
The following paper was originally published in the

Proceedings of LISA-NT:
The 2nd Large Installation System Administration of Windows NT Conference

Seattle, Washington, USA, July 16–17, 1999

A N E T W O R K E D
M A C H I N E M A N A G E M E N T S Y S T E M

Dave Roth

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

A Networked Machine Management System
Dave Roth

rothd@roth.net
Roth Consulting

http://www.roth.net

1 Purpose
Out of the box, Win32 machines lack the ability to be
efficiently managed. It is up to an administrator to
implement some form of system management. For
many administrators with relatively small networks this
means walking from machine to machine to install new
software or check to see how many CDROM drives
exist on the computer. Considering the sheer size of
some networks it becomes a nightmare to do something
such as deploying an updated driver or service pack.
Even a simple task as discovering which computers
have enough free hard drive space for a software
upgrade can take many hours of an administration
teams time.

To be sure, this is not an isolated problem. It is
ubiquitous enough to create a market where there are
several commercial products available to help
administrators manage this issue. Microsoft’s Systems
Management Service (SMS) is one example. However
a product such as this can become quite time
consuming just to maintain the system as well as costly
for full licensing.

With a little bit of forethought administrators can
implement a simple and efficient system for performing
the same functionality as a full-blown SMS
implementation. By using off-the-shelf products and
some of Win32’s standard services a network of almost
any size can be managed.

This paper provides a case study on one particular
implementation.

2 Needs Assessment
As with any project a needs assessment is a wise
beginning. This paper focuses on a large cellular
service provider which we had the pleasure of
consulting with. We shall call this company CellBell.

2.1 Background
CellBell had a network of approximately 1700 NT
boxes scattered across the state. The machines were
running a combination of NT 3.51 and NT 4.0. Some
had different service packs installed while others had

none. Some machines had 32 megs of ram while others
had only 16. Some had large hard drives with plenty of
free space while others had practically no space
available. Some had 486 processors while others were
Pentiums. The point is that the network was non-
homogenous and there was no documentation to help
sort out how each machine was configured. To make
matters worse the IT team was competent but under
funded. There was no money to send the team to SMS
training let alone money to purchase SMS licenses.

From time to time CellBell corporate headquarters
would decide that all machines on the network would
have to have a software update. The team, loyal to a
fault, would painstakingly walk from machine to
machine, log off any current user, log on as
administrator, check if the machine satisfied any ram
and drive memory requirements, connect to a network
server, install the software then reboot. If the capacity
of the machine did not meet the required spec then it
would be added to a list then later parts would be
procured and installed. This could take days to
accomplish – requiring overtime and travel.

2.2 Needs
We decided that there was a need for a system which
would:
• Gather information about each machine in a timely

basis
• Effectively install software on a machine with

minimal human interaction
• Perform routine machine maintenance (update

drivers, remove temporary files, etc)
• Alert the IT team when a machine was having

problems
• Be inexpensive
• Be flexible enough to adopt to any future need
• Be easy to use
Considering these basic issues and a rather tight budget
the team set out to develop an infrastructure that could
effectively provide all these needs.

3 The Infrastructure
After much deliberation an infrastructure was devised.
To be sure it is far from a perfect design but for a tight
financial and time budget it worked well.

3.1 Design Overview
The entire process is quite simple. It makes use of what
we called scripts. A script could be anything
executable such as a program or a batch file, for
example.

At some predetermined time each machine on the
network would spawn a process which and check to see
if there were any scripts in a predetermined location
(presumably on a network server). Each of the scripts
would then be executed. Once all scripts have been run
the process ends.

That is it; quite simple indeed. The system would be
only as complex as the administration staff decided to
make it.

3.2 Scripts
Each script can do anything that the administrator may
need. One may look for a given ODBC driver on the
machine and install it if need be. Another script may
install some new software package. Another script may
examine the local event log for errors and warnings.
Yet another script may download and implement an
anti-virus programs updated virus signature files.

 So this simple system could have scripts written which
modify registry settings, copy directories, apply
permissions to files, synchronize the clock with a server
or anything else one may need.

3.3 Script development
The management system was going to be home grown
to avoid the costs associated with commercial software.
Since nobody wanted to even consider using DOS like
batch files a programming language would have to be
chosen. Due to it’s remarkable abilities and reasonable
price (free) the Perl language was elected.

Perl is well known as the Swiss army knife of
languages. It is almost as powerful as C++ but has a
much faster development cycle. And if the language
has any limitations they can be eliminated with Perl
extensions (plug-ins developed in another language
such as C).

One other compelling reason to use Perl is the vast
number of modules and extensions that have already
been created for it. If there is a need to access web

servers, ftp files, search for files and directories or even
query databases you will most likely find that someone
has already written an extension to do just that. Of
which you can download from the net.

It was decided that the system engine and its
subsequent scripts would be written in Perl.

3.3.1 Script Execution Tracking
Undoubtedly some scripts may be designed to only run
once. If, for example, a software package is to be
installed the install script needs to only run once. It
would be simple enough to create the script and let
every machine run it then remove the script. However,
if a new machine is brought online it, too, would need
to have the software package installed.

If each install script added an entry to some
configuration file on the local machine the script could
check to see if it had already been run. This execution
tracking permits scripts to remain active in the
repository but not a menace to machines already having
been affected by it.

3.4 The Script Repository
The infrastructure was designed around a central script
repository. This is simply a network share and
directory where all the scripts are located. By locating
the scripts in one central location the burden up altering
scripts is greatly reduced – there is no need to alter a
script on every computer or on several servers. This
directory can be part of a replication tree so that any
change made will be replicated to other backup
repository machines.

CellBell had a WAN that extended across the state with
multiple subnets. Since many of the subnets were
connected together using a slow frame relay link it was
crucial that the network design include a repository on
each subnet. Ideally there would be one repository on
each backup domain controller this way the name of the
machine can be discovered by locating a domain
controller.

The repository was to be the hub of the management
system. The bulk of the files accessed were to be
through this repository. The good news was that since
the access consisted of simple reading of files there
would be very little overhead for the repository
machine. Since the BDC’s were configured to only act
as a domain controller (for user authentication) the
overhead of serving such files made only a minimal
impact.

By utilizing domain controllers CellBell also provided
redundancy. If the repository goes offline then the

system engine would locate another domain controller,
which may be on different subnet.

3.5 Database Services
One crucial component of this system was a database
server. Our team of administrators needed a reliable
way of generating an accurate and up-to-date list of
attributes regarding the machines. Attributes such as
hard drive sizes (physical and available), amounts of
ram, pagefile size, processor speed and service pack
level just to name a few. A database server was
installed to maintain this information.

Since the database was populated with accurate
information we could submit queries to discover which
machine had less than 64 megs of ram, for example.
This provided an effective way to access a wealth of
administrative information from across the network.
There was no longer a need for a remote administrator
to call into the help desk to obtain such information; she
could just simply submit a query to the database server.
This proved to be absolutely invaluable when
management needed fast answers regarding our current
state of affairs.

3.6 Information Server
Since we had an accurate database of information the
next step was to install an intranet web server. We had
written CGI scripts that provided access into the
database. It was this way that we empowered non-
technically inclined folks (management in particular) to
query information regarding the network.

This tool immediately became indispensable for both
management and the administration team.
Administrators were able to logon when they came in
and view reports of the network that were generated
earlier in the morning. If an administrator was not able
to make it into the office she could dial in remotely and
peruse the logs.

4 The Details of the Design
The actual engine and scripts would be fairly quick to
prototype but it is the other non programming aspects
that would prove to be more difficult. The details such
as how to schedule the engine to be run on a timely
basis and how to secure the system were the issues that
took the most time to work out.

4.1 The Scheduler Service
The Scheduler service works very much as its UNIX
cousin the CRON daemon. Basically speaking the

Scheduler service allows a job to be scheduled for a
given time. A job is simply a command that can be
spawned as a process.

The management system will make copious use of the
Scheduler service. A job is added to the service that
will execute the main Perl script (the system engine).
The job is scheduled for a time in which it will not
interfere with a user since occasionally a script may
need the computer to reboot.

At CellBell we configured each machine to run the
engine between 3:00 and 4:00 in the morning. When
the job was scheduled a random time was chosen so
that there would be less of a burden to both the network
and the repository as all the machines woke up.

4.2 Security Concerns
One of the primary concerns regarding the
implementation was that of security. After all it is quite
easy to write a script that deletes all files on a hard
drive, and if some disgruntled employee slipped such a
script into the repository there would be quite a
problem. Securing this system was absolutely
imperative.

4.2.1 Scheduler Account
By creating a special user account that the Scheduler
service would run under we were able to guarantee
security. In our case we created a user account called
“SchedulerAccount”. The decision for this name was
quite arbitrary but self-descriptive.

The “SchedulerAccount” account was made a member
of the “Domain Admins” group. Since each machine in
the domain included the “Domain Admins” global
group in its local “Administrators” group this gave the
Scheduler service administrative abilities on every
machine.

4.2.2 Repository Permissions
The script repository was limited so that only “Domain
Admins” and “Administrators” had access to modify
the files. To protect entry into the repository the
permissions were applied to the sharepoint. To also
protect against backdoor access the files and directories
in the repository tree were also protected with the same
permissions as the share.

There was a debate as to whether or not permissions for
users should be applied. Some administrators felt read
only administators should have access whereas others
did not foresee a problem with users having read only
permissions. A decision to prevent users any access

was made so that a script could have hard coded userids
and passwords. Whereas any file containing userids and
passwords is a potential security risk it was decided that
in some instances it was necessary.

Considering that users are usually more curious than
they need to be a decision was made to hide the share.
If a user does not see a share there will be no desire to
play with it. The share was hidden by appending the
share name with a dollar sign such as “Repository$”.

4.3 Variations Of Scripts
A multitude of Perl scripts were written which
performed an amazing array of functions. Some of the
more useful ones included:

• A script which compared the machines copy of
Perl against the repositories copy. Any updates
were then replicated down to the local machine.

• A script checking for files in the temp directory. If
files exist that were older than 2 weeks they were
removed.

• A script that retrieved all IP addresses hard coded
on the machine and submitted them to the database.
At the time CellBell was using hard coded IP
addresses, none of which were mapped to physical
machines. This script helped the IT team track IP
address with userids and machine names.

• On script modified each local machines registry to
change a hard coded IP address to use DHCP.

There were three scripts in particular, though, that
proved to be most useful. These performed ODBC
client database configuration (setting up the data source
name so that the scripts could talk to a database),
collecting machine information and checking the event
logs.

4.3.1 ODBC Databases
Since our implementation of the system made use of a
SQL Server database it was necessary that there was a
verification that the SQL Server ODBC driver was
installed and that the correct data source name (DSN)
was configured.

The file _ODBC.PL (Script 3) performed this task.
Notice that the file name begins with an underscore.
This was to guarantee that it was run before any other
script. Since many of the scripts would attempt to
connect to the database it was important that this script
was the first (or at least one of the first) scripts to be
executed.

4.3.2 System Info
One of the most important scripts that were created was
the OS.PL script (Script 4). This script collects
information regarding the physical machine and the
operating system. This information is submitted to the
database for later processing.

The script collected information about the computer
such as:

• Lists of all local hard drives, CDROMs and
removable drives, their total drive size and how
much space is available.

• The amount of physical RAM.
• The total pagefile size.
• The OS type (Win NT or Win 95/98).
• The OS version.
• The OS service pack.
• The class and speed of the processor.
Once this information had been collected it was
submitted to the database where the information could
later be processed.

4.3.3 Event Log Scanning
With thousands of machines on the network it became
virtually impossible to keep an eye on each computer.
With the EVENTS.PL script (Script 5) the local event
log was scanned for warnings and errors. These events
were then submitted to the database. In this way the
administration team could generate reports
consolidating multiple errors and alert the staff which
of the machines were having problems.

4.4 Installation
Installing the system on each computer promised to
take time. In the case of CellBell the machines on the
network were not setup with much forethought.

One of the first things we needed to do on each
machine was to setup the Scheduler service to logon
using the domain account “SchedulerAccount”.
Additionally we needed to copy the Perl tree onto the
local machine then secure it such that users only had
read permissions. This required that the drive be
formatted as NTFS. If it was a FAT drive the
installation routine would need to run the NTFS
conversion utility.

A plan was devised in which our team would walk and
touch each machine, logging on with a temporary
administrative account we created for this sole purpose
called “InstallAdmin”. This account was added to the
“Domain Admins” global group. Since each machine
included the “Domain Admins” group in its local

“Administrators” group the logon would have
administrative authority over the machine.

The “InstallAdmin” account was configured with a
logon script which acted as the install script (refer to
Script 3). The actual logon script command was set to:

“\\server\perlshare$\perl\bin\perl.exe
\\server\perlshare$\install.pl”

This would run both Perl and the install script from the
repository.

Since the script would configure the machine then
reboot all that the administrator had to do was logon
with the “InstallAdmin” account then walk to the next
machine.

The installation script would register the Scheduler
service to logon using the userid of
“SchedulerAccount” and the provided password. Since
the password would be hard coded in the Perl script this
particular file was set with read permissions for only
the Administrators and no access for everyone else.

Since all of the functions that the installation script
performed could be accomplished remotely it is
possible to have a machine or machines on the net
walking through the list of online computers and
remotely configure them. In the case of CellBell none
of the machines had NTFS partitions and since the
convert.exe utility must run as a process local to the
machine we decided to physically log onto each
computer. This way we could also boot any computer
that had been powered down.

5 Conclusion
Systems management programs can make life easier for
any administrator who has a large network of Windows
NT machines. But since the cost and learning time is
not necessarily something that is affordable for
everyone it makes sense to get the most out of what is
available.

The infrastructure presented here not only works but it
also works well. The ability to update files, clean
directories, apply permissions and other such things is
enough to justify the effort.

For CellBell, the total time to create the infrastructure
took one person roughly 2 days. Once the installation
account was created and configured the system was up
and running on all machines in just a couple of days.

Within the first month of use the team was given the
task to rollout quite a large and new application. The
amount of money in overtime that was saved ranged in
the thousands of dollars. At that point the system had
by far paid for itself.

6 Appendix A: Resources
This paper covers many topics, mostly related the Perl language. More information on them can be found in the
following references:

6.1 Files
The files that are referenced in this paper are available online at the Roth Consulting web site:

http://www.Roth.Net/Conference/LisaNT/1999

6.2 Win32 Perl
Win32 ports of Perl come in both binary and source form. The most reliable sources for Win32 Perl are:

• ActiveState Tool Corp., source code and binaries: http://www.ActiveState.com
• The Perl home page, source code: http://www.Perl.com

6.3 Win32 Perl Extensions
Perl is an extendable language allowing users to create extensions that supplement the built in capabilities. Since
Perl is also a cross platform language it is not capable of utilizing many of Win32’s unique abilities. This is where
the Win32 extensions come in.
The following Win32 Perl extensions come standard with Win32 Perl from ActiveState:

• Win32
• Win32::NetAdmin
• Win32::Registry
• Win32::Service

The following Win32 Perl extensions can be found at Roth Consulting, http://www.roth.net/
• Win32::ODBC
• Win32::AdminMisc

The following Win32 Perl extension can be found at Aldo Calpini’s web site, http://www.divinf.it/dada/perl/
• Win32::API

The following Win32 Perl extension was authored by Jens Helberg <jens.helberg@bosch.com>. Its source code can
be found at ftp://ftp.roth.net/pub/ntperl/others/lanman/lanman_1_01.zip

• Win32::Lanman

6.4 Perl Reference Books
There has been many books written on Perl. Two such books that are especially applicable to this paper are:

• Larry Wall, Tom Christiansen, Randal L. Schwartz, Stephen Potter, Programming Perl, Second Ed.,
O’Reilly & Associates, 1996.

• Dave Roth, Win32 Perl Programming: The Standard Extensions, Macmillan Technical Publishing, 1999.

One particularly useful book regarding WinNT administration is:

• Æleen Frisch, Essential Windows NT Administration, O'Reilly & Associates, 1998.

7 Appendix B: Scripts
The management system allowed for scripts that would be executed. The order of execution was alphabetical so a
desired order could be achieved by changing names.

7.1 Script 1: An installation script.
This script will setup a machine so that it is ready to use the management system. This script will:

1. Add the global “Domain Admins” group to the local “Administrators” group.
2. Configure the Scheduler service to logon with a given userid.
3. Grant the specified userid the privilege to logon as a service.
4. Convert the Perl drive to be NTFS if it is not already.
5. Set permissions on the Perl directory such that Administrators have full control and everyone else has read

only access.
6. Copy the Perl tree to the local machine.
7. Update the PATH environment variable to include the Perl \bin directory if it is not already.
8. Remove the “last logged on user” so that the next time the machines logon box is displayed there is no

specified userid.
9. Reboot the machine.

This script requires the following extensions:
• Win32
• Win32::API
• Win32::Perms
• Win32::Lanman
• Win32::Service
• Win32::NetAdmin
• Win32::Registry
• Win32::AdminMisc

Install.pl

This is an installation script designed to configure
a machine for use with the network management system.
#
Dave Roth
Roth Consulting
http://www.roth.net
#

use Win32;
use Win32::API;
use Win32::Perms;
use Win32::Lanman;
use Win32::Service;
use Win32::NetAdmin;
use Win32::Registry;
use Win32::AdminMisc;

$Machine = Win32::NodeName();
$Domain = "MyDomain";
$User = "$Domain\\SchedulerAccount";
$Password = ’’;

Even though it’s called the "Scheduler" the proper service name is "Schedule"
$Service = 'Schedule';

$PerlDrive = 'm:';
$PerlPath = '\perl';
$LogFile = '\\\\server\perlshare$\install.log';

$REMOTE_PERL_PATH = '\\\\server\perlshare$\perl';
$NTFS_CONVERSION_APP = "convert.exe";
$NTFS_CONVERSION_PARAM = "/FS:NTFS /V";

ConfigGroup($Domain);
ConfigService($Service, $User, $Password);
if(ConfigDrive($PerlDrive))
{
 SecureDir("$PerlDrive$PerlPath");

 CopyDir($REMOTE_PERL_PATH, "$PerlDrive$PerlPath");
 ConfigPath("$Dir\\bin");
}
ConfigLastUser("");
RebootMachine();
Log($LogFile);
print "Finished.\n";

sub Log
{
 my($LogFile) = @_;

 if(open(LOG, ">+ $LogFile"))
 {
 flock(LOG, 2);
 seek(LOG, 0, 2);
 print LOG Win32::NodeName(), "\t", scalar(localtime()), "\n";
 flock(LOG, 8);
 close(LOG);
 }
}

sub RebootMachine
{
 Win32::AdminMisc::ExitWindows(EWX_REBOOT | EWX_FORCE);
}

sub ConfigLastUser
{
 my($User) = @_;
 my $Key;

 if($HKEY_LOCAL_MACHINE->Create(’SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon’,
$Key))
 {
 $Key->SetValueEx($Key, 0, REG_SZ, $User);
 $Key->Close();
 }
}

sub ConfigGroup
{
 my($Domain) = @_;

 $Domain .= "\\" if(’’ ne $Domain);

 # Make sure that we add the Domain Admins to
 Win32::NetAdmin::LocalGroupAddUsers(’’, ’Administrators’, "$Domain" . "Domain Admins");
}

sub ConfigPath
{
 my($Dir) = @_;
 my $RegexDir = "$Dir";
 my $Path;

 # First check to see if the $Dir is already in the path...
 $Path = Win32::AdminMisc::GetEnvVar(’PATH’);

 # Prepare $Dir for a regex...
 $RegexDir =~ s/([.\\\$])/\\$1/g;
 if($Path !~ /$Dir/i)
 {
 # Add $Dir to the system (not user) PATH
 Win32::AdminMisc::SetEnvVar(’PATH’, "$Path;$Dir");
 }
 return(1);
}

sub CopyDir
{

 my($RemoteDir, $DestDir) = @_;

 print "Copying files from ’$RemoteDir’ to ’$DestDir’ ...\n";

 # XCOPY.EXE will autocreate the destination dir
 ‘xcopy "$RemoteDir*.*" "$DestDir*.*" /s‘;
}

sub SecureDir
{
 my($Dir) = @_;
 my($Perm, $Result);

 print "Securing the $Dir directory...\n";

 ‘md "$Dir"‘;

 if($Perm = new Win32::Perms($Dir))
 {
 # Remove *all* entries...
 $Perm->Remove(-1);

 $Perm->Allow(’Administrators’, FULL_CONTROL_FILE, FILE);
 $Perm->Allow(’Administrators’, FULL_CONTROL_DIR, DIR);

 $Perm->Allow(’Everyone’, READ_FILE, FILE);
 $Perm->Allow(’Everyone’, LIST_DIR, DIR);

 $Perm->Owner(’Administrators’);

 $Result = $Perm->Set();
 }
 else
 {
 print " Unable to create security descriptor. Directory is not secured.\n";
 }

 return(0 != $Result);
}

sub ConfigDrive
{
 my($Drive) = @_;
 my %Info;

 print "Configuring the $Drive drive ...\n";

 # Make sure that the drive exists
 if(join(’ ’, Win32::AdminMisc::GetDrives()) !~ /$Drive/i)
 {
 print " The $Drive drive does not exist.\n";
 return(0);
 }

 # Do we have a fixed hard drive?
 if(DRIVE_FIXED != Win32::AdminMisc::GetDriveType($Drive))
 {
 print " The $Drive drive is not a local fixed hard drive. Skipping drive formatting.\n";
 return(0);
 }

 # If the drive is not NTFS then convert it into NTFS
 %Info = Win32::AdminMisc::GetVolumeInfo($Drive);
 if(’NTFS’ ne $Info{FileSystemName})
 {
 print " The $Drive drive is not an NTFS drive.\n";
 print " Converting from the $Info{FileSystemName} format...\n";
 @{$Log{ntfs_conversion}} = ‘$NTFS_CONVERSION_APP $Drive $NTFS_CONVERSION_PARAMS‘;
 }

 return(1);

}

sub ConfigService
{
 my($Service, $User, $Password) = @_;

 my $OpenSCManager = new Win32::API(’advapi32.dll’, ’OpenSCManager’, [P,P,L], L);
 my $OpenService = new Win32::API(’advapi32.dll’, ’OpenService’, [L,P,L], L);
 my $CloseServiceHandle = new Win32::API(’advapi32.dll’, ’CloseServiceHandle’, [L], I);
 my $SCHandle, $ServiceHandle;
 my $ServiceString, $UserString, $PasswordString;
 my %ServiceStatus;
 my $UnicodeFiller = "";

 print "Configuring the $Service service ...\n";

 $Result = Win32::Service::GetStatus(’’, $Service, \%ServiceStatus);

 # Service status 1 == Service has stopped
 $Result = Win32::Service::StopService(’’, $Service) if(1 != $ServiceStatus->{CurrentState}
);

 # Convert the string to UNICODE if needed
 $UnicodeFiller = "\x00" if(Win32::API::IsUnicode());
 ($ServiceString = $Service) =~ s/(.)/$1$UnicodeFiller/g;
 ($UserString = $User) =~ s/(.)/$1$UnicodeFiller/g;
 ($PasswordString = $Password) = s/(.)/$1$UnicodeFiller/g;

 # The flag 0x00F003F requests to open the service manager with full access
 if($SCHandle = $OpenSCManager->Call(0, 0, 0x000F003F))
 {
 # The flag 0xC0000000 requests GENERIC_READ and GENERIC_WRITE
 if($ServiceHandle = $OpenService->Call($SCHandle, $ServiceString, 0xC0000000))
 {
 my $ChangeServiceConfig = new Win32::API(’advapi32.dll’, ’ChangeServiceConfig’, [
L,L,L,L,P,P,P,P,P,P,P], I);

 # The 0x00000010 flag represents that the service will logon as a user account
 # AND it will create it’s own process (not share process space with other services)
 # The 0xFFFFFFFF flag represents no change to this attribute.
 # The 0x00000002 flag represents the service is to auto start
 my $Result = $ChangeServiceConfig->Call($ServiceHandle,
 0x00000010,
 0x00000002,
 0xFFFFFFFF,
 0,
 0,
 0,
 0,
 $UserString,
 $PasswordString,
 0);
 if($Result)
 {
 print "Granting the $User account the privilege to logon as a service\n";

 # Grant the service account with the privilege to logon as a service...
 $Result = Win32::Lanman::GrantPrivilegeToAccount(’’, ’SeServiceLogonRight’, [$User]
);
 if(! $Result)
 {
 print " Could not grant the privilege: ";
 print Win32::FormatMessage(Win32::Lanman::GetLastError());
 }
 }
 else
 {
 print " Could not modify the ’$Service’ service: ";
 print Win32::FormatMessage(Win32::GetLastError());
 }

 $CloseServiceHandle->Call($ServiceHandle);
 }
 else
 {
 print "Could not open the ’$Service’ service: ";
 print Win32::FormatMessage(Win32::GetLastError());
 }
 $CloseServiceHandle->Call($SCHandle);
 }
 else
 {
 print " Could not open the service manager: ";
 print Win32::FormatMessage(Win32::GetLastError());
 }

 Win32::Service::StartService(’’, $Service);
}

7.2 Script 2: The System management engine.
This script is the main engine. This is the script that is executed once a day. From this script all the other scripts will
be loaded and executed.
This script requires the following extension:

• Win32::NetAdmin

SysMan.PL

This is the management system engine script. This is the
core to the entire management system. This script will
locate any domain controller and begin running scripts
from there.
#
Dave Roth
Roth Consulting
http://www.roth.net
#

use Win32::NetAdmin;

$REMOTE_PERL_SHARE = ’perlshare$’;
$REMOTE_PERL_DIR = ’perl’;
$REPOSITORY_DIR = ’scripts’;

if(Win32::NetAdmin::GetAnyDomainController(’’, ’’, $Server))
{
 my @Scripts, $Script;

 $ScriptDir = "$Server\\$REMOTE_PERL_SHARE\\$REPOSITORY_DIR";
 @Scripts = glob("$ScriptDir*.pl");
 foreach $Script (sort(@Scripts))
 {
 # We only will process scripts that exist and are files
 next unless(-f $Script);

 print "Loading and running ’$Script’...\n";
 require $Script;
 }
}
else
{
 print "Unable to locate remote repository.\n";
}

7.3 Script 3: An ODBC configuration script.
This script installs the specified ODBC driver and configures a data source name so that scripts will have database
access. This script will:

10. Install and configure the specified ODBC driver if it is not already installed.

11. Configure a new data source name (DSN) if it is not already configured.
This script requires the following extension:

• Win32::ODBC

_ODBC.PL

This is a management system script designed to check for and
install the MS SQL Server ODBC driver. It also checks
for a particular ODBC DSN. If it does not exist it will
be created.
THIS SCRIPT assumes that ODBC has been already installed
on the machine.
Notice that the script name has been prepended with an underscore.
This will cause this script to be run before other scripts.
#
Dave Roth
Roth Consulting
http://www.roth.net
#

use Win32::Registry;
use Win32::ODBC;

$Dsn = "ConfigServer";
$ODBCDriver = "SQL Server2";

$DestDir = "$ENV{WINDIR}\\System32";
$REMOTE_DRIVER_DIR = ’\\\\server\perlshare$\ODBC\SQLServerDriver’;

%DriverList = Win32::ODBC::Drivers();
if(! defined $DriverList{$ODBCDriver})
{
 my $Key;

 # Copy all the SQL Server ODBC Driver files...
‘xcopy "$REMOTE_DRIVER_DIR*.*" "$DestDir*.*" /s‘;

 # We need to install the SQL Server driver.
 if($HKEY_LOCAL_MACHINE->Create("SOFTWARE\\ODBC\\ODBCINST.INI\\$ODBCDriver", $Key))
 {
 my $SubKey;

 $Key->SetValueEx(’APILevel’, 0, REG_SZ, "2");
 $Key->SetValueEx(’ConnectFunctions’, 0, REG_SZ, "YYY");
 $Key->SetValueEx(’CPTimeout’, 0, REG_SZ, "60");
 $Key->SetValueEx(’Driver’, 0, REG_SZ, "$DestDir\\SQLSRV32.DLL");
 $Key->SetValueEx(’DriverODBCVer’, 0, REG_SZ, "03.50");
 $Key->SetValueEx(’FileUsage’, 0, REG_SZ, "0");
 $Key->SetValueEx(’Setup’, 0, REG_SZ, "$DestDir\\SQLSRV32.DLL");
 $Key->SetValueEx(’SQLLevel’, 0, REG_SZ, "1");

 if($Key->Create(’FileList’, $SubKey))
 {
 $SubKey->SetValueEx(’CTL3D32.DLL’, 0, REG_SZ, "$DestDir\\CTL3D32.DLL");
 $SubKey->SetValueEx(’DBNMPNTW.DLL’, 0, REG_SZ, "$DestDir\\DBNMPNTW.DLL");
 $SubKey->SetValueEx(’DRVSSRVR.HLP’, 0, REG_SZ, "$DestDir\\DRVSSRVR.HLP");
 $SubKey->SetValueEx(’MSVCRT40.DLL’, 0, REG_SZ, "$DestDir\\MSVCRT40.DLL");
 $SubKey->SetValueEx(’SQLSRV32.DLL’, 0, REG_SZ, "$DestDir\\SQLSRV32.DLL");

 $SubKey->Close();
 }
 $Key->Close();

 # Update the installed driver list...
 if($HKEY_LOCAL_MACHINE->Create(’SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers’, $Key))
 {
 $Key->SetValueEx($ODBCDriver, 0, REG_SZ, "Installed");
 $Key->Close();
 }
 }

}

%DSNList = Win32::ODBC::DataSources();
We should probably perform a better test to take into account
mixed case...
if(! defined $DSNList{$Dsn})
{
 if(! Win32::ODBC::ConfigDSN(ODBC_ADD_DSN, $ODBCDriver, ("DSN=$Dsn", "Description=The
Configuration Database", "Server=dbserver", "Trusted_Connection=Yes", "Database=ConfigLogs")))
 {
 print "Unable to create DSN: " . Win32::ODBC::Error() . "\n";
 }
}
print "Finished.\n";
We must return a 1 value to indicate this script was successfully loaded
return(1);

7.4 Script 4: A script to update a database with computer statistics.
This script will setup a machine so that it is ready to use the management system. This script will:

12. Gather information about the computer, processor and operating system.
13. Gather information about each drive.
14. Update a database with the gathered information.

This script requires the following extensions:
• Win32::ODBC
• Win32::AdminMisc

OS.PL

This is a management system script designed to discover
information about both the computer and OS. Once the
information has been obtained it is then set to a database
where it is stored.
#
This script assumes that the database has 2 tables:
1) Computer:
ID int(), primary key, autoincrimenting
Name char
Processor char
Speed int
OS char
ServicePack char
Version float
Build int
MMX int (used as a boolean or bit)
Ram int
PageFile int
#
2) Drives:
ID int, primary key, autoincrimenting
Size int
Free int
Drive char
Type char
Computer int
#
Dave Roth
Roth Consulting
http://www.roth.net
#

use Win32::AdminMisc;
use Win32::ODBC;

$DSN = "Machines";
$Machine = Win32::NodeName();

%DriveType = (

 &DRIVE_REMOTE => "remote",
 &DRIVE_REMOVABLE => "removable",
 &DRIVE_FIXED => "fixed",
 &DRIVE_CDROM => "cdrom",
 &DRIVE_RAMDISK => "ramdisk",
);

Get memory info...
%Mem = Win32::AdminMisc::GetMemoryInfo();

Get processor info...
%Processor = Win32::AdminMisc::GetProcessorInfo();

Get OS info then fix the servicepack and platform values...
%OS = Win32::AdminMisc::GetWinVersion();
($OS{ServicePack}) = ($OS{CSD} =~ /(\d*?)$/);
$OS{Platform} =~ s/win32_//i;

Get drive info...
foreach $Drive (Win32::AdminMisc::GetDrives())
{
 my $Type = Win32::AdminMisc::GetDriveType($Drive);

 if(DRIVE_REMOTE != $Type)
 {
 $Drives{$Drive} = { size => 0, free => 0 };

 if(DRIVE_FIXED == $Type)
 {
 ($Drives{$Drive}->{size}, $Drives{$Drive}->{free}) =
Win32::AdminMisc::GetDriveSpace($Drive);
 }

 $Drives{$Drive}->{type} = $Type;
 if(DRIVE_REMOVABLE != $Type && DRIVE_CDROM != $Type)
 {
 my %Volume = Win32::AdminMisc::GetVolumeInfo($Drive);
 $Drives{$Drive}->{filesystem} = $Volume{FileSystemName};
 }
 }
}

if($db = new Win32::ODBC($DSN))
{
 $Id = GetDbId($db, $Machine);
 if(! $Id)
 {
 $db->Sql("INSERT INTO Computer (Name) VALUES (’$Machine’)");
 $Id = GetDbId($db, $Machine);
 }

 if($Id)
 {
 $Update = "UPDATE Computer SET " .
 " ServicePack = ’$OS{ServicePack}’, " .
 " Version = $OS{Major}.$OS{Minor}, " .
 " OS = ’$OS{Platform}’, " .
 " Build = $OS{Build}, " .
 " Processor = ’$Processor{ProcessorType}’, " .
 " Speed = $Processor{Win32ProcessorSpeed}, " .
 " MMX = $Processor{MMX}, " .
 " Ram = $Mem{RAMTotal}, " .
 " PageFile = $Mem{PageTotal} " .
 "WHERE ID = $Id";
 if($db->Sql($Update))
 {
 print "Could not update computer info: " . $db->Error() . "\n";
 }

 if($db->Sql("DELETE Drives WHERE Computer=$Id"))
 {

 print "Could not delete drive info: " . $db->Error() . "\n";
 }

 foreach $Drive (sort(keys(%Drives)))
 {
 my $Insert = "INSERT INTO Drives " .
 "(Drive,Size,Free,Type,Computer) " .
 "VALUES (’$Drive’, $Drives{$Drive}->{size}, " .
 "$Drives{$Drive}->{free}, ’$DriveType{$Drives{$Drive}->{type}}’, " .
 "$Id)";
 if($db->Sql($Insert))
 {
 print "Could not insert drive $Drive info: " . $db->Error() . "\n";
 }
 }
 }
 $db->Close();
}
else
{
 print "Unable to connect to the database: " . Win32::ODBC::Error() . "\n";
}

print "Finished.\n";

sub GetDbId
{
 my($db, $Computer) = @_;
 my(%Data);
 if(! $db->Sql("SELECT DISTINCT * FROM Computer WHERE Name like ’$Computer’ "))
 {
 if($db->FetchRow())
 {
 %Data = $db->DataHash(’ID’);
 }
 }
 return($Data{ID});
}
We must return a 1 value to indicate this script was successfully loaded
return(1);

7.5 Script 5: A script to report event log warnings and errors.
This script will setup a machine so that it is ready to use the management system. This script will:

15. Gather information from the local event log.
16. Update a database with the gathered information.

This script requires the following extensions:
• Win32::ODBC
• Win32::EventLog

EVENTS.PL

This is a management system script designed to discover
eventlog errors and warnings. Such data is procured and
submitted to a database where it is stored.
#
This script assumes that the database has 2 tables:
1) Computer:
ID int(), primary key, autoincrimenting
Name char
#
2) Events:
Source char
Event char
Type int
Userid char
Computer int
Time datetime
#
Dave Roth

Roth Consulting
http://www.roth.net
#

use Win32::EventLog;
use Win32::ODBC;

$DSN = "Machines";
$Machine = Win32::NodeName();

$SecPerDay = 24 * 60 * 60;
$Now = time();
$TimeLimit = $Now - ($SecPerDay * 1);

if($db = new Win32::ODBC($DSN))
{
 my $Id = GetDbId($db, $Machine);
 if($Id)
 {
 foreach $Source (’System’, ’Application’, ’Security’)
 {
 my $Event = new Win32::EventLog($Source, $Machine);
 if($Event)
 {
 if($Event->GetNumber($Num))
 {
 my %EventData;

 $Flag = EVENTLOG_BACKWARDS_READ | EVENTLOG_SEQUENTIAL_READ;
 do
 {
 if($Event->Read($Flag, $Num, \%EventData))
 {
 # Escape all ’ chars for the sake of SQL syntax...
 map{ $EventData{$_} =~ s/’/’’/g; } (keys(%EventData));

 # We are only going to log errors...
 if(($EventData{EventType} & EVENTLOG_ERROR_TYPE)
 || ($EventData{EventType} & EVENTLOG_WARNING_TYPE))
 {
 my $Insert;
 my @Date = localtime($EventData{TimeGenerated});
 my $DateStamp = sprintf("{ts ’%04d-%02d-%02d %02d:%02d:%02d’ }",
 $Date[5] + 1900,
 $Date[4] + 1,
 $Date[3],
 $Date[2],
 $Date[1],
 $Date[0]);
 my $Insert = "INSERT INTO Events " .
 "(Source, Event, Type, Userid, Time, Computer) " .
 "VALUES (’$EventData{Source}’, ’$EventData{Event}’, " .
 "$EventData{EventType}, ’$EventData{User}’, " .
 "$DateStamp, $Id)";
 if($db->Sql($Insert))
 {
 print "Unable to insert event data: " . $db->Error() . "\n";
 }
 }
 }
 else
 {
 undef %EventData;
 }
 # This will cause the next reading of the registry to move to the
 # next record automatically.
 $Num = 0;
 } while($TimeLimit < $EventData{TimeGenerated});

 Win32::EventLog::CloseEventLog($Event->{handle});
 }

 }
 }
 }
 $db->Close();
}
else
{
 print "Unable to connect to database: " . Win32::ODBC::Error() . "\n";
}

sub GetDbId
{
 my($db, $Computer) = @_;
 my(%Data);
 if(! $db->Sql("SELECT DISTINCT * FROM Computer WHERE Name like ’$Computer’ "))
 {
 if($db->FetchRow())
 {
 %Data = $db->DataHash(’ID’);
 }
 }
 return($Data{ID});
}
We must return a 1 value to indicate this script was successfully loaded
return(1);

