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Adaptive Locks For Frequently Scheduled
Tasks With Unpredictable Runtimes

Mark Burgess & Demosthenes Skipitaris – Oslo College

ABSTRACT

We present a form of discretionary lock which is designed to render unreliable but
frequently scheduled scripts or programs predictable even when the execution time of locked
operations may grow and exceed their expected scheduling interval. We implement our locking
policy with lock-unlock semantics and test them on the system administration language
cfengine. The locks are controlled by too-soon and too-late parameters so that execution times
can be controlled within fixed bounds even when scheduling requests occur randomly in
addition to the periodic scheduling time. This has the added bonus of providing an anti-
spamming functionality.

Introduction

When two or more instantiations of a program
use a resource concurrently, it can lead to contention
between the competing processes and unpredictable
results. Application programs (for example, mail-read-
ers or daemons) usually avoid this situation with the
help of a lock so that only a single instantiation can
run at a given time. A lock is a device which assures
that only one process can use a specific resource at a
given time [1, 2]; an application lock makes the exe-
cution of an application program into an exclusive
resource. A typical approach to locking is to write a
short file which contains the process ID of the running
application [3]. The file has a unique name and is
therefore trivially-locatable by multiple instantiations
of the program. An application lock is generally ade-
quate for programs which start and then expect to con-
tinue more or less indefinitely, e.g., daemons such as
cron and mail readers, but it can lead to unfortunate
problems if used to block frequently or periodically
run programs or scripts. If the duration of such a pro-
gram is capable of exceeding its scheduling interval,
then there could be an overlap between instantiations
of the program or a failure of the program to be started
at the correct time, and this must be dealt with in a
sensible way. This problem is of particular interest in
connection with automated system administration
where complex scripts are often scheduled by cron,
but may also be started by hand.

Let us give a concrete example. Consider a pro-
gram, run hourly by cron, which executes a remote
command on a series of hosts; one can imagine a pro-
gram which distributes or makes copies of key files.
The time for this job to complete depends on many
factors: the size of the files, the speed of the network,
the load on the participating hosts etc. If the network
latency time were high, or if an RPC error occurred
then this script or program could hang completely or
fail to complete inside its allotted hour. After the next
elapsed hour, the hanging lock would result in an

annoying error and a failure of the program to perform
its task. If left unlocked, there could be contention
between multiple instantiations of the program and
inconsistent results.

Network services present a related problem.
Consider a program which is initiated by a network
connection to a particular port for the purposes of
updating one or more resources. It is desirable to lock
such a program to avoid contention between multiple
connections. It might be appropriate to lock the entire
process with a single threaded connection. Service
demultiplexers like inetd contain the functionality
required to serialize access. On the other hand, it
might be better to lock only specific resources. We
might wish to go even further and restrict the fre-
quency at which the program can be run at all. Such a
contingency could be used to prevent spamming of the
network connection or even the accidental wastage of
CPU time. All of the above examples may be thought
of in terms of resource sharing in a concurrent envi-
ronment.

If we focus our attention more to the problem of
resource control we gain a new perspective on the
problem of multiple program instantiations. Rather
than locking an entire program, we lock smaller parts
which are independent. The idea here is that it is use-
ful to use discretionary locks to control only specific
resources required within a program [4, 5]. Such
‘local’ locks might allow a program to run partially,
blocking collisions, but would admit access to the
busy resources on a one-by-one basis. This might not
always be desirable though: the scheme could result in
awkward problems if the resources were critical to the
operation of the program as a whole. The program
might be forced to exit without performing its function
at all and thus time spent executing the partial-pro-
gram would only be CPU time wasted. Unlike locking
of kernel resources, or database operations, the co-
existence of multiple programs does not necessarily
require us to preserve every operation and serialize
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them, it is sometimes sufficient to ensure that only the
most up-to-date instantiation is allowed to run at a
given time. It could also be acceptable to have differ-
ent instantiations of a program running concurrently,
but in such a way that they did not interfere.

In spite of all the conditionals in the above, it is
possible to address a large proportion of the cases
encountered by system tasks. In this paper we are
interested in the first case where it is meaningful to
lock self-contained ‘objects’ within a larger program
(these are usually referred to as atoms in related litera-
ture). Such a scheme is appropriate for many system
administration scripts which bundle resource-indepen-
dent operations. We aim to create a more intelligent
approach to the locking problem, which is robust to
unpredictable failures and which provides certain
assurances against hanging processes or failure to exe-
cute. We do not exclude multiple instantiations of pro-
grams running in different threads, but instead try to
ensure that they cooperate rather than contend. The
granularity of the locking scheme has to be chosen
carefully to achieve sensible and predictable
behaviour and we take some time to describe the
behaviour in detail.

The locking semantics we describe here are
motivated by our desire to equip the system adminis-
tration robot cfengine [6, 7, 8, 9] with a flexible
but autonomous mechanism for avoiding contention
and spamming in a distributed, multithreaded environ-
ment. By introducing our new locking policy, cfengine
can function as an integrated front-end for cron and
network-initiated scripts, effectively creating a single
network-wide file for starting regular and intermit-
tently scheduled programs which is protected against
spamming attacks or accidental repetition. Although
intended for cfengine, the locking policy we have
arrived at is applicable to any situation where pro-
grams are scheduled on a time scale which is compa-
rable to their runtime. They would be particularly use-
ful as an addition to scripting languages such as Perl,
Guile, Tcl and even Java.

Traditionally attention has been given in the liter-
ature to the problem of locking of shared memory
resources and concurrent database transactions using
discretionary locks, mutexes, semaphores and moni-
tors [4, 5]. Resource locks in distributed systems have
also been discussed in connection with fragile commu-
nication links [11, 12] and independent parallelism
[13]. Application locks do not seem to have enjoyed
the same interest in the literature, perhaps because of
their apparent triviality, but they are widely used in
concurrent and shared applications and are closely
related to all of the above issues.

In the present work we wish to illustrate how a
simple modification of the most trivial application
locks can lead to enhanced autonomy of scheduled
systems. By implementing such locks in the auto-
mated system administration robot cfengine we show

how this is directly relevant to the reliability of auto-
mated system administration. Our locks are a general-
ization of the concurrent lock concept, ignoring the
strong ordering of the atoms, but including garbage
collection and protection against undesirable repeti-
tion.

Locking Semantics

All locking begins by defining atomic opera-
tions, or critical sections: these are the basic pieces of
a program that must run to completion, without the
disturbance from third parties. In other words, atoms
are all-or-nothing pieces of a program. Atoms are pro-
tected by GetLock(), ReleaseCurrent-
Lock() parentheses within the program code.

GetLock (parameters)

/* Atom code */

ReleaseCurrentLock ()

Serialized access to these atoms is assured by
encapsulating each one with an exclusive lock. To cre-
ate a locking policy, one must find the most efficient
way of implementing resource control. If we lock
objects which are too primitive (fine grain), we risk
starting programs which will only run partially, unable
to complete because of busy resources. This would
simply constitute a waste of CPU time. On the other
hand, if we lock objects which are too coarse, logi-
cally independent parts of the program will not be
started at all. This is unnecessary and inefficient. In a
concurrent environment there is no reason why inde-
pendent atoms could not run in separate threads,
allowing several instantiations of a batch program to
‘flow through’ one another. This assumes however
that the order of the atoms is not important.

By defining suitable atoms to lock, one is able to
optimize the execution of the tasks in a program. Sev-
eral approaches to locking may be considered. A lock-
manager daemon is one possibility. This is analogous
to many network license daemons: a daemon hands
out tickets which are valid for a certain lifetime. After
the ticket expires, the program is considered overdue
and should be killed. A major problem with a daemon
based locking mechanism is that it is highly time con-
suming and that it is susceptible to precisely the same
problems as those which cause the uncertainty on pro-
gram runtimes. Use of flock() is another possibil-
ity, but this is not completely portable. A realistic
approach needs to be more compact and efficient.

Implementation

We have chosen to implement locks using regu-
lar files and index nodes. By using a unique naming
algorithm, we are able to instantly ‘know’ the name of
a lock without having to search for it or ask a manager
for the data. This minimizes time consuming calls to
the network or to disk.
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In order to secure a unique name, we need to
provide enough information to be able to identify each
atom uniquely. This is presently accomplished by
passing a string to the lock function which can be
combined with other elements such as the host on
which the lock was created and any other relevant
information. For convenience we classify atoms with
an operator/operand pair. For example, consider a
lock request to edit a file. In this case the operator
would be ‘‘edit’’ and the operand would be the name
of the file. The names must be processed to expunge
unfortunate characters which would lead to illegal file
names.

CanonifyName(char *buffer)
{
for (sp = buffer;

*sp != ’\0’; sp++)
{
if (!isalnum(*sp))

{
*sp = ’_’;
}

}
}

We use a function CanonifyName(name)
which returns a string suitable for use as a filename. It
suffices to swap illegal characters for an underscore,
for instance.
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Figure 2: A schematic illustration of the behaviour of locks with respect to the scheduling interval ∆t and the pa-
rameters IfElapsed and ExpireAfter.

In order to function properly, the lock-name must
be different for each distinct atom, but must be con-
stant over time so that multiple instantiations of the
program will always find the same lock. The time
information should therefore not be coded into the
name of the lock; instead, one relies on the time

stamps on the inodes to determine their age. For
example, when editing the file /etc/motd on host
dax, a lock named

lock.cfengine_conf.dax.
editfile._etc_motd
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Figure 1: The adaptive lock components for an atom.

We create two kinds of lock within the Get-
Lock() call: a lock for active threads of execution
which blocks multiple instantiations of a process, and
a permanent lock which records the last time at which
the resource was accessed; see Figure 1. The latter
information can be encapsulated in a single inode
without using any disk blocks and provides the infor-
mation necessary to restrict the frequency of access.
We call this an anti-spamming lock.

If a lock already exists for a specified atom, and
that lock has not expired, the atom remains locked and
access to the atom is denied. Lock expiry occurs when
a certain predefined period of time has elapsed since
the active lock was created. In this case, a garbage col-
lection mechanism attempts to carefully eliminate the
process attached to the hanging lock (if it still exists)
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and then remove the old lock, replacing it with a new
one and permitting the killing process to take over the
task. The third possibility is that no active lock exists
for an atom, but that the time since its previous execu-
tion is too short. This information is gleaned from the
permanent lock. In that case access to the atom is also
denied. This feature gives us the ‘anti-spamming’
functionality. A record of these lock transactions is
kept for subsequent analysis if required. This indicates
when and how locks were created and removed,
thereby allowing problem cases, such as locks which
always need to be removed forcibly, to be traced.

GetLock(operator,operand,ifelapsed,expireafter,host,now)
{
sprintf(LOG,"%s/program.%s.runlog",LOGDIR,host);
sprintf(LOCK,"%s/lock.%s.%s.%s",LOCKDIR,host,operator,operand);
sprintf(LAST,"%s/last.%s.%s.%s",LOCKDIR,host,operator,operand);

lastcompleted = GetLastLock(); /* Check for non-existent process */
elapsedtime = (now-lastcompleted) / 60;

if (elapsedtime < ifelapsed)
{
return false;
}

lastcompleted = CheckOldLock(); /* Check for existing process */
elapsedtime = (now-lastcompleted) / 60;

if (lastcompleted != 0)
{
if (elapsedtime >= expireafter)

{
pid = GetLockPid(); /* Lock expired */
KillCarefully(pid);
unlink(LOCK);
}

else
{
return false; /* Already running */
}

}

SetLock();
return true;
}

Figure 3: A schematic algorithm for implementing the locking policy. The function call GetLock() takes argu-
ments which are used to build a unique name. Operator and operand pertain to the atom which is to be locked.
The expiry time and elapsed time limits are times in minutes, and the now parameter is the system clock value
for the time at which the lock is created. The function GetLastLock() creates the anti-spamming ‘last’ lock
if it does not previously exist. This is important for theoretical deadlock avoidance.

To make the locking behaviour user-configurable we
introduce two parameters called ExpireAfter and
IfElapsed, which have values in minutes. See Fig-
ure 3. ExpireAfter describes the number of min-
utes after creation at which a lock should expire. It is
measured from the creation time-stamp on the active

lock to the current value of the system clock. The
variable IfElapsed describes the number of min-
utes after which it becomes acceptable to execute the
same atom again. It is measured from the modification
time stamp of the anti-spamming lock to the current
value of the system clock.

We choose to read the current time as a parame-
ter to GetLock(), rather than reading it directly in
the locking function, for the following reason. The
most correct time to use here could be construed in
one of two ways: it could be taken as being the time at
which the program was started, or as the exact time at
which the lock creation takes place. The difference
between these times could differ by seconds, minutes
or hours depending on the nature of the job being
locked. By using the time at which the program was
started for all locks throughout the program, one
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effectively treats a ‘pass’ of the program as a cohesive
entity: if one lock expires for a given value of
ExpireAfter, they all expire. A certain ordering
of atoms can be preserved. If, on the other hand, one
always reads the present value of the system clock
directly, the locking mechanism becomes sensitive to
the length of time it has taken to execute the different
parts of the program. Both policies might be desirable
in different situations, so we do not see fit to impose
any particular restriction on this.

When a lock has expired, we try to kill the owner
process of the expired lock. The process ID of the
expired process is read from the active lock. Then the
signals CONT, INT, TERM and KILL are sent in that
order. On some systems, INT is the only signal that
will not hang the process permanently in case of a
disk-wait situation, thus INT is sent first. Then the
default terminate signal TERM is sent, and finally the
non-ignorable signal KILL is sent. Sleep periods of
several seconds separate these calls to give the kernel
and program time to respond to the signals. The CONT
signal is placed first in case the process has been sus-
pended and wants to exit straight away. This should be
harmless to non-suspended processes.

Adaptive Locks In cfengine

Our locking mechanism was designed and imple-
mented with cfengine version 1.4.x in mind. Cfengine
is a descriptive language and a configuration robot
which can perform distributed system administration
on large networks [6, 7, 8, 9]. A cfengine program is
generally scheduled as a cron job, but can also be initi-
ated interactively or by remote network connection.
Cfengine can examine many hundreds of files, system
processes and launch dozens of user scripts depending
on the time of day and the host concerned. Cfengine’s
job is to coordinate these activities based the state of
the system. The state comprises many variables based
on host type, date, time, and the present condition of
the host as compared to a reference model. Its total run
time involves too many variables to be practically pre-
dictable.

Opening cfengine to the network places an extra
onus on its behaviour with respect to scheduling.
Although designed in such as way that it does not give
away any rights to outside users, cfengine is intention-
ally constructed so that general users (not just root)
can be allowed to execute the standard configuration
in order to update or diagnose the system, even when
human administrators are not available. The mere
thought of this is enough to send convulsions down
the spines of many system folks, and it would indeed
be a cause for concern unless measures were incorpo-
rated to protect such a provision from abuse. Adaptive
locks will therefore play a central role in a ‘connected’
cfengine environment in the future.

We have tested our adaptive locks with cron ini-
tiated cfengine as well as with remote connections

with some success. The locks do indeed fulfill their
role in preventing seizures and overlaps which can
occur due to unforeseen delays. The locking of indi-
vidual atoms means that, even though a particular
script might run over its allotted time, other scripts
and tasks can be completed without delay, come the
next scheduling time. Silly mistakes can also be dealt
with unproblematically: a cfengine program which
starts itself is impervious to the apparent recursive
well, provided the IfElapsed parameter is not set
to zero. This is, after all, simply an example of spam-
ming (see below).

Adaptive locks are very important for cfengine:
cfengine is a tool which is supposed to automate basic
system administration tasks and work as a front end
for user-scripts, allowing administrators to collect an
entire network’s scripts into a single place and provid-
ing a net-wide front-end for cron. In order to be effec-
tive in this role, cfengine must support a high degree
of autonomy. Cfengine atomizes operations in differ-
ent ways. Some operations, such as file editing and
script execution, are locked on a per-file basis. Other
operations which could involve large scale traversals
of the file system are locked per class of operation.
The aim of the locking policy is to make the system
safe and efficient – i.e., not to overload to the system
with contrary tasks.

Previously, cfengine processes were locked by a
single global lock. If a process were interrupted for
some reason, a hanging lock would remain and cause
warning messages to be printed from the affected
hosts the next time cfengine was scheduled. Certain
cfengine processes would overrun their allotted time:
typically the weekly runs which perform extensive
system checking and updates of system databases.
This would happen once a week, generating useless
mail which everyone would have been happier not to
receive. Bad NFS connections through buggy kernels
have been known to hang scripts. Also, bugs in
cfengine itself, which manifest themselves only under
special conditions, could result in a core dump and a
hanging lock. Although each isolated occurrence of
these problems was relatively rare, the cumulative
effect on a large network could be substantial enough
to be an irritation. The system administrator would
then be required to chase after these old locks and
remove them.

The new locks allow several cfengines to coexist
as different processes, without interference. Moreover,
since one of the purposes of automation is to minimize
the amount of fruitless messages from the system, the
original locking policy was clearly not in tune with the
cfengine’s autonomous philosophy. Using the new
adaptive locks, cfengine can clean up its own hanging
processes without the intervention of a human, and
even better: silently. In large network environments
such silence is golden.
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With large scale system checking, the total num-
ber of locks used in a single pass of cfengine might
approach several tens or even a hundred on an busy
system, but only one active lock is present per active
thread. (We do not normally expect more than two
threads for normal system administration tasks.) The
anti-spamming locks take up only a single inode each
and since most file systems have thousands of spare
inodes, this usage is hardly a concern. The first part of
Table 1 shows runtimes for a small cfengine run which
sets 24 locks, while the last part shows a run which
sets 32 locks. Some of the operations involved in the
second run are large. Although the difference in real
time seems large for the smaller run, the difference in
user and system time is much smaller. The actual CPU
time spent to set and remove the locks is not high,
which means that we wait for the disk when creating
and deleting the locks. For the larger run, the differ-
ences are almost the same, but here the dominating
part of the run is the cfengine operations itself, not the
administration of locks.
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(Start cfengine #1)

#1 A starts Lock A

#1 A ends Unlock A, write last lock

#1 B starts (Start cfengine #2) Lock B

#2 A starts / exits Can't lock A, too soon

#2 B starts / exits Can't lock B, already exists

#2 C starts Lock C

#2 C ends Unlock C, write last lock

#1 B ends (End cfengine #2) Unlock B, write last lock

#1 C starts / exits Can't lock C, too soon

(End cfengine #1)

Figure 4: Diagram of actions versus time for a cfengine process which calls itself recursively. This illustrates the
way the locks prevent infinite recursive loops.

Cfengine can be exposed to infinite loops from
which it will recover gracefully. Figure 3 illustrates a
cfengine program which calls itself. Suppose we have
a cfengine program which contains three atomic oper-
ations A, B and C. Suppose also that B is a shell com-
mand which executes cfengine. Let us then examine
how the locks handle the execution of this program,
assuming i) that the scripts have not been executed for
a long time > IfElapsed and ii) that the locking
parameters have ‘sensible’ values.

Small locks no locks diff

real 3.3 1.1 2.2
user 0.3 0.3 0
sys 0.4 0.3 0.1

Large locks no locks diff

real 12.8 10.0 2.8
user 2.3 2.2 0.1
sys 4.2 4.0 0.2

Table 1: Real, user and system time in seconds for
two different cfengine runs.

The example in Figure 4 shows how no more
than two cfengine processes will be started. When
cfengine is first started, it executes atom A, locking
and unlocking it normally. When it arrives at B, a lock
is acquired to run cfengine recursively (since this has
not previously occurred) and a second cfengine pro-
cess proceeds to run. Under the auspices of this sec-
ond process, a new lock is requested for A, but this
fails since it is too soon since the last instance of A
from process #1. Next a lock is requested for B, but
this also fails because B is busy and not enough time
has passed for it to expire. Thus we come to C. Since
C has not been executed, cfengine obtains a lock for C
and executes it to completion, then releasing the lock.
Process #2 is then complete and so is atom B from
cfengine process #1. The lock for B is released and
cfengine attempts to finish process #1 by getting a
lock for C. This fails however, since C was just
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executed by the process #2 and not enough time has
elapsed for it to be restarted (or killed). The first pro-
cess is then complete.

Notice how two processes flow through one
another. The real work in A and C (which could have
been done by a single process) simply gets shared
between two processes, and no harm is done.

A similar sequence of events occurs if a process
hangs while executing an atom (see Figure 5). Sup-
pose that an old instantiation of (process #1) managed
to execute A successfully, but hung while executing
atom B. Later, after the lock on B has expired, another
cfengine (process #2) will execute A again, kill the
previous lock on B and execute B, then execute C.
Here we assume that B hangs for some spurious rea-
son, not because of any fundamental problem with B.
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(Start cfengine #1)

A starts / ends Lock created / removed

B starts { hangs Lock created

(Start cfengine #2)

Lock created / removedA starts / ends

B killed and restarted / B ends Old lock removed, new one established,
then removed

Lock created / removedC starts / ends

Figure 5: Diagram of actions versus time for a cfengine process which has hung while executing some action B.
The lock expires and a new cfengine takes over the remaining work, killing the old process along the way.

Similar scenarios can be constructed with remote
connections and more convoluted loops. All of these
either reduce to the examples above or are defeated by
cfengine’s refusal to copy from a host to itself via the
network (local copying without socket waits is used
instead). Spamming attacks from malicious users are
stifled by the same anti-spamming locks.

For various reasons our implementation of locks
in cfengine includes logging of lock behaviour. This
allows us to trace the executing of scripts and other
atoms in a cfengine program and gain an impression
of how long the individual elements took to complete.
This information could then be fed back into the lock-
ing mechanism to optimize the parameters IfE-
lapsed and ExpireAfter. We have also added a
parameter to limit the maximum number of cfengine
processes which may be started simultaneously to
cover various contingencies whereby multiple
cfengines might be started unintentionally. One exam-
ple of this is that a hanging NFS filesystem might
hang cfengine over a long period, preventing it even
from receiving expiry signals which would normally
clear up the problem.

Deadlock and Strange Loops

One of the drawbacks with locking mechanisms
is that they can, through unfortunate interactions, lead
to deadlock if the system in which they are used
admits circular dependencies. In most of the cases we
encounter in system administration the likelihood of
this occurring is insignificant, but there is nonetheless
a theoretical possibility which is worth addressing.

In a single threaded application, the use of our
locking policy renders deadlock impossible unless the
ExpireAfter or IfElapsed parameters are set
to silly values (see next section). Deadlock (a non-
recoverable hang) can only occur if concurrent pro-
cesses are running in such a way that there is circular
waiting, or a tail-chasing loop. We assume that the
atoms themselves are safe, since no locking policy can
protect completely against what happens inside an
atom.

Starvation is a possibility however. This means
that certain actions may not be carried out at all. A
simple of example of this is the following: if every
instance of an atom overruns its allotted time, and the
expiry time for the atom is shorter than its scheduling
interval, then the atom will be killed at every schedul-
ing interval, never completing its task even once.

A related concern is that of spamming, or the
senseless repetition of a given atom, either by accident
or through malice. Adequate protection from spam-
ming is only assured if the IfElapsed parameter is
not set to a very low value.

An atomic operation which contains an implicit
call to itself will never be able to enter into an infinite
loop, since the locks prevent more than a single
instantiation of the atom from existing.

Predictable Behaviour

The success of any locking policy depends on
the security of the locks. Locks must be impervious to
careless or malicious interference from other pro-
cesses or users. If not secure from interference, it is a
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trivial matter to defeat the locks and open programs to
unpredictable behaviour. Deleting all the lock inodes
suffices to subvert the locking mechanism.

Locks may also be defeated by setting the
parameters ExpireAfter and IfElapsed to
zero. In the former case, proper exclusion of con-
tentious processes will be disabled, and in the latter
protection from spamming will be disabled.

IfElapsed Result

T Prevents atom from execut-
ing too soon (before T min-
utes)

T=0 Impotent, spamming possible

T → ∞ Run atoms once only

Table 2: Lock behaviour for various values of the
variable IfElapsed

It is assumed that users of the locks will not sab-
otage themselves by setting these parameters with silly
values. It would be an interesting investigation to see
whether optimal values of these parameters could be
found for a specific type of atom, and whether the val-
ues could even be determined automatically.

ExpireAfter Result

T Makes atoms interruptable after
T minutes

T=0 Impotent, nothing is locked

T → ∞ Never expire, deadlock possible

Table 3: Lock behaviour for various values of the
variable ExpireAfter

In order to deal with atoms which frequently
overrun their allotted time, we may note a rule of
thumb, namely that ExpireAfter should generally
be greater than IfElapsed. If ExpireAfter <
IfElapsed, expiry will occur every time a new
atom is started after an overrun. This is probably too
soon, since the aim is to give the atoms a chance to
complete their work.

The function of the active locks is to enforce a
correct or sensible interleaving of the atomic opera-
tions. The optimal definition of atoms can play a key
role in determining the correctness of behaviour. The
so-called locking granularity is central to this issue. A
central assumption in our treatment here is that the
atoms themselves do not lead to subversive or incor-
rect behaviour. No locking policy can effectively
restrict what happens within the atoms.

To illustrate the importance of granularity, con-
sider an extreme example in which two concurrent
threads contain a circular wait loop. Suppose two
threads each run at regular intervals (Figure 6).

Thread #1 performs two operations in sequence:
the first is to sleep until object X is created, the second
is to create object Y. In thread #2, the operation sleeps
until Y is created and then object X is created. Clearly
neither thread can proceed in this circular wait loop
and deadlock ensues.

Let us now consider the two alternative ways of
locking these actions and the resulting behaviour. If
we lock both actions as a single atom, then expiry will
cause the threads to die and be restarted after a certain

Wait for X

Create Y

Wait for Y

Create X

Thread #1 Thread #2

Figure 6: A two threaded example with circular wait-
ing.

time. However, each time the threads are started, they
fall into the same trap, since they can never proceed
past the first operation. If, on the other hand, we lock
each operation as separate atoms, the deadlock can be
broken provided the locks are correctly removed from
the killed process and the anti-spamming locks are
updated.

Then the scenario is as follows: The first time the
threads run, they fall into deadlock. After a certain
time, however, the threads expire and one or more
threads is killed when a new process tries to run the
atom. If we assume that IfElapsed is greater than
∆t, the scheduling interval of the program then, as the
new threads start, insufficient time will have elapsed
since the last lock was written for each thread, and the
first operation will not be executed. This allows the
offending atom to be hopped-over and the deadlock
will be circumvented.

The assumptions in this scenario are clear:
• Locking each operation separately implies that

it is safe to execute the operations indepen-
dently.

• The IfElapsed parameter must be set to a
value which is greater than scheduling time for
the atom (not necessarily just its encapsulating
program), and the anti-spamming lock must
already exist. This means that the permanent
lock should always be created if it does not
already exist, otherwise deadlock is possible.

• The ExpireAfter parameter must be set to
a value which is greater than the scheduling
interval.

No greater assurances against deadlock can be
given, nor do we attempt to cover every avenue of cir-
cular dependency. The possible cases are quite com-
plicated. If silly values are chosen for the parameters
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IfElapsed and ExpireAfter, we can theoreti-
cally end up in a deadlock situation. For our purpose
of utilizing locks in autonomous system administra-
tion, the likelihood of such strange loops is small and
of mainly theoretical interest. We therefore decline to
analyze the problem further in this context, but end
with the following claim. If ∆t is the scheduling inter-
val (the interval at which you expect to re-run atoms),
then

ExpireAfter > ∆t ≥ IfElapsed
ensures correct and sensible behaviour. What ever one
sets ExpireAfter to, its true value can never be
less than that IfElapsed, since this defines the rate
at which the locks are reexamined.

All of these theoretical diversions should not
detract from the real intention of parameters: namely
to provide reasonable protection from unforeseen con-
ditions. For normal script execution, on an hourly
basis, we recommend values approximately as fol-
lows:

∆t 1 hour
IfElapsed 15 mins

ExpireAfter 1 hour 30 mins

Conclusions

The locking policy introduced in this paper
essentially solves the problem of hanging and crashed
processes for cfengine, using a minimum of system
resources. Although the simplicity of the algorithm
could make the autonomous garbage collection proce-
dure inappropriate for certain programs, in most cases
of interest to system administrators, the behaviour is
sensible and correct. The principal advantage of these
locks is that one can always be confident that the sys-
tem will not seize up; the flow of updates remains in
motion.

How do system administrators use these locks in
practice? The simplest way, which is completely trans-
parent, is to use cfengine as a front-end for starting all
scripts. The has several advantages, since cfengine
provides a powerful classing engine which can be
used to make a single net-wide cron file. Cfengine can
do many things, but it is valuable even solely as a
script scheduler. The alternative to this is to imple-
ment the locks in Perl or shell or some other scripting
language. This is easily accomplished since the locks
use only files (echo >> file) and inodes (touch
file). Time comparisons are harder in the shell, but
not insurmountable. Languages like Perl and
Guile/scheme should implement the locks as a library
module.

One minor problem we have run into occurs with
programs which are started through calls to rsh. In
this case, the rsh process does not always terminate,
even when the process started by rsh has exited. If
such a program is killed, when a lock expires, pro-
cesses will not necessarily die in the intended fashion.

Thus while the new instantiation of the program may
continue to restart the entire task anew, this can leave
hanging processes from the ostensibly-killed instantia-
tion, which simply clutter up the process table. A pos-
sible solution would be to kill the entire process group
for the rsh, but this method is not completely portable.
This is presently a teething problem to be solved.

Adaptive locks contribute an insignificant
amount of time to the total runtime in trials with
cfengine and conceal the occurrence of spurious mes-
sages associated with the locks. Our locks are simple
to implement and may be used in any program where
one has atomic operations whose order need not be
serialized into any strong order. An added side effect
is that programs become effectively re-entrant to mul-
tiple threads.

It would make a fascinating study to determine
whether the intelligence of a program like cfengine
could be extended to encompass learning with respect
to the jobs its carries out. Could, for instance, the val-
ues of IfElapsed and ExpireAfter be tuned
automatically from the collective experience of the
system itself? For example, an atom which is fre-
quently killed could be allowed more time to com-
plete. Conversely, programs which are started at every
IfElapsed interval could indicate an attempt to
spam the system, and measures could be taken to warn
about or restrict the use of that atom. It is surprising
how many interesting issues can be attached to such a
simple idea as the adaptive lock and we hope to return
to some of them in the future, as part of our pro-
gramme of research into self-maintaining operating
systems.

Availability

Source code for our locking scheme is available
as part of the GNU cfengine software distribution.
This may be collected from any GNU repository, or
from the URL in [7]. All of this software is distributed
under the GNU public license.
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