
The following paper was originally published in the

Proceedings of LISA-NT:
The 2nd Large Installation System Administration of Windows NT Conference

Seattle, Washington, USA, July 16–17, 1999

S C A L A B L E , R E M O T E A D M I N I S T R A T I O N
O F W I N D O W S N T

Michail Gomberg, Craig Stacey, and Janet Sayre

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Scalable, Remote Administration of Windows NT

Michail Gomberg, Craig Stacey & Janet Sayre
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract

In the UNIX community there is an overwhelming perception that NT is impossible to manage re-
motely and that NT administration doesn’t scale. This was essentially true with earlier versions of the
operating system. Even today, out of the box, NT is difficult to manage remotely. Many tools, how-
ever, now make remote management of NT not only possible, but under some circumstances very
easy. In this paper we discuss how we at Argonne’s Mathematics and Computer Science Division
manage all our NT machines remotely from a single console, with minimum locally installed software
overhead.

We also present NetReg, which is a locally developed tool for scalable registry management. NetReg
allows us to apply a registry change to a specified set of machines. It is a command line utility that
can be run in either interactive or batch mode and is written in Perl for Win32, taking heavy advantage
of the Win32::TieRegistry module.

1. Overview of MCS Environment

The computing environment in the Mathematics and
Computer Science Division of Argonne National Labo-
ratory consists of nearly a thousand computers, includ-
ing supercomputers, servers, workstations, desktop ma-
chines and laptops. Our NT infrastructure consists of 10
production NT servers, 8 Samba servers, 8 experimental
NT cluster servers, approximately 70 NT workstations,
and approximately 30 machines running Win95/98,
most of which are laptops.

The systems group that manages these machines con-
sists of 8 full time administrators, 3 of whom are at least
partially responsible for the Windows environment. As
with all other systems administrators, we have plenty to
do and our users’ expectations are high. Our environ-
ment continues to grow in complexity and scale; thus
we are constantly searching for better and more scalable
techniques for managing our collection of hardware and
software. To that end, we have installed commercial
packages such as HP OpenView, and have resorted to
writing our own software when other packages did not
fit our working model. Fortunately for us, the tech-
niques for scalable management of machines running
variants of UNIX are fairly well understood. We spent a
considerable amount of time trying to find similar tech-
niques that could be applied in a Windows NT envi-
ronment. We did this partly as an academic exercise,
but primarily because our NT environment is large
enough that we could save significant time and effort if

many mundane management tasks were handled re-
motely.

2. UNIX vs. NT Remote Management

UNIX machines come with many tools that make re-
mote management possible. Many of the tools such as
telnet/rsh daemons and rdist are provided by the vendor
and are considered to be part of minimum standard in-
stallation. Remote management for UNIX machines, in
many cases, involves obtaining a shell via rsh or telnet,
editing configuration files that control the operation of
the machine, and possibly restarting daemons. In some
cases low level console support exists, allowing one to
manage aspects of the hardware, such as rebooting, via
a serial line. These methods alone allow us to manage
all of our UNIX servers from a single console. We can
connect to any machine, work with a familiar environ-
ment, and change any aspect of the machine configura-
tion as long as we know what file to edit.

As our NT environment grew, we became very con-
cerned about remote access issues. We could imagine
running an environment in which we would have to
walk to the machine room simply to add a user, or run
from server to server trying to figure out why some
service is failing. We also were concerned about the
lack of command line administration tools. Our ability
to manage a large number of machines effectively de-
pends on the ability to automate tasks. We usually do

this by scripting complex or repetitive operations, but
we didn’t see a way to accomplish this under NT.

As our experience grew, we realized that NT actually
had many of the remote access primitives built in, but
the model for remote access on NT was markedly dif-
ferent from UNIX. Instead of requiring a remote shell
on the machine, we could manage aspects of the net-
work using C/C++ code. A simple example of this is the
NetUserAdd() system call, which creates a new user
either on a target machine or in a domain. We discov-
ered that NT has many of such system calls for manag-
ing the network, accessing the registry remotely, shut-
ting down remote systems, etc. These calls generally
either connect to a remote machine first, or name the
target host in the first parameter of the call. The calls
either perform the action or return some opaque handle.
Additional calls then can be made to perform more op-
erations using the handle as a parameter. The actual
underlying mechanisms for the connection tend to vary.
Some are implemented via RPC, others via NetBIOS
functions. However, in most cases the underlying
mechanism is never revealed in the documentation.

These functions provided us with the ability to do some
remote management, but this method doesn’t scale well.
We didn’t have the time to write management suites in
C, and those of us who are familiar with C didn’t have
the necessary experience writing Windows code. Fi-
nally, even if we did invest time writing this code, it
would not have helped us on the UNIX side. Our UNIX
management code is written almost exclusively in Perl
and uses a different set of primitives for remote com-
munication. Fortunately, Microsoft was building some
of this functionality into many of its own management
tools. However, the ability to manage machines re-
motely was neither well-documented nor emphasized,
probably because Microsoft was not considering enter-
prise issues at the time.

3. Remote Management Issues

We must consider what types of things we need to man-
age. The following is a non-exhaustive list of the major
issues.

• User account/security management. This task con-
sists of adding and deleting users and groups from
the global or local user list, and changing user ac-
cess privileges to specific resources, such as files or
machines.

• Service configuration and management. Many of
the services that we run need to be configured for

our specific environment. Because of open stan-
dards, many of the services function in similar
ways on NT and UNIX. For example, web dae-
mons, DHCP servers, and DNS servers all need to
be configured continually in a growing environ-
ment.

• Exception notification and logging/security audit.
Both hardware and software generate exceptions
and notification messages that warn of failure or
other problems. Messages that show user access
violations (repeated failed logins) and messages
that warn of impending hardware failure (repeated
failed writes to disk) are of particular interest.

• TCP/IP stack and client configuration management.
A task we recently faced was changing the net-
masks on most of our machines as we flattened our
routed network to a switched environment. Al-
though these tasks are not performed often, they
usually have to be performed on many hosts at the
same time.

• Shutdown/reboot. There are many situations in
which we need to reboot machines remotely. This
is especially true with NT. The netmask example
above required a reboot for the change to take ef-
fect. We also have needed to shutdown all ma-
chines for planned power outages.

• Software configuration. Some software packages
are run by a specific group of users. For example,
our administrative group runs a custom application
for ordering equipment and supplies. These pack-
ages sometimes need global configuration changes,
such as moving a database server to a different ma-
chine.

• Software distribution. Software distribution is
mostly concerned with keeping the software ver-
sions on each individual host up to date. A common
misconception has this problem limited to Win-
dows NT because software is often shared in a
UNIX environment. In reality, the problem is sim-
ply a larger one on NT because almost all software
resides locally. UNIX also has local software, but it
is often limited to vendor patches or small confined
packages that have limited scope such as a local
version of a shell executable.

• Troubleshooting/debugging. When software or
hardware fails, the cause of failure is not always
immediately evident. On the UNIX side, we often
log on, look at running processes, kill resource

hogs, or, in the case of hardware failure, we often
can reconfigure the OS to provide a reduced level
of service so that the effect of the outage is mini-
mized. NT generally requires us to perform similar
tasks, although we often find that our software tool
set, while functional, is more limited in coverage.

• Automated tasks. Automated tasks perform re-
quired daily maintenance or periodic routine jobs.
An example we employ on our NT servers is a
script, run nightly, to copy IIS log files to our
UNIX servers where another script is run to calcu-
late usage statistics.

4. Scalable Remote Management

The problem with remote management on UNIX or NT
is that, in its simplest form, it’s not really scalable. Us-
ing telnet or rsh alone is no better than sitting at the
console of the machine. The ability to manage all such
machines from a single console, one machine at a time,
is no more convenient. Tools that provide good, simple
abstractions for the environment and allow entire groups
of machines or services to be managed as one allow us
to manage that environment in a scalable way. A simple
example using such tools is a file containing a list of all
the hosts, together with a script that reads the file, issu-
ing a remote command (rsh) to each host. In this exam-
ple, the file represents the entire environment, and rsh
provides a simple remote management protocol. An-
other example of a simple but widely used tool in UNIX
is rdist. Rdist allows a single file, such as /etc/passwd or
the configuration file for TCP wrappers, to be distrib-
uted to multiple hosts.

Some management scalability on UNIX machines is
achieved via file sharing through NFS. The simplest
example of this is an NFS mounted /usr/local, which
allows software to be installed and configured only once
for all the client machines. A more complicated exam-
ple in our environment is our global Samba configura-
tion file, which is merged with local configuration files
on the servers, allowing us to manage our Samba serv-
ers as a group.

The aforementioned management techniques suffer
from another problem. They are not really aware of the
environment as a whole. All require explicit knowledge
of which files need to be edited, and may require multi-
ple versions of a single file to be distributed to different
classes of machines. Thus, they don't significantly
shield the administrator from the complexity of the en-
vironment.

Slightly better approaches are used in our "Config"
system, written by Remy Evard, and in Mark Burgess’s
cfEngine. [1][2] Both of these tools are still somewhat
file- centric (our Config system currently defines over
100 files). The strength of these tools is that they allow
system management based on abstract classes such as
OS type, machine function, or other arbitrary classifica-
tions. These tools describe the system as a whole and
manage machines by making them comply to the de-
sired standard. CfEngine is also different in its lack of
dependency on built-in UNIX communication primi-
tives. While the Config system relies on rsh and NFS,
cfEngine uses its own daemons and communications
protocols.

The scalability of our UNIX management approach is
achieved through the availability of a highly diverse tool
set. We have many traditional tools that allow us to
manage single machines and a new generation of tools
to manage the whole environment. The common themes
for these tools are a simple, built-in communication
method and a building-block approach to create more
complex behaviors.

5. Tools for Remote NT Management

Today we can manage most of our NT infrastructure
from a single console. We still make infrequent trips to
the machine room, but most of those are necessary be-
cause of hardware issues and not day to day manage-
ment. The most important tools at our disposal are the
Ataman telnet/rsh daemon, ActiveState's port of Perl,
and the NT Resource Kit. These tools allow us to man-
age accounts and services, make registry changes, dis-
tribute software, and reboot machines. Other tools in-
cluded with NT and the NT Resource Kit allow us to
view event logs, monitor process state and resource
utilization, capture and filter network traffic, and re-
motely connect to the console when required.

The Ataman telnet service and Perl are a huge advance
for the NT world because they provide a familiar man-
agement environment. We recently used the following
script to shutdown all of our NT workstations in prepa-
ration for a planned power outage. Interestingly, this
script was triggered using rsh from a UNIX worksta-
tion. Also note that portions of the NT Resource Kit are
copied into a DFS share so they are accessible to all of
our NT machines via a UNC path. This is a similar
concept to /usr/local in our UNIX environment.

use Win32::NetAdmin;

Win32::NetAdmin::GetServers(undef, "MCS", SV_TYPE_NT, \%all_server_ref);

Win32::NetAdmin::GetServers(undef, "MCS",
 SV_TYPE_SERVER_NT | SV_TYPE_DOMAIN_CTRL | SV_TYPE_DOMAIN_BAKCTRL,
 \%nt_server_ref);

get rid of servers and only leave workstations
foreach $server (keys(%nt_server_ref)){
 print "$server\n";
 delete $all_server_ref{$server};
}

foreach $server (keys(%all_server_ref)){
 $result = ‘\\\\mcsnt\\DFS\\soft\\adm\\packages\\ntreskit‘ .

 ‘\\shutdown \\\\$_ /T:60 /Y /C‘;
 print $result;
}

Another common task is changing a registry value on all
machines. The following example copies AT&T Re-
search UK’s VNC settings (including the password)

from the host machine to all other machines on the net-
work. This script can be run on any of our machines.

use Sys::Hostname;
use Win32::TieRegistry;
use Win32::NetAdmin;
$Registry->Delimiter("/");

Win32::NetAdmin::GetServers(undef, "MCS", SV_TYPE_NT, \%all_server_ref);

my($hostname) = uc(hostname());
$hostname =~ /^(\w+)\./;
$hostname = $1;

my($src_key) = $Registry->Connect($hostname,
 "Users/.DEFAULT/Software/ORL/WinVNC3");

foreach $server (keys(%all_server_ref)){

next if($server eq $hostname);
my($rem_dst_key) = $Registry->Connect($server,

"Users/.DEFAULT/Software/ORL/WinVNC3");

if(!$rem_dst_key){
$rem_dst_key = $Registry->Connect($server,

 "Users/.DEFAULT/Software/ORL");
next if(!$rem_dst_key); # host doesn’t have VNC at all
$rem_dst_key->CreateKey("WinVNC3");
$rem_dst_key = $Registry->Connect($server,

 "Users/.DEFAULT/Software/ORL/WinVNC3");
 }

my(@value_names) = $src_key->ValueNames;

my($value, $value_string, $value_type);
foreach $value (@value_names){

($value_string, $value_type) = $src_key->GetValue($value);
$rem_dst_key->SetValue($value, $value_string, $value_type);

}

undef $rem_dst_key;
}

Conceivably, both of those tasks can be accomplished
on our network by hand. However, very large or distrib-
uted organizations could certainly benefit from this
more scalable approach. The above script 65 seconds to
complete on 126 hosts on our network, which includes
bandwidth ranging from switched 100 Base-T to
128kb/s ISDN. Expanding this to a network of 5,000
hosts, the script would take approximately 43 minutes to
run, significantly less time than it would take to visit
every machine in person.

While the UNIX management model is file-centric, the
NT management model is almost entirely registry-
centric. Although the registry is a binary file, logically it
is arranged as a hierarchical forest much like a POSIX
directory structure. This similarity allows some of the
techniques that we learned from our UNIX experience
to be applied to NT management. For example, we can
extend the Config system or cfEngine (if ported) to
manage a set of registry keys. Unfortunately, Microsoft
has not completely committed to using the registry as a
central and sole store of configuration information. A
notable exception is IIS, which uses its own binary for-
mat file as well as the registry for configuration data.
One positive direction that Microsoft seems to be taking
is the ADSI style management interface. This technol-
ogy relies on OLE objects addressed in the form of
PROVIDER://<Host>/<object1>/<object2>/<etc...>.
Each returned object manages a particular aspect of a
service or a machine. Because the objects are OLE-
based, they are language neutral and can easily be used
from Perl. Since the objects can specify remote hosts,
they can be used as building blocks for higher level
scalable tools.

There are, however, several problems with this ap-
proach. Since ADSI objects rely on OLE, the objects
must be known in advance by the client workstation that
is doing the management. This means that for true scal-
ability, all the known objects have to be distributed to
all the machines. Since these objects are usually a part
of a much larger package, such distribution is impracti-
cal and may break license agreements. Another problem
is that not all management functions are covered, so
changes may still have to be made through the registry
or through configuration files. The final, and possibly
most difficult, problem is that because ADSI is not
available on UNIX platforms, we can’t use our NT de-
veloped tools for integrated enterprise management. We

hope to avoid much of the duplication of effort that goes
into managing these two environments.

Many of the other tools we use for remote management
come with NT. For example, we use the User Manager
and Server Manager tools to manage accounts, services,
and shares. We use Regedt32 for remote, single-
machine registry edits. We often use the Event Viewer
as a first step in our trouble shooting, and we use the
Performance Monitor as both a data collection tool and
a first line of defense against problems. If necessary, we
use VNC from AT&T Research UK to connect to the
console remotely and perform operations that can only
be done from the console.

6. The NetReg Tool

The motivation for NetReg came from writing many
Perl scripts to manage different portions of the registry.
We realized that we needed a tool that was easily script-
able by someone familiar with the registry but not nec-
essarily with Perl. We wanted a tool that could be used
from the command line (in a telnet window), did not
depend on regedit, and could be used in interactive
mode to make individual changes. We first looked at the
NT Resource Kit, which contains at least 14 different
tools to edit the registry. Each tool uses a slightly differ-
ent syntax, and all work in slightly different ways. Only
some can be used to manage remote registries, and only
a few support scripting. We wanted to have a single tool
that combined all these functions, had a simple unified
syntax, and could build on the power of Perl.

NetReg is built around the Perl TieRegistry module
written by Tye McQueen. The TieRegistry module is
extremely powerful and easy to use. It lets you ma-
nipulate the registry via an object or via tied hashes. The
“chaining” feature allows intermediate registry objects
to be created, which then can then be used for subse-
quent connections to sub-objects. TieRegistry also al-
lows remote connections, can manipulate any type of
registry value, and can cache lookups for enhanced per-
formance.

In its current incarnation, NetReg is in many ways a
proof of concept. Both the syntax and the execution
model will change in further releases. The current syn-
tax consists of the following elements.

load [net <domain>|sms|file|machine_list] –pick –regexp
search [keys|values|valuename|all] –r –pick –regexp <path> <search value>
copy [keys|values|valuename|all] [<identifier>|<src_path>] <dst_path>
list [keys|values|valuenames|all] [<path>|<identifier>]
select –regexp –pick <identifier>
edit <identifier> <perl_regexp_replacement>
reboot <identifier>
bookmarks [load|save|list] –pick –regexp
bm <bookmark_name> <path>

As stated before, NetReg can be run in interactive
mode or in batch mode. The interactive mode is cur-
rently command line driven but will be extended in
future versions to support a TCL/TK GUI as well as a
command line.

Most NetReg commands return an implicit result. The
succeeding operations use and augment the result. For

example, a load operation creates a list of machines; a
search operation uses the current machine list and will
return a list of machines and keys that match the
search criteria; an edit operation simply uses the cur-
rent machine and key list to perform a global edit
operation. The following example illustrates the us-
age. This three-line sample performs the same VNC
registry copy as the previous Perl script.

$vnc = LMachine/Users/.Default/Software/ORL/WinVNC3/*
$all = load net MCS
copy values $vnc $all/$vnc

A very useful feature of NetReg is the ability to use
bookmarks. Bookmarks can either be a simple alias
for a complex key name or can consist of a compli-

cated chain of registry keys and values. The following
examples demonstrate this.

bm vnc LMachine/Users/.Default/Software/ORL/WinVNC3
bm services “LMachine/System/CurrentControlSet/Services”
bm netcards <services>/NetBT/Adapters/*
bm ipaddr <services>/{<netcards> =~ /\/(\w)$/}/Parameters/Tcpip/IPAddress

In the example above, vnc and services are simply
aliases for longer key paths. The bookmark netcards
is an alias that may return multiple paths or values.
The ipaddr bookmark is special. The curly brackets
denote an executable query. Thus, ipaddr will first
evaluate the netcards query, then apply a Perl regular
expression to the result. For Perl novices, the regular
expression selects the last word after the “/”, which in
this case should be the name of the device driver
which implements the NetBT service and, in most
cases, the TCP/IP service as well. The result of the
regular expression match then is inserted into the
bookmark. Finally, the bookmark is evaluated as a
whole to return the IP address assigned to the adapter.
In machines with multiple adapters configured with
TCP/IP, the same query would return all the IP ad-
dresses assigned to each card.

The bookmarks can be used in any command that
accepts a path. To delimit the bookmarks from the
rest of the path, they are enclosed by “<>”. The
bookmarks’ usefulness depends on the user. While
there will be some predefined common bookmarks in

the distribution, a judicious use of additional book-
marks will help simplify registry navigation.

Since NetReg is still evolving, it is premature to dis-
cuss all its features in this paper. Additional docu-
mentation and examples will be available on-line in
the distribution.

7. Other NT Remote Management Solu-
tions

We took an informal look at other Argonne divisions
and one educational site to discover how other groups
were coping with the problems that we encountered.

Some sites find they are able to use NT efficiently
without adding any outside tools. For example, Ar-
gonne's Office of the Chief Financial Officer has
about 20 servers (for development, files, and applica-
tions) and approximately 300 workstations, all man-
aged by the tools that come with NT. They have to
visit the machines in person occasionally, but find
that most remote management tasks they need to per-
form are available. They evaluated SMS, and plan to

start using it when the new version becomes avail-
able, but have managed without adding to NT for
quite a while. [7]

A little further along the continuum lies Concordia
University. While they use no remote management
tools for NT servers located on their main campus,
they have added to NT’s remote capability by using
PCAnywhere and CarbonCopy to install and monitor
NT at other locations. Unfortunately, a phone call to
the person at the console is still the solution to some
problems. For managing workstations, KiXtart is used
for small changes. Major changes are made by clon-
ing machines to identical states using GHOST. This
works in that environment since these are lab PCs.
Concordia does have concerns for the future, how-
ever, and hopes to solve the remote administration
challenge more satisfactorily, since they are due to
become the central support for a consortium of col-
leges spread across the country. [8]

Argonne’s Electronics and Computing Technologies
(ECT) division goes a little further still. They used
SMS in the past, and plan to use it again when version
2 is released with the new version of BackOffice.
They had a successful installation of Office 97 using
SMS to push the install, but currently they must
physically visit a machine to install software. They
remotely manage servers by mounting administrative
shares from the server to the workstation. Most tools
(user manager, server manager, etc.) are designed to
run remotely, and the administrators find they can do
everything they need. They’re reasonably happy with
their existing solution, but have encountered some
tasks that simply do not have an obvious remote solu-
tion, e.g., installing FrontPage extensions remotely.
ECT manages three main domains, with about 24
servers. Users have administrator privileges, even
though SMS is used for installs, since installs run as
the user.

One ECT project did turn out to be a solution to the
remote install problem. Autolink. an Argonne devel-
oped tool, was designed to solve the problem of dif-
ferent programs requiring different versions of a .dll
file, but it became a solution to the remote install
problem. Managing the .dll's by keeping them on the
server meant that a solution had to be found for in-
stallation on the remote clients. Although it is narrow
in scope−only designed to handle a well-defined set
of applications and requires user input to exe-
cute−Autolink's combination of Oracle and Power-
Builder allows entire groups of applications to be
managed from a single location. [9]

An even heavier user of SMS is Argonne's Chemical
Technology division. The systems administrators
customize SMS heavily, writing scripts that run on
the desktop to allow remote installation of anything
they want. This is an extremely centralized environ-
ment, with workstation users denied administrative
privileges on their machines. Despite the authoring
efforts put into remote installation on workstations,
server management in that division is accomplished
by the tools that come with SQL manager, user man-
ager, DCHP manager, etc. [10]

8. Unsolved Remote Management Tasks

We have encountered some management tasks that
we simply cannot perform remotely because of cur-
rent NT and hardware limitations. Some issues we
simply decided to ignore, partially because our envi-
ronment permitted it, and because the payoff for
solving those issues at our site was small.

8.1 No locked down machines

We run our machines using a trusted environment
model. We operate under the assumption that if you
have physical access to the machine, you have the
ability to get root-level access on that machine. Be-
cause of this, the local administrator account gets no
domain privileges. In fact, whenever a user is as-
signed to a particular workstation, we grant adminis-
trator access right away. We experimented with not
doing this, but it proved to be more trouble for us as
well as the users because they couldn't get their ma-
chines to do what they needed to when they needed it.

We have found that allowing users to have adminis-
trator access has not been as problematic as we origi-
nally assumed. The users are warned not to keep any
data on the machine's disk, and to expect that a full
rebuild is a possibility if they mess up the machine to
the point where we can't fix it. This has rarely been
the case, but it has happened.

8.2 User-Installed Software

In giving the users administrator access to their ma-
chines, the distribution of software has become even
easier for us. For most packages, we have set up a
"come 'n' get it" system, where all of the software we
distribute to the users is available from a central
place— in our case, a web page.

We created a Windows Software Repository web
page (http://www.mcs.anl.gov/windows). It's a

manually updated web page that uses UNC hyperlinks
to direct users to the setup programs for various pack-
ages. The packages are distributed from a DFS
shared repository and the web page includes any help-
ful hints for installing the software, as well as license
keys. We’ve also taken advantage of the automated
installs we’ve created for some packages for use in the
machine building scripts. We provide links to those
for users who wish to have a default install on their
Windows NT machine.

In order to allow users to take full advantage of this
web page, independent of their browser or OS (Win-
dows 9x on laptops vs. Windows NT on desktops),
each network-resident distribution directory has a
setup.bat, which calls the appropriate setup program.
This ensures the setup program is launched with the
correct path, as Netscape does not pass the path along
when directly running a “file:” hyperlink. Using this
setup.bat method also allows us a crude but easy in-
stallation tracking method, by sending an email using
the freeware email sending program
BLAT(http://www.interlog.com/~tcharron/blat.html)
whenever the installation program is run. This is es-
pecially helpful in dealing with software that is not
under a site license. Because we use UNC links to a
DFS shared directory, we maintain security in that
only users logged into the domain can access the
software directory tree.

9. Remaining Problems

While programs like SMS remote control and AT&T
Research’s Virtual Network Computing help us get to
the console of machines that are up, we still do not
have quite the low-level console capability we have in
UNIX. If our servers get stuck in the boot process
before Windows actually starts, we are left in that
awful position of physically having to be at the ma-
chine, which is not very practical on a weekend.
While this will still happen with our UNIX machines
from time to time, it is still far less frequent an event
than in with PCs. Still, it makes a remote reboot a
little more risky.

Our current procedure when an NT box can’t boot is
to boot it with ERD disks at the console. It would be
incredibly useful if Microsoft implemented ERD-like
functionality into NT and allowed the console to be
transferred to a serial port.

10. Summary

Our experience with NT has shown us that, with the
right mix of tools, it is possible to manage NT re-
motely, in some cases in a scalable way. NT has a
different set of primitives than UNIX for remote
communication. It looks like Microsoft is taking en-
terprise management issues much more seriously.
We hope they will learn from the UNIX community
how to handle large installations of machines and
software.

We also hope that Microsoft will take more of a
building block approach to providing management
applications for NT. Experience has shown repeatedly
that monolithic applications have too great a learning
curve and are often too inflexible. We also would
like to see Microsoft stick with a particular set of its
own standards, such as using the registry or ADSI, so
that we can more easily build tools to our own speci-
fications.

11. Author and Project Information

Michail Gomberg is a systems administrator in the
Mathematics and Computer Science Division at Ar-
gonne National Laboratory. He was the lead techni-
cal architect for this project. His email address is
gomberg@mcs.anl.gov.

Craig Stacey is a systems administrator in the
Mathematics and Computer Science Division at Ar-
gonne National Laboratory. His email address is
stace@mcs.anl.gov.

Janet Sayre is a systems administrator in the Mathe-
matics and Computer Science Division at Argonne
National Laboratory. Her email address is
sayre@mcs.anl.gov.

This work was supported by the Mathematical, In-
formation, and Computational Sciences Division sub-
program of the Office of Advanced Scientific Com-
puting Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

12. References

[1] R. Evard. An analysis of unix system configura-
tion. Proceedings of the 11th Systems Administration
conference (LISA), page 179, 1997

[2] Mark Burgess, Cfengine A Site Configuration
Engine, USENIX Computing systems, Vol8, No. 3
1995

[3] Microsoft Windows NT Workstation 4.0 Resource
Kit, Microsoft Corporation, Microsoft Press, 1996

[4] Comparing Microsoft Windows NT and UNIX
Remote Management. Microsoft White Paper.

[5] Comparing Microsoft Windows NT and UNIX
System Management. Microsoft White Paper.

[6] Microsoft Windows NT from a UNIX Point of
View. Microsoft White Paper.

[7] Kay Burdi, Argonne National Laboratory-OCF,
5/26/99

[8] Rich Helmke, Concordia University, 5/26/99

[9] Rich Raffenetti, Argonne National Laboratory-
ECT, 5/28/99

[10] Steve Gabelnick, Argonne National Laboratory-
CMT, 5/27/99

