‘Tracking hardware configurations
in a heterogeneous network with syslogd,’’ Ninth
Systems Administration Conference (LISA ’95,
pp 241-246, USENIX, Monterey, CA, Septem-
ber, 1995.

[15] David C. M. Wood, Sean S. Coleman, and
Michael F. Schwartz, ‘‘Fremont: A system for
discovering network characteristics and prob-
lems,’’ USENIX Technical Conference Proceed-
ings, pp 335-347, USENIX, San Diego, CA, Jan-
uary, 1993.

168 1997 LISA XI – October 26-31, 1997 – San Diego, CA

