
USENIX Association

Proceedings of the
2nd JavaTM Virtual Machine

Research and Technology Symposium
(JVM '02)

San Francisco, California, USA
August 1-2, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Optimizing Precision Overhead for x86 Processors

Takeshi Ogasawara Hideaki Komatsu Toshio Nakatani

IBM Japan, Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato-Shi, Kanagawa, Japan 242-8502

{takeshi,komatsu,nakatani }@jp.ibm.com

Abstract
It is a major challenge for a Java JIT compiler to per-
form single-precision floating-point operations efficiently
for the x86 processors. In previous research, the double-
precision mode is set as the default precision mode when
methods are invoked. This introduces redundant mode
switches to preserve the default precision mode across
method boundaries. Furthermore, the precision mode is
switched only at the start and end points of a given method
to reduce the overhead of rounding double-precision results
to single-precision ones. Therefore, methods that include
both single- and double-precision operations cannot switch
the mode and have to suffer from the overhead of rounding
using this convention, even if single-precision operations
are dominant.

We propose a new approach to these problems. We elim-
inate redundant mode switches by ignoring the default pre-
cision mode and calling a method in the same precision
mode as the caller. For methods that include both single-
and double-precision methods, we reduce the overhead of
rounding by isolating code segments of a given method
that should be executed in the single-precision mode. We
implemented our approach in IBM’s production-quality
Just-in-Time compiler, and obtained experimental results,
showing that, in SPECjvm98, it consistently shows the best
performance in any configuration of benchmark programs,
inline policies, and processor architectures compared to
previous research.

1 Introduction

The Java language [4] has unique specifications that enable
programmers to create highly portable programs. In par-
ticular, it requires floating-point operations that conform
to the IEEE 754 standard [5]. Under these specifications,
Java programs running on a different platform can calcu-
late the same result for a given floating-point operation.
FP-strictness [21] as introduced by Java 2 has relaxed the
specification with respect to overflow and underflow, but it
still calls for strict precision.

A Just-in-Time (JIT) compiler for Java [15, 3, 17, 19, 16,
2] is critical for high-performance Java virtual machines.
It must follow the language specification, while it is also
expected to generate efficient code. A JIT compiler for
the x86 processors faces several performance challenges
unique to the x86 architecture.

In particular, it is a major challenge for a Java JIT com-
piler to perform single-precision floating-point operations
efficiently for the x86 processors. Unlike other proces-
sors, the x86 processor has a precision mode that deter-
mines whether the floating-point unit executes the same
instruction in either single or double precision. In gen-
eral, the double precision mode is usually set as the default
precision mode throughout the program execution, and the
single-precision floating-point operations are emulated in
the double-precision mode. This is true even for recent
processors that support a new instruction set, the Stream-
ing Single-instruction-multiple-data Extensions 2 (SSE2)
[8], since the original instruction set can perform some op-
erations more efficiently.

There are two approaches to performing single-precision
floating-point operations for Java programs in the double-
precision mode of the x86 processors. One [12] is to em-
ulate the single-precision floating-point operations in the
double-precision mode by rounding a double-precision re-
sult to the single-precision value. This can be accomplished
by storing it from the register to a single-precision memory
and loading it back again to the register. This store-reload
for rounding is required for each single-precision floating-
point operation, because Java doesn’t allow the double-
precision values to be accumulated for the conversion to a
single-precision value once at the end. Obviously the draw-
back of this store-reload approach is the latency of store-
to-load forwarding [13] for each single-precision floating-
point operation.

The other approach is to switch the mode from the dou-
ble precision to the single precision mode at the start point
of the method and perform all the floating-point operations
in the single-precision mode without emulation. The draw-
back of this mode-switch approach is the penalty of mode

switches at every point of the code where the control is
transferred from and to another code block. Furthermore,
this approach is not applicable to those methods that in-
clude both double-precision and single-precision floating-
point operations, since obviously a double-precision oper-
ation cannot be performed in the single-precision mode.

Recently Paleczny et al. [17] proposed a mixed approach
in which the mode switch is used whenever it gains perfor-
mance over the store-reload approach. This eliminates the
overhead of some cases for the store-reload approach, but
it still suffers from the overhead of the mode switch and a
high overhead for those methods that include both double-
precision and single-precision floating-point operations.

In this paper, we propose a new approach called
precision-aware invocation, in which we ignore the de-
fault precision mode and call a method in the same pre-
cision mode as the caller whenever appropriate. We add
a property calledfloating-point precision type (FPPT)to
each compiled code block. In our approach, we eliminate
the overhead of redundant switching between the single-
precision mode and the default precision mode (that is,
double-precision mode) by preserving the default precision
mode across the method boundaries. Only when we call a
method of a different precision mode must we switch the
precision mode at the start and end points of the method.

We further propose a technique calledprecision region
analysis to reduce the number of operations to emulate
single-precision floating-point operations in the double-
precision mode using the store-reload approach. In this
technique, our JIT compiler analyzes the bytecode of the
given methods, and locates the places at which it should
switch the precision mode at a finer granularity without
switching the mode only at the start and end points of the
method.

In summary, the contributions of our paper are the fol-
lowing:

• We minimize the number of redundant mode switches
in the JIT compiled code by eliminating the default
precision mode and introducing precision-aware in-
vocation based on the floating-point precision type of
each method.

• We reduce the number of operations to emulate single-
precision floating-point operations in the double-
precision mode by doing precision region analysis in
the JIT compiler.

The rest of this paper is organized as follows. Section 2 de-
scribes the portability of Java floating-point types and the
overhead of executing single-precision floating-point oper-
ations on the x86 processors. Section 3 describes our new
techniques to minimize the redundant mode switches and
the number of operations to emulate them in the double-
precision mode. Section 4 presents our experimental re-
sults. Section 5 discusses related work. Finally, Section 6
concludes the paper.

2 Portability and Overhead of the Java
Floating-Point Types

This section describes the Java specification for floating-
point operations and how single-precision floating-point
operations are performed in conforming to it on the x86
processors. The section then describes what problems pre-
vious JIT compilers for the x86 face in order to perform
these operations efficiently.

2.1 Java Floating-Point Operations and the
IEEE 754 Standard

Java has two floating-point types: float and double.
Floating-point values of these types and operations on them
should conform to the IEEE 754 standard [5, 22]. The stan-
dard defines the binary floating-point format, which con-
sists of three components: sign, exponent, and significand.
The Java floating-point types, float and double, are asso-
ciated with the single and double precision formats of the
standard, respectively. Therefore, all the Java virtual ma-
chines should generate the same result for a given floating-
point expression at the bitwise level in their binary formats.

Java 2 has introduced a new semantic category, FP-strict
[21]. The semantics of FP-strict code are the same as that
of the original specifications. On the other hand, non-FP-
strict code still performs a floating-point operation with the
same size of significand as that of FP-strict code, but it ex-
tends the exponent. Regardless of FP-strictness, it is not
permissible to perform a single-precision operation in dou-
ble precision.

2.2 Floating-Point Unit and Precision Mode
on the x86

The x86 has a floating-point unit that supports the IEEE
754 standard [9]. The floating-point unit does not have sep-
arate instructions for each type of floating-point precision.
Instead, it executes an instruction in either single or dou-
ble precision by switching the precision mode. There is
a special instruction, fldcw, which modifies the hardware
flags that switch the mode. However, since the overhead
of fldcw is quite large, frequent switching of the precision
mode degrades the performance of a program. Although
the overhead of fldcw is optimized in the NetBurst [6], it is
still a significant penalty.

There is a way to perform a single-precision operation so
that a program does not suffer from the penalty of switching
the precision mode. First, perform the operation in double
precision. Second, store the calculated result in the register
into a memory location of single-precision size. This trans-
lates the result to the single-precision value. Third, load it
back into the register. However this rounding store-reload
operation [12] inserts additional latency in the data flow,
even though the store-to-load forwarding feature enables

; start in double-precision mode
fldcw [single_prec] ; switch to single-precision mode

:
fmul ST(0), ST(0) ; r0 = r0*r0
faddp ST(1), ST(0) ; r1 = r1+r0

:
fldcw [double_prec] ; switch to double-precision mode
ret ; return in double-precision mode

(a) The mode switch method

; start in double-precision mode
:

fmul ST(0), ST(0) ; r0 = r0*r0
fstp real4 ptr [mem]; store r0 to mem (rounding)
fld real4 ptr [mem]; load r0 from mem
faddp ST(1), ST(0) ; r1 = r1+r0
fxch ST(0), ST(1) ; exchange r0 with r1
fstp real4 ptr [mem]; store r0 to mem (rounding)
fld real4 ptr [mem]; load r0 from mem

:
ret ; return in double-precision mode

(b) The rounding store-load method

Figure 1: Examples of x86 single-precision operations

the load to receive the stored value from the store buffer
without accessing memory. Figure 1 shows two versions of
x86 instructions for these two methods, which perform the
same single-precision operations,v1 = v1 + v2 ∗ v2.

2.3 Problems of Previous JIT Compilers

For Java Just-in-Time (JIT) compilers for x86-based pro-
cessors [3, 17, 19], it is critical to reduce the precision-
related overhead to optimize a Java program that frequently
executes floating-point operations. In previous research,
double precision is used as the default mode for compiled
code [17]. This default precision mode was required be-
cause the interpreter usually runs in the double precision
mode and selectively compiled code can be called by an in-
terpreted method or by a method that will be dynamically
loaded in the future.

If a traditional compiler analyzes a method and the anal-
ysis shows that the improvement by eliminating the round-
ing store-reloads exceeds the overhead of executing fldcw
[17], it inserts an fldcw instruction to start the code in the
single precision mode. It also inserts an fldcw to restore
the default mode at each exit point. If this method invokes
another method that is also analyzed to switch to the sin-
gle precision mode, the compiler inserts an fldcw to restore
the default mode before the invocation and another fldcw
to switch to the single precision mode after the invocation.
There are variations of this approach with different thresh-
olds for determining whether or not to switch the mode.
This approach balances the cost of fldcw and the latency
caused by the rounding store-reload, while it minimizes the
total penalty for supporting Java’s floating-point specifica-
tion. However, it still suffers from the following two forms
of overhead.

The first overhead is redundant switches of the preci-
sion mode during method invocations. Consider the case

when a method runs in single precision and invokes another
method that prefers to run in single precision. Since the de-
fault mode is double and every method assumes that it is
invoked in double precision, the caller method executes an
fldcw to switch the precision mode from single to double
before the invocation. Then the callee method immediately
executes a second fldcw to switch from double to single.
A similar redundant switch occurs when the callee method
returns to the caller.

The second overhead is the rounding store-reloads
caused by the convention of the mode switch required at
the start and end points. Since default-precision opera-
tions must be performed in the double-precision mode,
this convention makes the entire code run in the double-
precision mode if the code includes double-precision op-
erations as well as single-precision operations. As a result,
these single-operations require rounding store-reloads. An-
other case is when a compiler determines that the penalty
of these rounding store-reloads is less costly than that of the
mode switch at the start and end points even if the code in-
cludes single-precision operations but not double-precision
operations. The problem is that, if these rounding store-
reloads are executed frequently at runtime, the cumulative
overhead significantly degrades the performance of the pro-
gram.

These overheads for a program that performs single-
precision operations are caused by the default precision
mode and the ordinary mode-switch convention. To min-
imize these overheads, we need to analyze the entire call
graph of methods to determine where the precision mode
changes. However, it is difficult for a JIT compiler to do
such an analysis because it does not compile all the meth-
ods at one time. In particular, JIT compilers cannot ana-
lyze interpreted methods when they perform selective com-
pilation to reduce the time and resources for compilation
[17, 19]. Our goal is to remove these overheads to con-
form to the IEEE 754 standard without analyzing the entire
program.

3 Precision Region Optimization (PRO)

This section describes our new techniques to minimize re-
dundant mode switches and reduce store-reload operations
for rounding in those methods which include both single-
and double-precision operations.

3.1 Tracking the Floating-Point Precision
Type of Code Blocks

To eliminate redundant mode switches and reduce the
memory latency of rounding store-reloads, our JIT-
compiled code has an attribute calledfloating-point preci-
sion type (FPPT). The FPPT of code shows the precision
mode in which the code is called. When a method calls an-
other method, it calls the code with the same FPPT as the

current precision of the call site.
Figure 2 shows all of the combinations of caller’s preci-

sion (single or double), the type of invocations (virtual or
non-virtual), callee’s FPPT (single or double), and the type
of floating-point operations included in the code (none, sin-
gle, double, or both). Each rectangle shows a code seg-
ment. DP and SP denote double and single precision, re-
spectively. Each arrow shows a method invocation. The
code for an FPPT is generated only if a method invocation
that points to it actually occurs.

We explain how we generate the code for an FPPT for
three different cases using Figure 2. The first case is when
calling a method whose bytecode does not include any
floating-point operations (Figure 2a). If it includes call
sites, the compiled code has a specific FPPT since it had
to determine the FPPT for the callee code. The body of
the single-FPPT code block and that of the double-FPPT
are the same. If the method is a leaf method, the FPPT
is not used. The second case is when calling a method
whose bytecode includes floating-point operations of either
single or double precision (Figure 2b). There is no mode
switch if the caller’s precision is the same as the precision
of these operations. Otherwise, the compiler analyzes the
bytecode to determine whether the mode switch is required,
considering the tradeoff. For the mode switch, it is per-
formed only once across the method boundary. In addition,
since the code bodies for the same-precision and different-
precision cases are the same, the compiler can easily gen-
erate one by duplicating the other. The third case is when
calling a method whose bytecode includes single and dou-
ble operations (Figure 2c). This case is the same as the sec-
ond one except that switching to double occurs to perform
double-precision operations in the single-FPPT code.

The binary translation from the code of one FPPT to that
of the other FPPT is done simply by inserting or removing
instructions for the mode switch and the rounding store-
reload. Since this is much faster than the compiler’s opti-
mizations for the original code, the overhead of introduc-
ing the FPPT is negligible at compilation time. However,
in general, a method tends to be called from either single or
double precision. Therefore, it is expected that the majority
of methods have either a single- or a double-FPPT version
of the code and the degree of code expansion is quite low.

3.2 Precision Region Analysis

If a method includes both single- and double-precision op-
erations (the case of Figure 2c), the approach of previ-
ous research makes the compiled code run in the double-
precision mode because double-precision operations must
be performed in the double-precision mode. However, this
introduces the penalty of extra rounding store-reloads for
the single-precision operations. In particular, this problem
incurs a significant penalty when a method includes many
single-precision operations but only a few double-precision
operations.

(b) single (double)-precision only

single (double)
FPPT code

double (single)
FPPT code

non-virtual
call
in the single
(double)
mode

non-virtual
call
in the double
(single)
mode

virtual call
in the single
(double)
mode

virtual call
in the double
(single)
mode

SP->DP *
(DP->SP)

DP->SP *
(SP->DP)

callcall call call

(a) no floating-point operations

single
FPPT code

double
FPPT code

any call
in the single
mode

any call
in the double
mode

call call

no FPPT code

leaf code

(c) single and double operations
single FPPT code double FPPT code

non-virtual
call in the
single mode

non-virtual
call in the
double mode

virtual
call in the
single mode

virtual
call in the
double mode

callcall call call

SP->DP

DP->SP
DP ops.

SP ops.

*: The JIT can
choose the
rounding
store-load
if it is more
efficient
instead of
this mode
switch.

SP->DP *

DP->SP * *: The JIT can
choose the
rounding
store-load
if it is more
efficient
instead of
this mode
switch.

neither
mode switch
nor
rounding

no rounding

no roundingneither
mode switch
nor
rounding

Figure 2: Precision-aware method invocations and code
generation.

The JIT compiler can determine which code segments
perform single-precision operations in the single-precision
mode rather than making the entire code block run in the
double-precision mode. The basic idea is toshrink wrap
program regions that run in the double-precision mode.
Since there is a performance trade-off between the mode
switch method and the rounding store-reload method, this
shrink-wrapping is relaxed for a double-precision region
and single-precision operations adjacent to the region may
be included in the region to minimize the overhead of cal-
culating single-precision results.

Figure 3 shows the algorithm of ourprecision region
analysis. The first step of the algorithm is theintra basic
block analysis. The JIT compiler sections each basic block
so that each code section includes either single- or double-
precision operations. It also counts the number of floating-
point operations for each section. The second step is the
inter basic block analysis. The JIT compiler arranges basic
blocks in depth-first-search order based on the control flow
graph, considering the history of the branches recorded
while the interpreter executed the method. The algorithm
processes basic blocks in this order. The result is that it
prioritizes the optimization of a control path that has been
frequently executed by the interpreter, since the target ba-
sic block of a frequently taken branch appears earlier than
that of a rarely taken branch in this order. The JIT compiler
traverses basic blocks in this order and checks the precision
of each section. For contiguous single-precision sections, it
records entering them and counts the number of operations.
This recording of single-precision sections continues until
the JIT compiler encounters a double-precision section, the
head of a loop, or a basic block that is not a target of the pre-
vious basic block. When there are enough single-precision
operations to justify switching the mode, the precision of
these sections remains as single. Otherwise, they are mod-
ified to be double-precision sections, so that the code of
these sections runs in the double-precision mode. For the
basic blocks of exception handlers, the JIT compiler can
propagate the precision of an exception-throwing point to
its handler, although this process is not shown in Figure 3.

Figure 4 illustrates how floating-point operations are per-
formed when a method includes both single- and double-
precision operations by using an example. Figures 4a and
4b show the results of the previous approach and our pre-
cision region analysis, respectively. In Figure 4a, all of
the sections are in a double-precision region. By apply-
ing the precision region analysis, only double-precision
sections are shrink-wrapped with mode-switch instructions
in Figure 4b. In this example, the algorithm finds out
that the overhead of rounding store-reloads required in the
first and second sections is higher than the cost of two
mode switches. As a result, these sections are marked
as single-precision so that the code generation generates
mode-switch instructions. Similarly, it determines that the
fourth, fifth, and eighth sections should run in the single-

/∗ Step 1: Intra-bb analysis – Sectioning ∗/
for (sectionIndex =−1, i = 0; i < bsicBlockCount; i++){
bb = prioritizedDfsListOfBasicBlocks[i];
bb.sectionTop = ++sectionIndex;
section = sectionTable[bb.sectionTop]; /∗ 1st section of bb ∗/
section.precision = (i == 0 ? FPPT : none);
section.startIndex = section.opCount = 0;
firstSectionInitialized = false;
for (code = bb.codeTop, j = 0; j< bb.codeLength; j++){
if (code[j].precision == none){
continue; /∗ code is not floating-point; skip ∗/
} else if (! firstSectionInitialized){
/∗ initialize 1st section ∗/
section.precision = code[j].precision;
section.opCount = 1;
firstSectionInitialized = true;
} else if (code[j].precision == section.precision){
/∗ section continues ∗/
section.opCount++;
} else{
/∗ new section ∗/
section = sectionTable[++sectionIndex];
section.precision = code[j].type;
section.startIndex = j;
section.opCount = 1;
}
} /∗ end for j ∗/
/∗ bb consists of only 1st section if 1st section is uninitialized ∗/
bb.sectionCount = sectionIndex− bb.sectionTop + 1;
}

/∗ Step 2: Inter-bb analysis – Minimizing SP calculation cost ∗/
pendingSpSectionOpCount = 0;
pendingSpSectionIndex =−1;
for (i=0, prevBB=null; i< basicBlockCount; i++, prevBB=bb){
bb = prioritizedDfsListOfBasicBlocks[i];
if (pendingSpSectionIndex≥ 0 &&

(bb.isLoopHead|| ! bb.isBranchedFrom(prevBB))){
/∗ process before a loop or non-contiguous bb ∗/
processPendingSpSections();
}
section = sectionTable[bb.sectionTop];
for (k = 0; k < bb.sectionCount; k++){
switch (section[k].precision){
case SP:
/∗ record potential-SP sections ∗/
pendingSpSection[++pendingSpSectionIndex] = section[k];
pendingSpSectionOpCount += section[k].opCount;
break;

case DP:
if (pendingSpSectionIndex≥ 0) {
/∗ process at boundary from SP to DP ∗/
processPendingSpSections();
}
}
} /∗ end for k ∗/
} /∗ end for i ∗/

/∗ Subroutine: Process pending SP sections ∗/
processPendingSpSections(){
/∗ roundCost and modeSwitchCost are machine-specific const ∗/
if (pendingSpSectionOpCount∗roundCost<modeSwitchCost){
/∗ mode-switch cost is higher; make the sections run in DP ∗/
for (m = 0; m≤ pendingSpSectionIndex; m++)
pendingSpSection[m].precision = DP;

pendingSpSectionIndex =−1;
pendingSpSectionOpCount = 0;
}
}

Figure 3: The algorithm of precision region analysis

Basic Block

(a) previous approach

SP ops

SP ops

SP ops

DP ops

SP ops

SP ops

DP ops

ENTRY

EXIT

(b) precision mode analysis

SP ops

SP ops

SP ops

DP ops

SP ops

SP ops

DP ops

ENTRY (double-FPPT)

EXIT

Sections

Run in single-precision mode

Run in double-precision mode

rounding
required

mode
switch

rounding
required

rounding
required

rounding
required

rounding
required

Figure 4: An example of shrink-wrapping double-precision
regions

precision mode.

3.3 Precision-Aware Invocation

For each call site within the method, the JIT compiler uses
the precision mode at the call site and generates instruc-
tions that call the target code of the FPPT that matches that
precision mode. The method block that maintains the infor-
mation for a method has two entries for code pointers, one
for single-FPPT and another for double-FPPT. The gener-
ated instructions use one of these pointers, depending on
the precision mode at the call site.

4 Measurements

In this section, we evaluate precision-aware invocation us-
ing our system. We used the modules of SPECjvm98 as
benchmark programs. Subsection 4.1 explains the method-
ology of our evaluation. Subsection 4.2 explains the system
used in our experiments. Subsection 4.3 explains the de-
tails of the benchmark programs used in our experiments,
focusing on the floating-point operations. Subsection 4.4
presents the results and discusses them.

4.1 Experimental Methodology

For practicality, we used the SPECjvm98 benchmark
suite [23] in the test mode throughout our experiments.
SPECjvm98 is a suite of benchmark programs and is cur-
rently accepted as one of the major Java benchmarks for
evaluating Java VMs [16, 19, 2, 3].

We compare the rounding store-reload (denoted as
Rounding), the mode-switch method (denoted as Switch),
previous research [17] (denoted as HSS), and our preci-
sion region optimization (denoted as PRO) with each other.
We use Roundign and Switch to emulate the two extreme
conventions with respect to controlling the precision mode.
In Rounding, single-precision operations are always per-
formed in the default precision mode, or double. This
emulates the ordinary approach of ignoring the penalty
of rounding store-reloads. Therefore, it can be used to
measure the maximum number of possible rounding store-
reloads. In Switch, single-precision operations are always
performed in the single-precision mode by switching the
mode at the start and end points if the method includes only
single-precision operations. Code that includes a double-
precision operation always runs in the double-precision
mode. This emulates the ordinary approach of ignoring
the effects of the numbers of call sites. Therefore, this
can be used to measure the maximum number of possi-
ble mode switches. In HSS, the Switch approach is ap-
plied for methods that include enough single-precision op-
erations (at least 32 and more than 10 times of the number
of call sites), but not any double-precision operations, and
the Rounding approach is applied for other methods.

4.2 Environment

We implemented precision region optimization on our pro-
duction quality Java Just-In-Time (JIT) compiler [18, 11,
10, 14, 19], which is part of the IBM Developer Kit for
Windows, Java 2 Technology Edition [7], Version 1.3.1.

Throughout the measurements, we used the same param-
eters for the Java VM and SPECjvm98. The initial and
maximum amounts of Java heap space were 128 MB, spec-
ified with the parameters-Xms128m -Xmx128m. The
SPECjvm98 parameter string-m5 -M5 -s100 causes
each benchmark program to be executed five times using
a problem size of 100.

The measurements were performed on an Intel Pentium-
III 1GHz CPU with 512 MB physical memory running Mi-
crosoft Windows NT Workstation Version 4.0 with Service
Pack 6. For measurements of the execution time with other
examples of the x86 architecture, we used an AMD Athlon
MP 1.2GHz processor and an Intel Pentium 4 2.0GHz pro-
cessor.

4.3 Characteristics of the Benchmark Pro-
grams

This section gives an overview of the characteristics of the
benchmark programs. We focus on two benchmark pro-
grams of SPECjvm98 that are floating-point intensive. The
other programs are not. Table 1 shows the number for
each category of floating-point operations for each bench-
mark program of SPECjvm98during the fifth run, by which

benchmark XPO1 SP arith DP arith Compare Global ld/st Prec Conv Int Conv

227 mtrt off 114,575,305 193,540 52,202,408 230,989,486 386,490 132,001
on 114,768,845 0 52,202,408 230,989,486 8 132,001

222 mpegaudio off 1,091,260,405 1,549,221 40,112,640 781,219,540 1,549,221 20,065,036
on 1,092,809,573 53 40,112,640 781,219,540 53 20,065,036

Table 1: The dynamic counts of floating-point operations

no inlining tiny inlining aggressive inlining
total w/SP total w/SP total w/SP

benchmarks XPO w/o
DP

w/DP w/o
DP

w/DP w/o
DP

w/DP

227 mtrt off 310,344,583 5.11% 0.04% 22,810,014 52.11% 1.26% 11,738,192 38.98% 2.31%
227 mtrt on 310,344,583 5.19% 0.02% 22,810,016 53.15% 0.23% 11,738,192 40.85% 0.44%
222 mpegaudio off 117,631,096 3.95% 1.30% 36,768,517 12.64% 4.16% 21,874,285 19.54% 7.00%
222 mpegaudio on 117,631,096 4.61% 0.64% 36,768,517 14.75% 2.06% 21,874,285 23.08% 3.46%

Table 2: The dynamic counts of method invocations

benchmark XPO no inlining tiny inlining aggressive inlining
227 mtrt off 0.262% (4) 2.057% (8) 3.589% (9)

on 0.071% (1) 0.071% (1) 0.084% (1)
222 mpegaudio off 3.226% (2) 3.226% (2) 3.226% (2)

on 0.812% (1) 0.812% (1) 0.812% (1)

Table 3: The dynamic characteristics of single-precision operations performed by methods that include both single- and
double-precision operations

time all of the major methods have been selectively com-
piled by the JIT compiler. Since these numbers are counted
at the intermediate-language level but not at the machine-
instruction level, they are independent of machine architec-
tures. The XPO column is explained in the next paragraph.
The SP arith and DP arith columns of Table 1 show the
numbers of single- and double-precision arithmetic oper-
ations such as addition, respectively. The Compare col-
umn shows the number of compare operations2. The
Global ld/st column shows the number of memory oper-
ations for the global area such as static fields and object
fields. This does not include memory operations that re-
quired by spilling registers in and out for the local frame.
The Prec Conv column shows the number of operations
that convert a value of one precision to the other. The
last column shows the number of operations that convert
a floating-point value to the corresponding integer value.

The XPO column shows whether excessive-precision
operations are optimized or not. In some cases, source
operands for a double-precision operation have only sin-
gle precision and the result of the operation is immediately
converted into single precision. If the corresponding op-
eration in single precision can calculate the same value
as the double-precision operation does for these single-

1XPO = excessive-precision optimization
2The x86 compares all of the 80 bits of floating-point values in the

registers regardless of the precision mode.

precision values, we can translate this excessive-precision
operation into a single-precision one. As shown in Table 1,
this excessive-precision optimization reduced the dynamic
counts of double-precision operations.

The problem caused by a default precision mode across
the method boundaries has been discussed in Section 2.3.
The resulting performance degradation is proportional to
the number of method invocations. Table 2 shows the num-
ber of method invocations during the fifth run for each level
of method inlining. We applied three policies of inlining:
no inlining, tiny method inlining, and aggressive inlining.
In tiny method inlining, only tiny methods are inlined into
the target code. In aggressive inlining, methods are inlined
unless their calling depths and the code expansion reach
the pre-defined thresholds. For each inlining policy, the
invocation count of all the methods, that of the methods
that include single-precision but not double-precision oper-
ations, and that of the methods that include both single- and
double-precision operations during the fifth run are shown
in Table 2. The number of redundant mode-switches is pro-
portional to the invocation count of the methods that in-
clude single-precision but not double-precision operations.

We have also discussed the problem of the ordinary
mode-switch convention in the case of methods that in-
clude both single- and double-precision operations in Sec-
tion 2.3. Table 3 shows the dynamic count of single-
precision operations performed by these methods and the

no inlining tiny method inling aggressive inling
benchmarks switch store-reload switch store-reload switch store-reload
227 mtrt Rounding 0 82,591,461 0 81,921,296 0 73,964,450

Switch 435,817,517 102,613 30,328,119 102,597 8,921,599 102,597
HSS 0 82,591,461 0 81,921,296 1,894,731 36,379,374
PRO 108,901 51,437 108,901 51,437 108,901 51,437

222 mpegaudio Rounding 0 983,089,608 0 983,072,178 0 983,072,178
Switch 50,667,740 17,484 10,485,380 54 10,169,023 54
HSS 9,322,377 642,969,130 9,322,377 642,951,700 9,322,377 642,951,700
PRO 3,649,659 17,484 3,649,659 54 9,760 54

Table 4: The dynamic counts of mode switches and rounding store-reloads

ratio for the total floating-point operations in each bench-
mark program. In previous research, these single-precision
operations have to be performed in double precision, so this
table shows the maximum numbers of single-precision op-
erations that precision region analysis can optimize with re-
spect to the overhead of rounding store-reloads. For these
benchmark programs, excessive-precision optimization re-
duces the number of methods that include both single-
and double-precision operations by translating the double-
precision operations into the single-precision ones. How-
ever, there still remains a small number of single-precision
operations that require rounding store-reloads.

4.4 Results and discussion

In this section, we assume that excessive-precision opti-
mization has been applied.

4.4.1 Dynamic counts of mode switches and rounding
store-reloads

Table 4 shows the number of mode switches and round-
ing store-reloads during the fifth run for each method-
inlining policy. Overall, PRO significantly improve these
dynamic counts for each policy of inlining. The store-
reload columns for PRO show the numbers of the type
conversion operations performed in every configuration.
In addition to them, a method that has to run in double
precision because of including both single- and double-
precision operations performs rounding store-reloads for
single-precision operations in Switch for227 mtrt.

4.4.2 Execution time

Tables 5 through 7 show the execution time of the bench-
mark programs in seconds using Rounding, Switch, HSS,
and PRO for each method-inlining policy. Overall, PRO
consistently shows the best performance in any configura-
tion of inline policies and processor architectures. On the
other hand, the best performer among Rounding, Switch,
and HSS changes depending on benchmark programs, in-
line policies, and processor architectures. For instance,

in 227 mtrt, Switch shows the worst performance with-
out inlining, though it is the best of the three with tiny
and aggressive inlining on Pentium 4 and Athlon MP. In
222 mpegaudio, Switch shows the best performance of the

three even without inlining. Most importantly, PRO with
tiny inlining shows performance comparable to the best
performance of the others with aggressive inlining in every
configuration of benchmark programs and processor archi-
tectures. This means that PRO can greatly improve the per-
formance of the compiled code during the code optimiza-
tion stage without incuring the heavy compilation overhead
caused by aggressive inlining [20].

5 Related Work

A report of the Java Grande Forum [12] discusses the prob-
lems that arise when making Java programs that frequently
perform floating-point operations run efficiently on the x86
processors while conforming to the Java specification. It
describes a technique for another x86-specific problem, or
double rounding, as well as the rounding store-reload tech-
nique. We did not address this problem in this paper.

Another previous research report [17] presents a heuris-
tic for determining when to insert fldcw instructions by
using the number of single-precision operations, the num-
ber of double-precision operations, and the number of call
sites. This approach suffers from the overhead of redundant
mode switches across the method boundaries. In addition,
there are problems from the overhead of rounding store-
reloads performed by methods that include both single- and
double-precision operations.

Streaming SIMD Extensions 2 (SSE2) [6] introduced a
new set of floating-point instructions to the x86. It has new
instructions that operate on separate floating-point regis-
ters. There are some differences between the SSE2 and the
original instruction set. The SSE2 instructions do not com-
pletely correspond to the original instructions, and some
instructions do not exist in SSE2. In addition, the size
of single-precision registers is half of that of the double-
precision registers, while the original registers can contain
both single- and double-precision values. Furthermore, the

benchmarks no inlining tiny method inlining aggressive inlining
227 mtrt Rounding 4.313 2.719 2.406

Switch 10.578 3.140 2.391
HSS 4.312 2.703 2.250
PRO 3.969 2.375 2.062

222 mpegaudio Rounding 7.687 7.203 7.062
Switch 6.734 5.563 5.421
HSS 7.234 6.750 6.625
PRO 5.826 5.453 5.219

Table 5: The execution times on Pentium III

benchmarks no inlining tiny method inlining aggressive inlining
227 mtrt Rounding 3.105 2.193 2.063

Switch 4.527 1.942 1.732
HSS 3.164 2.193 1.843
PRO 2.774 1.793 1.663

222 mpegaudio Rounding 5.809 5.377 5.408
Switch 3.665 3.155 3.175
HSS 4.977 4.536 4.537
PRO 3.565 3.134 3.034

Table 6: The execution times on Pentium 4

benchmarks no inlining tiny method inling aggressive inlining
227 mtrt Rounding 3.535 2.503 2.273

Switch 6.149 2.473 2.133
HSS 3.545 2.483 2.153
PRO 3.175 2.213 1.983
Rounding 6.319 5.818 5.828

222 mpegaudio Switch 4.586 3.895 3.906
HSS 5.598 5.087 5.107
PRO 4.296 3.835 3.765

Table 7: The execution times on Athlon MP

original instruction set can perform more efficiently than
SSE2 for some Java floating-point operations. Thus, since
SSE2 has different characteristics from the original instruc-
tion set, there are situations where one or the other system
is superior.

6 Conclusions

This paper has presented a novel approach to optimization
of Java floating-point operations for the x86. It consists of
tracking the floating-point precision type of code blocks,
precision region analysis, and precision-aware invocation.
By generating the code blocks with the appropriate floating
point precision types, the default precision mode can be ig-
nored. Precision region analysis investigates the code and
finds appropriate code points where mode switch instruc-
tions can be inserted to minimize the overhead of rounding
store-reloads. Finally, since the compiled code calls the
target code with the same floating-point precision type as
the call site, there is no redundant mode switch across the

method boundaries. Our new approach does not sacrifice
the strictness of the precision, while it minimizes the x86-
specific overhead to preserve the strictness.

We have presented experimental data about the dynamic
characteristics of floating-point operations, using floating-
point intensive programs from a widely used benchmark
suite. Using that data, we have shown that these pro-
grams perform many rounding store-reloads and mode
switches, as well as the floating-point operations. We
have presented experimental results with a modified ver-
sion of IBM’s production-level Just-in-Time compiler and
discussed the effectiveness of our approach. Experimen-
tal results show that, in floating-point intensive programs,
our approach greatly reduced rounding store-reloads and
redundant mode switches and consistently shows the best
performance in any configuration of benchmark programs,
inline policies, and x86 processor implementation.

References

[1] Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages
and Applications (OOPSLA-2000)(New York, NY,
USA, 2000), ACM Press.

[2] A RNOLD, M., FINK , S., GROVE, D., HIND , M.,
AND SWEENEY, P. F. Adaptive optimization in the
Jalapẽno JVM. In ACM [1], pp. 47–65.

[3] CIERNIAK , M., LUEH, G., AND STICHNOTH, J. M.
Practicing JUDO: Java under dynamic optimizations.
In ACM SIGPLAN ’00 Conference on Programming
language design and implementation(New York, NY,
USA, May 2000), ACM Press, pp. 18–21.

[4] GOSLING, J., JOY, B., AND STEELE, G. The Java
Language Specification. The Java Series. Addison-
Wesley, Reading, Massachusetts, Aug. 1996.

[5] GOSLING, J., JOY, B., AND STEELE, G. The Java
Language Specification. In The Java Series[4], Aug.
1996, ch. 4.2.3.

[6] H INTON, G., SAGER, D., UPTON, M., BOGGS, D.,
CARMEAN , D., KYKER, A., AND ROUSSEL, P. The
microarchitecture of the pentium 4 processor.Intel
Technology Journal Q1(2001).

[7] The IBM Developer Kit, Java 2 Technology Edition.
http://www.ibm.com/developerworks/java/jdk/.

[8] I NTEL CORPORATION. P6 Family of Processors
Hardware Developer’s Manual. Intel Corporation,
Sept. 1998.

[9] I NTEL CORPORATION. IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1: Basic Architec-
ture. Intel Corporation, Mt. Prospect, IL, 2001.

[10] ISHIZAKI , K., KAWAHITO , M., YASUE, T., KO-
MATSU, H., AND NAKATANI , T. A study of devirtu-
alization techniques for a Java Just-In-Time compiler.
In ACM [1], pp. 294–310.

[11] ISHIZAKI , K., KAWAHITO , M., YASUE, T.,
TAKEUCHI , M., OGASAWARA, T., SUGANUMA , T.,
ONODERA, T., KOMATSU, H., AND NAKATANI , T.
Design, implementation, and evaluation of optimiza-
tions in a Java Just-In-Time compiler.Concurrency:
Practice and Experience 12, 6 (2000), 457–475.

[12] Java Grande Forum Report: Making
Java Work for High-End Computing.
http://www.javagrande.org/sc98/sc98grande.pdf.

[13] JOHNSON, M. Superscalar Microprocessor Design.
Prentice Hall Series in Innovative Technology. Pren-
tice Hall, Englewood Cliffs, NJ, Jan. 1991.

[14] KAWAHITO , M., KOMATSU, H., AND NAKATANI ,
T. Effective null pointer check elimination utilizing
hardware trap. InProceedings of the 9th international
conference on Architectural support for programming
languages and operating systems (ASPLOS-IX)(New
York, NY, USA, Nov. 2000), ACM Press, pp. 118–
127.

[15] KRALL , A., AND PROBST, M. Monitors and ex-
ceptions: How to implement Java efficiently. In
ACM 1998 Workshop on Java for High-Performance
Network Computing(New York, NY, USA, 1998),
ACM Press, pp. 15–24. Also published asConcur-
rency: Practice and Experience, 10(11–13), Septem-
ber 1998, CODEN CPEXEI, ISSN 1040-3108.

[16] LEE, S., YANG, B.-S., KIM , S., PARK , S., MOON,
S.-M., AND EBCIOĞLU, K. Efficient Java exception
handling in Just-in-Time compilation. InProceedings
of the ACM 2000 Conference on Java Grande(New
York, NY, USA, June 2000), ACM Press, pp. 1–8.

[17] PALECZNY, M., V ICK , C., AND CLICK , C. The
Java HotSpot server compiler. InProceedings of the
Java Virtual Machine Research and Technology Sym-
posium(Apr. 2001), USENIX Association, pp. 1–12.

[18] SUGANUMA , T., OGASAWARA, T., TAKEUCHI , M.,
YASUE, T., KAWAHITO , M., ISHIZAKI , K., KO-
MATSU, H., AND NAKATANI , T. Overview of the
IBM Java Just-In-Time compiler.IBM Syst. J. 39, 1
(2000), 175–193.

[19] SUGANUMA , T., YASUE, T., KAWAHITO , M., KO-
MATSU, H., AND NAKATANI , T. A dynamic opti-
mization framework for a Java Just-In-Time compiler.
In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages
and Applications (OOPSLA-2001)(New York, NY,
USA, 2001), ACM Press, pp. 180–194.

[20] SUGANUMA , T., YASUE, T., AND NAKATANI , T.
An empirical study of method inlining for a Java a
Just-In-Time compiler. InProceedings of the Java
Virtual Machine Research and Technology Sympo-
sium(Aug. 2002), USENIX Association.

[21] SUN. Updates to the Java language speci-
fication for JDK release 1.2 floating point.
http://java.sun.com/docs/books/jls/strictfp-
changes.pdf, Dec. 1998.

[22] THE INSTITUTE OF ELECTRICAL AND ELECTRON-
ICS ENGINEERS, INC. IEEE standard for binary
floating-point arithmetic, Oct. 1985.

[23] THE STANDARD PERFORMANCE EVALUA -
TION CORPORATION (SPEC). JVM Client98
(SPECjvm98). http://www.spec.org/osg/jvm98/,
1998.

