
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Implementing a Generalized Tool
for Network Monitoring

Marcus J. Ranum, Kent Landfield, Mike Stolarchuk, Mark Sienkiewicz,
Andrew Lambeth, and Eric Wall – Network Flight Recorder, Inc.

ABSTRACT

Determining how you were attacked is essential to developing a response or
countermeasure. Usually, a system or network manager presented with a successful intrusion has
very little information with which to work: a possibly corrupted system log, a firewall log, and
perhaps some tcpdump output.

When hackers come up with a new technique for cracking a network, it often takes the
security community a while to determine the method being used. In aviation, an aircraft’s
‘‘black box’’1 is used to analyze the details of a crash. We believe a similar capability is needed
for networks. Being able to quickly learn how an attack works will shorten the effective useful
lifetime of the attack. Additionally, the recovered attack records may be helpful in tracking or
prosecuting the attacker. Since we’ve developed a general purpose statistics-gathering system,
we believe it will be useful for more than just security. For example, a network manager may
desire an historical record of the usage growth of certain applications, or details about the
breakdown of types of traffic at different times of day. Such records will provide useful
information for network managers in diagnosing performance problems or planning growth.

This paper describes an architecture and toolkit for building network traffic analysis and
statistical event records: The Network Flight Recorder. The NFR uses a promiscuous packet
interface to pass visible traffic into an internally meta-programmed decision engine which routes
information about packets and their contents into statistical or logging backends. In addition to
packet analysis and collection, the NFR’s internal architecture permits network managers to
sample interesting portions of network traffic for logging or statistical analysis. The NFR
programming language is simple, but powerful enough that you can perform reasonable analysis
on traffic before choosing to record it. For example, you might analyze SMTP transactions but
only choose to record those relating to a user who is sending spam or abusive E-mail. The
analysis language includes a capability for generating alert messages which the rest of the
system queues, multiplexes, and delivers. A simplified hyper-query interface allows extensive
browsing of the NFR’s stored datasets and statistics from any Java-enabled browser. The NFR is
currently being deployed at a number of ISPs and commercial sites, and is available for
download in source code form from www.nfr.net.2

Background and Motivation

In 1990, one of the authors managed a rather
chaotic network, including an embryonic firewall,
using NNStat as a security tool. NNStat [1] was
designed as a statistical analysis system for the
NSFnet backbone, not as a security tool, but possessed
several attractive properties:

1. It permits accurate and highly condensed sum-
maries of an event on the network.

2. It permits flexible specification of types of
events to record.

3. It permits flexible storage of information about
the events that are observed.

1They are actually Safety Orange.
2Use of the NFR software is free for noncommercial and

research purposes. A commercial release of the software is
being developed.

While NNStat’s authors were concerned about,
for example, how much RIP traffic was crossing the
network, a security conscious network manager could
use NNStat to record all RIP traffic emanating from
any systems that were not on an ‘‘approved list’’ of
routers. Suddenly, NNStat was useful as a crude tool
for mapping who and what, as well as for setting an
alert to fire when something happened that the net-
work manager believed should not. NNStat, wrapped
with a bunch of quick and dirty shell scripts and cron
jobs, served well as a poor man’s intrusion detection
system. Other network managers have implemented
similar systems using tcpdump, or more sophisticated
special-purpose network watchers like ARPwatch [2],
TCPwatch [3], Netman [4], clog [5], Netwatch [6],
and Argus [7]. Other intrusion detection burglar
alarms have focused on features of the host operating
system, such as tcp_wrappers [8], klaxon [9], and toc-
sin [10]. Many of the monitoring systems implemen-

1997 LISA XI – October 26-31, 1997 – San Diego, CA 1

Implementing a Generalized Tool for Network Monitoring Ranum, et al.

ted in the past contain features found in NFR. We
believe that the new ground the NFR breaks is by
making the filtering and analysis process internally
programmed, rather than static-coded into the moni-
toring application.

NFR is intellectually evolved from NNStat, but
includes a more generalized and powerful filtering
language, as well as the ability to trigger alerts and log
complete packet information. A triggering specifica-
tion lets data be selected from reassembled TCP ses-
sions, providing a powerful capability for usage mea-
surement as well as audit. The authors intend to use
NFR as a platform for exploring auditing and logging,
while simultaneously providing a freely available,
high quality data source for researchers working on
intrusion detection.

Overview of the NFR Architecture
The architecture of NFR was designed as a set of

components, each tailored to a specific activity. Data
is gathered by one or more packet suckers, forwarded
to the decision engine for filtering and reassembly, and
possibly recorded to a backend for storage or statisti-
cal processing. The query interface is kept completely
separate from the input data flow to minimize the per-
formance impact of a user’s querying the system while
it is collecting data.

Packet Suckers

The packet suckers we initially implemented
have been based on the libpcap [11] packet capture
interface. Libpcap provides a generalized packet cap-
ture facility atop a number of operating system-spe-
cific network capture interfaces. This freed us from
having to deal with a lot of portability issues. We did
discover, however, that some of the available packet
capture facilities cannot reliably buffer high volumes
of bursty traffic. Berkeley packet filter-based packet
suckers running on a Pentium-200 were unable to han-
dle even moderate network loads. This was a result of
a latency interaction between BPF and our software:
we do more processing than a program like tcpdump,
and, though our average processing seems to be within
the performance envelope of the machine, we can’t
always process the packet ‘‘immediately,’’ as BPF
expects. To fix the problem, we increased internal
buffer sizes from their default of 32K to 256K, a num-
ber more appropriate for the amount of RAM avail-
able in modern computers. Since the NFR daemon
potentially monitors multiple interfaces, we performed
minor modifications to the way blocking and time-
outs are performed in BPF. The original BPF time-out
is an inter-packet time-out based in the arrival of a
packet. If you don’t see a packet, you never time out.
We modified it to begin the timer with the read() or
select() timeout, so we can detect periods of no traffic.

Typical applications using BPF, such as tcp-
dump, wait in a tight loop while they read packets
from the interface. Since we are trying to do additional
processing, and potentially additional I/O, we have a

closer-to-real-time requirement, which doesn’t sit well
with a wait-loop model. For high-performance net-
works, we are examining designing a new packet cap-
ture interface based on a memory-mapped device
driver. Most of the mechanisms for packet capture
require two system calls (or an interrupt and a system
call) per packet; we’d like to reduce it to a single
semaphore check.

When a packet is collected by a packet sucker, it
is passed to the decision engine using a generalized
API intended to allow packet suckers to be separate
processes from the engine. The libpcap-based packet
sucker is compiled into the engine, but we wanted to
admit the possibility of multiprocessing packet suck-
ers that might perform their own buffering. Packets
read from libpcap include time information, which is
preserved with the packet as it is passed through NFR,
providing a notion of time to the entire engine.

Decision Engine

Packets are passed into the decision engine,
where they are checked against a list of filters for
evaluation. Filters are written in N-code, which is read
into the engine, compiled, and preserved as byte-code
instructions for fast execution. TCP traffic is applied
against a reassembly table which preserves the state of
each current TCP session. The state reassembly mech-
anism permits matching patterns or other events
within the lifetime of a TCP stream, and keeps statis-
tics pertaining to variance in the delivery of packets.
These statistics are used to determine when the engine
will stop watching a given connection – for example,
connections are not considered ‘‘closed’’ until a time-
out has exceeded two standard deviations of the aver-
age packet arrival rate after a FIN packet. Certain
types of broken packets can be detected, and users can
access byte counts of retransmitted packets – duplica-
tion of traffic – which might indicate network prob-
lems.

The filtering language binds a filter to an event
or the reception of a packet. Once a packet has been
applied against the filters, it is discarded. The filtering
language provides programmatic access to fields
within the packet, usually for the purpose of recording
information from or about the fields. The main primi-
tives for getting data out of a filter are the alert and
record mechanisms. Alerts pass a free-form message
to the alert management system, much like a call to
syslog(). The record mechanism passes a constructed
data structure to a backend recorder for further pro-
cessing. Using a structured record allows the engine
and the backend to pre-agree upon what type of infor-
mation the recorder should expect to read, permitting
for faster interpretation of the data as it arrives at the
backend. Some of the backends provided with NFR
are specialized to handle multiple forms of data, but if
someone wanted to develop a simple backend that
processed only IP addresses, they would be able to
link in a simple library routine that provides the

2 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Ranum, et al. Implementing a Generalized Tool for Network Monitoring

backend a stream of pre-processed addresses. This
approach saved us considerable time in development,
and permitted early experiments with backends writ-
ten in TCL [12]. We feel this is an important capabil-
ity, since it opens the possibility of having an NFR
performing gross-level filtering of traffic while pass-
ing specific records into a backend SQL database for
more advanced processing.

Time TCP Hash Client Server Command
Mon Sep 8 15:02:08 1997

18 208.218.124.77 208.218.124.42 GET / HTTP/1.0
18 208.218.124.77 208.218.124.42 If-Modified-Since: Wednesday, 06-Nov-96

12:32:03 GMT; length=530
18 208.218.124.77 208.218.124.42 Connection: Keep-Alive
18 208.218.124.77 208.218.124.42 User-Agent: Mozilla/3.0Gold (X11; I;

BSD/OS 3.0 i386)
18 208.218.124.77 208.218.124.42 Host: cornfed
18 208.218.124.77 208.218.124.42 Accept: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg, */*
18 208.218.124.77 208.218.124.42
18 208.218.124.77 208.218.124.42 GET /apache_pb.gif HTTP/1.0
18 208.218.124.77 208.218.124.42 If-Modified-Since: Wednesday, 03-Jul-96

06:18:15 GMT; length=2326
18 208.218.124.77 208.218.124.42 Referer: http://cornfed/
18 208.218.124.77 208.218.124.42 Connection: Keep-Alive
18 208.218.124.77 208.218.124.42 User-Agent: Mozilla/3.0Gold (X11; I;

BSD/OS 3.0 i386)
18 208.218.124.77 208.218.124.42 Host: cornfed
18 208.218.124.77 208.218.124.42 Accept: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg
18 208.218.124.77 208.218.124.42

Figure 1: Historical data from a list recorder.

Backends

Originally, we had anticipated developing a large
number of specialized backends, each of which might
maintain a different type of statistic. As the design
evolved, we chose instead to produce a small number
of multi-purpose backends, which accept and process
a wider latitude of data types. Histogram3 and list are
the two primary backends in use at this time. His-
togram maintains a columnar table of data, either
totaling discrete values in the columns or incrementing
them.

Unlike the traditional histogram in statistics, the
NFR histogram recorder saves data in an arbitrary
number dimensions, rather than in a single dimension.
For example, a histogram that stores a list of IP
addresses and strings might be used to represent the
number of times clients on a network retrieved a par-
ticular URL. A different instance of histogram with
the same record structure might store the number of
times user-ids had logged into various systems within

3Apparently we are using the term ‘‘histogram’’ somewhat
incorrectly and may confuse statisticians. We should have
called it ‘‘spreadsheet.’’

the network. Histograms can store multiple columns
of data simultaneously, permitting a lot of information
to be stored in a very compact space. The histogram
recorder provides a very flexible means of generating
alerts based on the appearance of previously-unseen
values, or values exceeding a specified range. For
example, a histogram can easily produce a
‘‘new/duplicate IP address detector’’ by throwing
hardware ethernet addresses and IP addresses into a
histogram, then generating an alert whenever a new
entry appears.

The list backend maintains chronological
records, as opposed to histogram’s additive records.
The list backend provides more typical logging func-
tions by not collapsing its columns into totals. In the
histogram example of client IP addresses and URLs, if
the same data record were sent to list, it would main-
tain a log of individual accesses to the URLs by client,
over time. List’s data storage tends to be less space
efficient than histogram, since it maintains data about
each record it is sent, rather than a total. The addi-
tional detail list maintains is important for some appli-
cations, since it lets you know not only how many
events happened, but exactly when and in what order.

Query Backends

One of the problems we faced early on was fig-
uring out how to get data out of the NFR without
interrupting the flow of data in. If the engine were
blocked during a query, it might lose a large number
of packets, since it’s possible that a query against a
large dataset might take several seconds to process.
The eventual design decision was to have the

1997 LISA XI – October 26-31, 1997 – San Diego, CA 3

Implementing a Generalized Tool for Network Monitoring Ranum, et al.

backends maintain their datasets entirely on disk, and
to have a secondary backend – the query backend –
which contains the logic for mining datasets produced
by its matching backend. A backend may perform
buffering of its own data, but since the query backend
‘‘knows’’ how the backend operates it can coordinate
with the backend as necessary. Since one of the goals
of NFR is to provide a reliable history of events, we
feel that too much buffering is risky – we’d rather buy
faster disks.

Figure 2: Connectivity graph with 10% cutoff in
effect.

Each of the query backends provides its own
CGI interface, parsing a URL into a query. Histogram
and list both support options to compact out fields and
eventually will support sorting of fields. Another fea-
ture we added later is threshold cutoffs – we discov-
ered that some queries produced much, much more
information than we could process sensibly. For exam-
ple, an origin/source map between any two systems
that have sent packets produces a scatter-plot that con-
tains a large number of single-packet events (mostly
DNS traffic). While the information is worth having,
it is much easier to glance at when there is a cutoff in
place. (See Figure 1)

The first version of our query backends repre-
sented information uniformly, which we found made it
a bit more difficult to visualize. Since the data going
into the backends is abstract, we needed to provide a
mechanism for the end user to apply ‘‘eye candy’’ to
the dataset to make it more comprehensible. User-

specified mappings are matched against tokens in the
output fields of histogram, changing color or replacing
the strings. (See Figure 2)

Figure 3: Pie chart with user-specified color and
name mapping.

Figure 4: Query interface showing field collapsing.

We intend to continue to improve the query inter-
face; that is an area of ongoing research. Currently, the
query interface allows the user to specify field values
and fields to represent, as well as how to represent
them. Since each backend and query backend is a sep-
arate software system, there is some duplication of
effort; we considered the problem of developing a
generalized query language but concluded that the
level of effort was too high. General query capability
is best provided through an external database with
SQL. Using an SQL database will greatly increase the
cost, administrative cost, and setup cost of the system

4 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Ranum, et al. Implementing a Generalized Tool for Network Monitoring

in return for a marginally greater flexibility in query
capability. We can imagine some cases where
advanced query capability will justify the cost and
effort, but we didn’t want to try to integrate or develop
a database engine as part of the project.

GUI

Each backend has a number of graphical user
interface elements. The GUI elements for each back-
end control its individual configuration attributes, as
well as its query interface. The query interface gener-
ates correctly configured CGI queries aimed at its
matching backend. To simplify the user’s view of the
system, we’ve created a construct, which exists purely
in the GUI, of ‘‘packages.’’ Packages are a grouping
of backends which may operate independently or may
cooperate by sharing common code or variables. The
latter case is particularly useful if you have a filter that
does substantial work to analyze a protocol, and you
want to record more than one type of information
about it. For example, you may wish to analyze E-mail
traffic and record sender/recipient to a list log and a
matching count to a histogram, without having to
duplicate the filter that performs the analysis.

While the Java language holds great promise, we
found that Java is not yet ready for use in developing
serious applications. Primarily, the difficulty is that the
client browser implementations perform badly or
unpredictably. While the core language itself appears
solid, the browser supplied functions, which include
all of the GUI objects and network communications,
often behave erratically. Eventually, we developed a
stable base of classes that seem to work on popular
platforms, but we did it by testing the target systems to
determine what parts of the published interface were
actually reliable. The process was not as fun or pleas-
ant as the Java hype would lead one to expect.

For a program like NFR, it was vital that we be
able to have a secured remote management capability.
Using Java and Web technology allowed us to layer
the NFR interface underneath whatever security the
browser and web server can provide. This freed us
from worrying about export control regulations that
apply to software incorporating cryptography. It also
freed us from portability problems, in a conceptual
sense, though the browser-version-specific bugs we
coded around were another form of portability prob-
lem. ‘‘Write once, run anywhere’’ does not promise
that your code will actually work once it is running. In
spite of our difficulties with Java, it was still easier to
implement our U/I than it would have been had we
been using Microsoft Windows and X Toolkit to do
our own secure remote user interface. Java has a much
simpler GUI model than either X or Windows, but,
when it works, it is suitable for real applications. We
hope that future versions of Java, such as Java 1.1,
will overcome some of the difficulties we faced.

Alert Queue Manager

NFR has a generalized mechanism for process-
ing alerts, which is used to manage alerts that are pro-
duced from N-code, alerts from backends, and internal
error-alerts generated by the engine. In order to make
NFR a useful network management tool, we devel-
oped alertd, which prioritizes and routes alerts. Alerts
can include free-form or formatted strings, which are
matched against a number of delivery facilities. The
facilities represent delivery mechanisms such as
printer, E-mail, and FAX. Alert events can further be
marked as alerts requiring acknowledgment, which
maintains them in a queue that a network manager can
clear once the situation causing the alert has been
resolved. Records of who acknowledged an alert, as
well as comments, are preserved with the alert.

Space Manager

Since NFR is intended to provide historical
records, we needed to provide a capability for rotating
logs and archiving them or deleting them. Spaceman,
the space manager, runs periodically to check the
amount of disk space available for data storage, and to
‘‘expire’’ old datasets. Each instance of a backend can
be specifically tuned for storage lifetime and archiv-
ing. Backends that are preserving especially important
data might have an expiration time that is much
higher, and an archiving process that copies the data to
CD-R or tape instead of merely deleting it.

N-code Filtering
The N programming language is a derivation of

an interpreted language designed years ago for use in a
computer game.4 The interpreter operates on a byte-
code instruction set that implements a simple stack
machine. One advantage of this approach is that NFR
filters occupy very little memory, yet are quite fast to
evaluate. N is a complete programming language
including flow control, procedures, variables with
scoping rules, and list data types. Unlike many pro-
gramming languages, however, N has primary data
types such as ‘‘IP address.’’ Since NFRs may be used
on large networks, we chose to implement counter
data types as 64-bit integers, to reduce the chance of
overflow.

Packet values are accessible in N-code using a
syntax of thing.thing, in which a higher level attribute
references a lower level element. For example: ip.src,
ip.dst, syslog.message, and tcp.hdr are all valid N-
code packet fields. The packet ripping routines per-
form lazy evaluation with cached responses, so the
runtime cost of packet ripping is kept low. At present,
the NFR engine’s packet rippers can handle IP, TCP,
and UDP packets and ethernet frames. We are consid-
ering adding routines to decode other protocols or
even application protocols, such as syslog. Mixing

4UberMUD, a meta-programmed multi-user dungeon game
by Marcus J. Ranum

1997 LISA XI – October 26-31, 1997 – San Diego, CA 5

Implementing a Generalized Tool for Network Monitoring Ranum, et al.

application specific protocols into packet value access
enables some unusually powerful productions such as:

if (ip.src == $myfirewall &&
index(syslog.message,"BADSU")

>= 0) { ...

In cases where the built-in packet fields are
insufficient, other fields can be located by N-code
functions. It is possible, though slightly slower, to
write N-code subroutines to return byte offsets within
packets. This can extend as far as analyzing high-level
protocols. For example, we have implemented an N-
code filter that extracts protocol fields such as sender
and recipient from an SMTP dialog. More N-code can
then act on that information:

if ($sender == $known_spammers)
{ ...

if ($n_recipients > 10000)
{ ... / possible spam

Events

Triggers within N-code occur upon receipt or
detection of an event that the code is attached to.
Events can be triggered with limitations on source,
destination, ports, client or server side (if known), or
patterns within the TCP stream. The syntax looks like:

filter mailtrack tcp (client,
dport: 25) {

The filter above is a simple TCP stream trigger that
will monitor the client side of SMTP connections. The
‘‘client’’ and ‘‘server ’’ notion is based on the reassem-
bly engine’s recollection of which system initiated the
connection that is being observed.

Keywords that can be placed within an event are:
• client – from the caller
• server – from the called
• start: ‘‘string’’ – begin matching
• stop: ‘‘string’’ – end matching
• opensession – on start of connection
• closesession – on end of connection
• port – IP port number (source or dest)
• sport – source port
• dport – destination port
• host – source or destination address
• net – source or destination network
• dst – destination address
• src – source address

A typical use is to configure an event to call N
code for as small a subset of received data as is practi-
cal, then implement any further filtering in N code. To
detect spam, for example, you might select TCP traffic
for port 25/SMTP. The N code would then:

• Observe the transaction and determine the
sender and recipient

• If the sender is the spammer, record the sender,
recipient, and originating host to a histogram
recorder

• If the sender is the spammer, record the mes-
sage header and the first 10 lines of the mes-
sage text to a log recorder

filter server tcp (client,
port: 80,
start: "GET ",
stop: " ") {

record ip.src, ip.dst,
tcp.sport, tcp.dport,
tcp.bytes to urlRecorder;

}

Figure 4: N-code implementing a simple HTTP URL
detector.

The example HTTP URL detector sets a trigger
filter on TCP port 80, for patterns that look like HTTP
GET commands, and logs information about the activ-
ity to a recorder. In the example, tcp.bytes represents
the matched TCP data between the start and stop trig-
gers. More complex filters can attach symbolic values
as local variables for each TCP stream – permitting a
filter to do complex activity like counting the To:
recipients in an SMTP stream, or recording them in an
array for later logging. The N-code for more advanced
filters, with comments, can run to several hundred
lines.

Performance
Performance is an open question with an NFR.

We haven’t had enough access (yet) to truly large net-
works that can properly stress the system. For some
reason, sites with large, interesting, backbones are not
enthusiastic about having someone else put a meta-
programmable traffic analysis engine on their net-
work. As of this writing we have not had a chance to
test the NFR software on more than 10Mb/s ethernet.
We believe that performance should be adequate up to
at least 60-70Mb/s, based on experiments other sites
have performed with TCPdump on 100-base-T hubs,
using comparable hardware.

Probably the biggest performance problem that
we worry about is the NFR’s programmability. Since it
is highly customizable, it’s hard to predict how many
filters the average user will install, and how much data
they will be recording. For a network that runs a
steady 80Mb/s load, with a filter recording all the
packets to disk, the NFR would not be able to keep up,
unless the I/O subsystem were capable of sustained
disk writes, through the filesystem, at comparable
speeds. We’ve found that, in general, filters compile
down to be quite tiny and require few ‘‘instructions’’
to operate, but it’s conceivable that a user might
develop an extremely N-code-intensive filter which
bogged a system down unacceptably. We fully antici-
pate that this will happen, and plan to performance
tune the system as we get more feedback from
installed sites.

6 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Ranum, et al. Implementing a Generalized Tool for Network Monitoring

Lessons Learned

The first hurdle in designing the system was fig-
uring out the right place to put each piece of function-
ality. TCP reassembly, for example, was originally
planned for implementation in a backend, but we real-
ized that some of the filters we wanted to install
depended on reassembled streams. TCP reassembly
moved back into the engine. Some of the statistical
capabilities of the backends were originally slated for
residence in the engine, but we realized that queries
against the engine itself might cause it to spend too
long processing the query and lose packets. As a
result, the backends show duplication of functionality,
but are standalone programs. The decision to separate
querying completely from the backend into a separate
program was risky but has proven to work fairly well
at the cost of duplication of functionality between the
query backend and the recorder backend.

The most hard-won lesson of the project, so far,
is that Java isn’t really ready for writing major user
interfaces. It’s great for nifty animated objects, but
until JDK1.1 – and widely supported 1.1 virtual
machines – are available, Java will be a problem. We
also learned that designing a general-purpose language
for traffic analysis was harder than we originally
expected it to be. We began with a packet-oriented
event model, which did not survive well in the face of
TCP streams and matching. NFR seems to be evolving
toward a model in which filters are callbacks triggered
by pre-specified conditions within the engine. Now
that we’ve tried it the other way, it makes a lot of
sense!

Future Work
In future releases of NFR we intend to expand

the engine’s ability to rip apart packets and application
traffic. As we discover more types of things we want
to record, it is likely we’ll extend the language. Doubt-
less we will have cause to seek and find ways to
improve the NFR’s performance; there is no such
thing as ‘‘fast enough.’’ We believe that NFR will
make a useful ‘‘bottom half’’ of an intrusion detection
system, and are considering a number of options for
analysis engines that can be plugged into NFR as a
backend. Another area to explore is the development
of active agents which will ‘‘poke’’ parts of the net-
work so that NFR can record the responses.

Conclusions
We set out to build an extremely flexible general-

purpose security and network management tool, and
appear to have met our goal. There is still a great deal
of enhancement we hope to make to the system, but
the basic functionality already exceeds what we had
originally expected. In a few areas, we were surprised
that things we thought would be very useful turned out
to be less so – a good example is the scatter plot dia-
grams prior to the addition of cutoff thresholds.

Initially, we were concerned about the possibility
for abusing our tool. It would, for example, make a

terrific password grabber. But we feel it is too ‘‘heavy-
weight’’ for such uses – most hackers who are grab-
bing passwords are already using very simple single-
purpose software that does the job quite nicely. NFR
presents the possibility for abuse by ‘‘big brother’’ or
well-funded snoops monitoring networks on a grand
scale. Keeping NFR out of the public’s hand will not
prevent such activities, either, since specialized tools
for particular traffic analysis are not difficult to
develop. We believe that, in general, NFR will be a net
benefit to the community, by providing a tool that will
stimulate research in network analysis and intrusion
detection.

We’ve been very, very pleased with the power of
the system; it appears to be able to do all of the kinds
of things for which we designed it. Simple statistics
and traffic gathering is very straightforward, and very
sophisticated programs are possible as well. We
haven’t really had time to explore all the possibilities
of the system, and we see the depth of its capabilities
as a great source for future research and discovery.

Availability
The complete NFR source code, including docu-

mentation, Java class source, decision engine, space
manager, etc., is available for download from
www.nfr.net. for non-commercial research use. The
code is designed to operate on a wide variety of UNIX
platforms and is being ported to Windows NT for
commercial release.

Acknowledgements
Marcus Ranum wrote the first version of the

engine interpreter and early syntax for the N language,
as well as developing the overall early design of NFR.
Mike Stolarchuk implemented the TCP reassembly
code in the engine, and refined the engine and N lan-
guage to its current state, patiently taking feedback
from the rest of us. Mark Sienkiewicz implemented
the backend design, including histogram, list, and the
layout of many of the Java user interface elements.
Kent Landfield implemented spaceman, and a number
of the user interface elements. Andrew Lambeth
designed and implemented alertd, and the list viewer
applets. Eric Wall implemented further user interface
elements, stealth mode kernel hacks, and did system
configuration.

Network Flight Recorder would like to thank our
investors for their kind support of our efforts.

References
[1] Robert Braden and Annette DeSchon, NSFnet

Statistics Collection System – NNStat, USC
Information Sciences Institute, December, 1992.

[2] ARPwatch, Lawrence Berkeley National Labs
Network Research Group, http://ftp.ee.lbl.gov .

[3] TCPwatch, Lawrence Berkeley National Labs
Network Research Group, http://ftp.ee.lbl.gov .

[4] Homebrew Network Monitoring: a Prelude to
Network Management, Mike Schultze, George

1997 LISA XI – October 26-31, 1997 – San Diego, CA 7

Implementing a Generalized Tool for Network Monitoring Ranum, et al.

Benko, and Craig Farrell. Curtin University of
Technology, 1993

[5] Clog, Brian Mitchell.
[6] Netwatch and Netwatch, Texas A&M University,

January 1994.
[7] Carter Bullard, Chas DiFatta, Argus 1.5

announcement, Software Engineering Institute,
Carnegie Mellon University,
ftp://lancaster.andrew.cmu.edu/pub/argus-1.5 .

[8] Tcp_Wrappers and Logdaemon, Wietse Venema.
[9] Klaxon, Doug Hughes.

[10] Tocsin, Doug Hughes.
[11] libpcap, Lawrence Berkeley National Labs Net-

work Research Group, http://ftp.ee.lbl.gov .
[12] Ousterhout, J. K., ‘‘TCL: An Embeddable Com-

mand Language,’’ Proceedings of the 1990 Win-
ter USENIX Conference, pp 133-146, 1990.

[13] Anderson and Patterson, ‘‘Extensible, Scalable
Monitoring for Clusters of Computers,’’ Pro-
ceedings of the 1997 USENIX LISA Conference,
1997.

Appendix 1: A Simple Filter

This filter serves two purposes: to record client requests
made to your web servers, and to serve as example in the LISA paper.
Mark Sienkiewicz / NFR
Copyright 1997, Network Flight Recorder, Inc.

schema would be automatically generated by a "wizard"
watchservers_schema = [1, 1, 1, 6, 6, 2];

list of my web servers
my_web_servers = [208.218.124.77 , 208.218.124.42] ;

gather data the client sends to a web server. If I didn’t know that
all my web servers are on port 80 I would make this more elaborate.
filter watch tcp (client, dport: 80)
{

if (ip.dest != my_web_servers)
return;

declare $blob inside tcp.connSym;
$blob = strcat ($blob, tcp.bytes);
while (1 == 1)

{

$x = index($blob, "\n");
if ($x < 0) # break loop if no complete line yet

break;
$t=substr($blob,$x-1,1); # look for cr at end of line
if ($t == ’\r’)

$t=substr($blob,0,$x-1); # tear off line
else

$t=substr($blob,0,$x);

save the time, the connection hash, the client,
the server, and the command to a list
record system.time, tcp.connHash, ip.src, ip.dest, $t to

watchservers_list;

keep the remainder of the blob for the next pass
$blob = substr($blob, $x + 1);
}

keep us from getting flooded if there is no newline in the data
if (strlen($blob) > 4096)

$blob = "";

}

watchservers_list = recorder ("bin/list packages/web/watchservers.cfg",
"watchservers_schema");

8 1997 LISA XI – October 26-31, 1997 – San Diego, CA

