i

The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)
Santa Fe, New Mexico, April 27-30, 1998

Programming Network Components Using NetPebbles:
An Early Report

Ajay Mohindra, Apratim Purakayastha,
Deborra Zukowski, and Murthy Devarakonda
IBM T.J. Watson Research Center

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Programming Network Components Using NetPebbles:
An Early Report

Ajay Mohindra, Apratim Purakayastha, Deborra Zukowski, Murthy Devarakonda
IBM T. J. Watson Research Center
Hawthorne, NY

{ajay, apu, deborra, mdev} Quatson.ibm.com

Abstract

A network-centric application developer faces a
number of challenges, including distributed pro-
gram design, efficient remote object access, soft-
ware reuse, and program deployment issues. This
level of complexity hinders the developer’s ability
to focus on the application logic. NetPebbles re-
moves this complexity from the developer through
a network-component based scripting environment
where remote object access and program deploy-
ment are transparent to the developer. In Net-
Pebbles, a developer selects needed network com-
ponents from a distributed catalog, and then writes
a script invoking its methods as if the components
are local. When the script is launched, the run-
time determines the component sites in the network
and transparently moves the script as needed. Us-
ing three simple examples with different data flow
patterns, we show that the NetPebbles approach
is superior to the traditional client/server systems
and mobile agent technologies because a scripting
language is easy to use, it requires less code, and
the distributed systems complexity is hidden from
the programmer. This paper is an early report on
the NetPebbles project, describing the motivation,
design, prototype implementation, and the experi-
ments using the NetPebbles approach..

1 Introduction

NetPebbles is a scripting environment for writing
and executing distributed component-based appli-
cations. The prominent among its features is the use
of transparent program mobility both for accessing
remote components and for mobile agent-like be-
havior. The resulting benefit to the programmer is
a great deal of simplicity.

A NetPebbles programmer writes a script by first se-
lecting needed interfaces from a distributed catalog
and then invoking interface methods as if the compo-
nents implementing the interfaces are local. An end
user launches such a script into the network, where
the NetPebbles runtime dynamically determines the
component sites and transparently moves the state
of the script to component sites as necessary. Im-
plied in this model is the possibility that a compo-
nent might be downloaded to the script execution
site, and even that both the script and the com-
ponent might execute at a third site. In a typical
scenario, after visiting several component sites, the
script terminates by returning to the launching site.
However, a NetPebbles script can be programmed to
remain forever in a waiting mode listening to asyn-
chronous notifications.

NetPebbles programs are written in a Basic-like
typeless scripting language. Interfaces are the same
as the interface definitions of the Java language.
However, each interface must be registered in a dis-
tributed catalog with a globally unique identifier.
One or more components may implement each inter-
face. Components also have globally unique identi-
fiers and are also registered in a distributed catalog.
Components are medium-to-large grain Java Beans
with certain restrictions that make them highly self-
contained. For example, in the current implementa-
tion, the NetPebbles runtime handles all exceptions
thrown by a component and components may not
send or receive events. The current NetPebbles im-
plementation consists of an interpreter, a runtime
environment, and a library to access a distributed
catalog, all written in Java. This allows us to run
the NetPebbles environment on all machines sup-
porting the Java environment.

We selected three different applications, represent-

ing three different data flow patterns, and imple-
mented them using NetPebbles, Java/RMI, and
Aglets. The data flows have the broadcast, two-
party interactive, and multi-party synchronization
patterns. We used the same components in all three
implementations. NetPebbles implementations are
significantly smaller than the implementations using
Java/RMI and Aglets, and the programming com-
plexity is correspondingly less. For two out of the
three applications, the number of network messages
are also the fewest with NetPebbles. Within the
scope of these experiments, we find it encouraging
that NetPebbles is able to deliver on the promise of
simplicity without additional network messages.

The NetPebbles project is relatively young at this
point. Work is in progress to address many chal-
lenges of this approach to distributed component
programming. Issues related to using typed compo-
nents in a typeless language, recovery and transac-
tional issues, and transitive trust requirements are
some of the design challenges that are being ad-
dressed. We are using system administration for a
large network of PCs, workstations and laptops as a
real life scenario to validate our approach to simplic-
ity, reuse of existing software, and mobile agent-like
behavior. A visual builder is being developed to
provide an interactive interface browsing and script
development tool.

This paper describes the motivation and the pro-
gramming model of NetPebbles, practical experi-
ments in understanding the advantages of the Net-
Pebbles model, the current implementation, an on-
going case-study using NetPebbles, and future work.

2 Motivation and An Example

The NetPebbles design is motivated by three goals:
(1) Enable large-scale software reuse in develop-
ing distributed applications; (2) Simplify distrib-
uted programming for rapid development and de-
ployment; (3) Provide mobile agent-like behavior
without the extra cost of programming complexity.

The enormous interest and early successes of the
Java Beans and ActiveX component technologies in-
dicate that future software development will increas-
ingly center around creating and reusing software
components. We envision that this paradigm will
extend well beyond today’s user interface develop-
ment. There will be components that provide access
to enterprise data, platform-specific legacy software,

system information, expert analysis tools, central-
ized information collection points, and even admin-
istrative APIs of printers and so on. Not only will
there be a multitude of components in a network,
there will also be many components providing the
same function. We may assume that the function-
ality is captured through Java-style interface defini-
tions, and that an interface may be implemented by
one or more components. It is also likely that there
will be a distributed catalog providing descriptions
of such interfaces and components. The NetPebbles
goal is to leverage such a scenario.

Ousterhout [1] suggests that application develop-
ment using scripting languages (such as Tcl and
Perl) is inherently simpler than using systems pro-
gramming languages (such as C and Java). Part
of the simplicity is derived from the fact that the
scripting languages make it easy to invoke power-
ful pre-existing programs and compose several such
components to provide more complex logic. In the
NetPebbles design, we take this idea one step further
by treating network components as if they were lo-
cal. In most cases, programmers have to worry little
about where components are instantiated. Method
invocation on components is uniformly simple. By
hiding the complexity of accessing remote compo-
nents, the NetPebbles goal is to simplify distributed
programming and thus allow for rapid application
development and deployment.

Mobile agent-like behavior can be valuable in sce-
narios where a user-specific task needs to execute
asynchronously in a network of servers. For exam-
ple, a mobile agent can be launched from a palmtop
device using wireless communication and results can
be retrieved later perhaps at a different physical lo-
cation. In another example, a mobile agent can be
installed at a server in the network to wait for an un-
usual event and then respond to it in a certain pro-
grammed manner. The NetPebbles design allows
for such programs to be written with little or no
additional complexity over single-system programs.
The key function provided in NetPebbles to support
mobile agents is the transparent program mobility,
which allows a programmer to specify where a com-
ponent should be instantiated (and hence where its
invocation should occur) either abstractly (through
a set of attributes) or concretely.

An Example

To provide a concrete introduction to the features
and benefits of NetPebbles, we discuss here a simple
example and describe how it executes. Ms. Sys Ad-
min is a system administrator for a group of about
a hundred PC users. The group uses Lotus Notes as
the primary tool for communication. She is inter-
ested in tracking what versions of the Notes client
i1s running on every PC to make sure they don’t
diverge too much. She attempted to do this by pe-
riodic e-mail. She quickly realized that some people
did not reply to e-mail, some people did but were
annoyed, some people provided wrong information,
and some did not even know how to find the infor-
mation. Ms. Sys Admin could use a small NetPeb-
bles script that visits every workstation, downloads
her own NotesSniffer component that simply records
the Notes Client version, and returns to her worksta-
tion with the collected information. Figure 1 shows
the corresponding script for the application.

The application uses three components that imple-
ment the IDomainAdmin, IMachineAdmin and IRe-
portGeneration interfaces, respectively. Methods for
each interface are shown in Figure 1. The IDo-
mainAdmin interface manages a group of machines
in a domain. It allows one to create new domains,
add and remove machines from a domain, and get a
list of all machines in a domain. The IMachineAd-
min interface is used to administer software on a
machine. The interface allows one to add and re-
move software, get a list of all installed software,
get the version for a software, and notify the users
by writing to the console. The IReportGeneration
interface is used to generate a report in a tabular
form.

Variables are initialized in lines 1-3. In line 4, the
createComponent function is called. The func-
tion’s arguments are an interface that a component
must implement, and a filter for component attrib-
utes. It searches the catalog of advertised compo-
nents and locates a component that supports the
IDomainName interface and manages the domain
named “dept231”. If the component properties al-
low the component to be downloaded then the run-
time may download the component. Otherwise, the
runtime moves the script to the site where the com-
ponent is located. In either case, the createCom-
ponent() call returns an instance of the component.
After the instance has been created, the script in-
vokes the getAllMachines() method of the compo-
nent to get a list containing all machines (IP ad-

dresses) in the domain for dept231. Note that the
syntax of method invocation requires the complete
signature of the method. This is because the lan-
guage is typeless. For object-oriented languages like
Java that allow method overloading, without a com-
plete signature, it is impossible to determine which
method to invoke. Line 8 declares another array to
store the version numbers. The length function re-
turns the number of elements in the data referred
to by the variable.

Lines 10-18 contain a for loop that iterates through
the set of machines. In line 11, the createCompo-
nent function creates an instance of a component
that supports the IMachineAdmin interface. Note
that the at keyword in the statement indicates to
the runtime that the component should be created
at a specific site. If the runtime is unable to create
a component at that site then it is noted and script
continues to execute. Line 16 defines a group and
adds the instance to that group. A group is a lan-
guage object that supports an unordered collection
of identical objects. Operations such as add, and
remove are supported on a group. A group allows
the same method to be invoked on all the objects
of the group using a single statement. In line 17,
the getVersion() method returns the version num-
ber for “Lotus Notes”. In line 19, the consoleWrite()
method is called on all members of the group to no-
tify client users about the activity. In lines 22-24, a
report generation component is created at the sys-
tem administrator’s home machine to display the
results.

3 The Component Model

This section describes what we mean by compo-
nents and how we use components in NetPebbles.
The NetPebbles component model is based on well-
known concepts of interfaces, components, attrib-
utes, and globally unique identifiers. To encourage
reuse of existing component software, we borrowed
ideas freely from the Java Beans and ActiveX tech-
nologies. At a high level, NetPebbles components
are self-contained Java Beans. However, like the
ActiveX components, certain aspects of components
are immutable and all aspects of components have
globally unique identifiers.

In NetPebbles, an interface is a group of semanti-
cally related methods or functions, while a compo-
nent is an implementation of the interface. A com-
ponent can implement one or more interfaces. Each

Component Interfaces
IDomainAdmin

- void addDomain(String)

- void addMachine(String, String)

- void removeMachine(String, String)

- String[] getAllMachines()

NetPebbles Script

1) filter=“domainName=dept231”
2)

3) interface = “IDomainAdmin”

4) comp = createComponent(interface, filter)
5) list = comp.getAllMachines()(]
6)

7) interface = “IMachineAdmin”
8) dim version[length(list)]

9)

10) for (i=0; i < length(list); i++)

12) if (mcomp == null)

16) add mcomp to group G
18) endfor

20)
21)

22) interface = “IReportGeneration”

24) comp.generateReport(versions)
25) exit

IMachineAdmin
- void addProgram(String)
- void removeProgram(String)
- String[] getAllProgram()
- String[] getVersion(String)
- void consoleWrite(String)

17) version[i] = mcomp.getVersion(String)[“Lotus Notes”]

IReportGeneration
- void generateReport(String]])

//get admin component for dept231
//component supporting this interface

//create instance
// get list of machines

// declares an array to store version numbers

11) mcomp = createComponent(interface, null) at list[i] //create a instance at a specific machine

13) version[i] = ”Unable to retrieve version from” + list[i] // Note failure and continue
14) continue
15) endif

// define a collection and add mcomp to it
// get version number for Lotus Notes

19) G.consoleWrite(String)[“System Admin NetPebble requested Lotus Notes version number”]

// write to console of all machines indicating that
// the netpebble visited
//component to display results

23) comp = createComponent(interface, filter) at home
// generate report at Sys Admin m/c

Figure 1: A NetPebbles script and associated interfaces used for the system administration example.

interface and component is identified by a globally
unique identifier (GUID)!. An interface’s GUID
1s called an InterfacelID, while a component’s GUID
1s called a ComponentID. Interfaces and components
may have attributes associated with them. Attrib-
utes provide either informative description (such as
its semantics and suggested use) or parameters to
assist the NetPebbles runtime (such as a preferred
execution site and usage cost). Attributes are also

identified by GUIDs, called AtiributelDs.

NetPebbles InterfaceIDs are immutable, i.e. once an
interface has been defined, both the syntax and se-
mantics associated with the interface cannot change.
The InterfaceIDs are required to be registered in

L A globally unique identifier is generated using a combina-
tion of machine hardware address, current time and a 32-bit
random number.

a component catalog. The NetPebbles interface
browser allows an application developer to browse
through these interfaces in the catalog. The Net-
Pebbles runtime uses the catalog to locate and bind
to components that implement the interfaces. Net-
Pebbles ComponentIDs and AttributelDs are also
immutable. Immutability of ComponentIDs ensures
that newer versions of a component do not cause
runtime exceptions because they no longer support
published InterfaceIDs.? Immutability of Attribut-
elDs guarantees that semantics associated with an
attribute will not change from the point a NetPeb-
bles program is built to when it executes. Compo-
nents provide necessary read-only accessor methods
to examine the ComponentIDs and AttributeIDs as-

2With mutable ComponentIDs, such a scenario is possi-
ble if there is a delay in updating the catalog whenever a
component is changed.

sociated with a component.

In the Java Beans model, package names are used as
a means to identify interfaces and components, how-
ever, this mechanism does not assure immutability
of interfaces. The Beans model does not have a
registry or a way to look up method signatures or
properties without using introspection. NetPebbles
addresses these shortcomings by using mechanisms
from the ActiveX model.

Even though, ActiveX interfaces are immutable and
a local component registry exists, the ActiveX pro-
gramming model is component-centered. Typically
an ActiveX programmer is expected to find a com-
ponent (in the registry), instantiate it, and then
“discover” interfaces supported by the component.
NetPebbles view is that interfaces are the starting
point for a developer. A developer specifies the
needed interface and lets the NetPebbles runtime
find a “suitable” component that implements the
interface.

The NetPebbles interface browsing requirements
have two related technologies: The CORBA trader
service and the Light-weight Directory Access Pro-
tocol (LDAP). In the CORBA trader service [2],
interfaces can be hierarchically organized and can
have attributes that capture non-computational as-
pects. The hierarchical relationship can be used
to capture both interface inheritance as well as at-
tribute aggregation. However, to locate a compo-
nent, a programmer still has to know the inter-
faces and attributes that the component supports.
An integrated (perhaps, a visual) browser/search-
engine that understands the relationships among in-
terfaces, components, and attributes is needed for
NetPebbles. We are investigating suitable enhance-
ments to the CORBA trader service, and prototyp-
ing it using the LDAP [3] distributed directory tech-
nology.

3.1 Interfaces and Components in The
NetPebbles Catalog

The NetPebbles catalog is a collection of all pub-
lished interfaces and components, and contains the
information described below.

Interfaces — Each entry contains the following in-
formation:

e Interface identifier (InterfaceID) —
Identifier assigned to the interface.

e Method signatures — List of method
signatures supported by the interface. A
method signature is of form
<result Type> methodName(<argTypel>,
<argType2>,, <argTypeN>).

For methods that do not return any re-
sults, the resultType field is set to void.

e Interface attributes — Set of Attribut-
eID/value pairs associated with the inter-
face. This information is used by a pro-
grammer at build time to find suitable in-
terfaces.

e Component identifier (Componen-
tID) — List of component identifiers pub-
lished in the catalog that implement the
interface.

Components — Each entry contains the following
information:

e Component identifier (Componen-
tID) — Identifier assigned to the compo-
nent.

e Location — Location of the component.

This field is of type URL.

e Class name — Class that should be in-
stantiated to use the component.

e Supported interfaces — List of inter-
face identifiers implemented by this com-
ponent.

e Access control list — List of principals
that are authorized to use this compo-
nent. More details on the security and ac-
cess control model can be found in section

5.2.2.

e Recognized guarantors — Set of guar-
antors that the component vendors would
honor. NetPebbles uses a certificate based
scheme for enforcing security and access
control (see section 5.2.2).

e Server affinity — This field indicates the
preference of the execution site where the
component should run. By default, the
NetPebbles script moves to the site where
the component is located. However, if
the component needs to use graphics for
interacting with the user then the run-
time needs to download the component to
the client machine where the user is lo-
cated. The NetPebbles runtime currently

supports only two values for this field —
affinity value set to 1 indicates that the
script should migrate to the component
server, and affinity set to 0 indicates that
the component should be downloaded to
the client machine.

e Component attributes — Set of At-
tributeID/value pairs associated with the
component. For example, attributes could
contain the name of the vendor, cost for
using the component, and access control
requirements. We are currently working
on a more detailed attribute specification
model for NetPebbles.

Tables 1 and 2 show two interfaces, IDomainAd-
min and IMachineAdmin, along with two compo-
nents that implement these interfaces. Note that
for sake of readability and convenience, we use sym-
bolic names instead of very long numbers as globally
unique identifiers in the Tables and in the rest of the

paper.

At build-time, the developer browses and selects
from the set of InterfaceIlDs that are available in
the component catalog. The argument to the create-
Component statement contains the InterfaceID that
the developer selects. The developer can also spec-
ify a set of AttributeID/value pairs that the run-
time should use when resolving the InterfacelD to a
particular ComponentID. For example, a developer
might want to use components that were developed
by a particular vendor. At runtime, NetPebbles con-
tacts the component catalog and resolves the Inter-
facelD into a specific ComponentID.

4 The Experiment

This section describes three simple examples we
wrote using NetPebbles, Java RMI, and Aglets (the
Java-based agent technology from the IBM Tokyo
Research Laboratory), and what we have learned
from this exercise. The examples have been chosen
to represent three common data flow patterns, i.e.
broadcast, two-party interactive, and broadcast in-
teractive. We used the same set of Java Beans in
programming with the three technologies.

4.1 Lunch time notification — broadcast

In this example, a user informs a set of people that
it is time to go for lunch. The data flow is broad-

/N

(a) Broadcast

(b) Interactive

N\
SN

Figure 2: The figure shows data flow pattern for
the three examples.

(c) Broadcast with
synchronization

cast (see Figure 2a). The example uses two inter-
faces (ILunchGroup and ILunchGUI) and thus two
components implementing the interfaces. The im-
plementation strategies are described below:

NetPebbles: In this approach, the script first in-
stantiates a component that implements the
ILunchGroup interface, and then by invoking a
method on the component it retrieves a list of
user and workstation names for a lunch group.
The component is probably invoked on a data-
base server machine where information about
administrative or informal group lists are main-
tained. Next, for all users in the group, the
script migrates to the user’s workstation, cre-
ates a component implementing the ILunchGUI
interface and displays the “Lunch Time” mes-
sage.

Java/RMI: For the RMI version, it is required
that all machines in the lunch group run “Im-
pl” servers corresponding to the component im-
plementing the ILunchGUI interface. These
servers export interfaces that can be called from
a client. For this implementation, the client
(the machine of the user who set out to inform
the group about lunch) iterates through the
group, invoking the display method remotely
on the “Impl” servers running at the user’s
workstations.

Aglets: The application logic is the same as for
Java/RMI, except that the programmer writes

Table 1: This table shows two examples interface entries.

Interface

Interface identifier

IDomainAdmin

IMachineAdmin

Method signatures

void addDomain(String)
void addMachine(String,String)
void removeMachine(String,String)

String[] getAllMachines()

void addProgram(String)
void removeProgram(String)
String[] getAllPrograms()
String [] getVersion(String)
void consoleWrite(String)

Interface attributes
— description

This interface allows one to create
new domains, add and remove ma-
chines from a domain and get a list
of all machines in a domain

This interface allows one to add and
remove software, get a list of all in-
stalled software, get the version for a
software, and notify a user by writ-
ing to the console

Component identifier

Compl

Compl, Comp2

Table 2: This table shows two examples component entries.

Components

Component identifier Compl

Comp?2

http://machinel.xyz.com

http://machine2.abc.com

COM.abc.Machine.class

Location

Class name COM.xyz.Admin.class

Supported interfaces IDomain Admin
IMachineAdmin

IMachineAdmin

Access control world execute

world execute

Recognized guarantors Verisign Citibank
Server affinity 0 0
Component attributes

— vendor XYZ Inc ABC Inc.
— cost 0 $100 per use

code to handle migration explicitly. At each
visited workstation, the agent creates an in-
stance of the component implementing the
ILunchGUI interface and displays the message.

4.2 TicTacToe — Two party interactive

The data flow pattern is two-party interactive (see
Figure 2b). The TicTacToe application exhibits this
pattern. After the first player makes his move, it is
the second player’s turn. The two players alternate
until some player wins or the game ends in a draw.
The application uses a TicTacToe GUI component
to display the state of the gameboard. Note that the
application requires that the gameboard be contin-
uously displayed while the game is being played.

NetPebbles: The NetPebbles script creates com-
ponent instances at the players machines dur-

ing the first exchange of moves and these com-
ponents persist as a part of normal NetPebbles
execution. They display the game board. The
NetPebbles runtime transfers the game state
between the machines while the game is being
played as a part of moving the script program
state.

RMI: TicTacToe “Impl” servers are started on the
players machines and the client controls the
game by invoking appropriate methods on the
Servers.

Aglets: Since Aglets do not support persistence of
component instances, persistence is simulated
using slave agents. The application uses a mas-
ter agent to control the game and uses mes-
sages between the two slave agents to transfer
the game state.

4.3 Multi-party meeting scheduler —
Broadcast with synchronization

In this application, a user tries to schedule a meeting
time with a group of participants. The application
1s written such that it first gathers previously sched-
uled appointments from the calendars of all partic-
ipants, finds a conflict-free time, and lastly updates
individual calendars to add the new meeting. The
data flow pattern for this application is shown in
Figure 2c. The individual calendars are stored on
a set of servers (perhaps, the individuals belong to
different administrative domains). The application
uses a GUI component to interact with the user for
initiating a meeting request, a Planner component
to access individual calendars, and a Scheduler com-
ponent to schedule a meeting time.

NetPebbles: The NetPebbles script instantiates
a GUI component at the requester’s machine
for reading details about the meeting request
(meeting date, duration, subject, and list of
participants). The script then migrates to the
location where individual participant’s calen-
dars are stored. The Planner component is
used to access scheduled appointments for the
requested meeting date. After collecting infor-
mation about all the appointments, the script
uses the Scheduler component to determine the
meeting time. After the meeting time has been
finalized, the script visits each of the Plan-
ner components to update the participants cal-
endars. The script completes execution by
displaying a confirmation message at the re-
quester’s machine.

RMI: In the RMI version, “Impl” servers are
started for the Planner, Scheduler and GUI
components. The client implements the appli-
cation logic by sending messages to these “Im-
pl” servers.

Aglets: Although an Aglet version is not imple-
mented at this time, the application logic is
similar to NetPebbles. An agent performs sim-
ilar tasks as the NetPebbles script.

4.4 Discussion

Table 3 shows the lines of code comparison and Ta-
ble 4 shows the message count for the three tech-
nologies. Consistently, the number of lines of code
for NetPebbles is small compared to the others. The

NetPebbles program sizes varies from 19% to 42%
of Java RMI and Aglets implementations. Even
though the lines of code is not an ideal measure
of complexity by any stretch of imagination, we use
it in the absence of any other reasonable metric we
could find. Our experience in coding these examples
— a thoroughly subjective measure but certainly a
better measure than the number of lines — also sug-
gests a very similar trend.

The small code size and simplicity of NetPebbles im-
plementations is a result of the scripting approach
and the fact that the runtime hides the details of re-
mote component access and script mobility. First,
the scripting language does not require the devel-
oper to worry about importing packages, declaring
types of the variables, or handling exceptions. We
believe that this allows the developer to focus pri-
marily on thinking about the application logic. Sec-
ond, as much as possible, the complexities of the
distributed system should be handled by the sys-
tem. This is the approach we take in NetPebbles.

Using an agent technology, such as Aglets, requires
the developer to be aware of the mobility aspects of
the application. The program has to be aware of the
location where it is executing so that it can do the
right thing. In NetPebbles, mobility is transparent
to the program — the script transparently moves to
the location where components are available. From
the programmers perspective, all component invo-
cations appear as local calls. Additionally, Aglets
do not support persistence of component instances
naturally. It has to be simulated by use of slave
agents. This further complicates programming for
now the developer has to write code to handle mes-
sages exchanged between agents.

The Java/RMI approach requires that the program-
mer be aware of importing correct packages, types,
and handling exceptions. The programmer has to
ensure that the appropriate application binds to
the correct stubs for accessing remote services, and
application-specific “Impl” servers are running on
all the machines that the application needs to get
service from. This adds to the deployment complex-
ity of the RMI based applications. Under NetPeb-
bles, the runtime creates component instances on
demand, i.e. when the script needs to use them.

With respect to the message count, the NetPeb-
bles approach typically exhibits fewer number of
messages when compared to either Java/RMI and
Aglets. This is because the script moves to the

Table 3: This table compares the number of lines of code to implement the three examples.

Applications Approaches
NetPebbles Aglets RMI
Lunch Notification 10 48 54
TicTacToe 34 105 82
Meeting Scheduler 45 - 191
Table 4: This table shows the message count for the three examples.
Applications Approaches
NetPebbles Aglets RMI
Lunch Notification SN +1 N AN
N is the number of participants
TicTacToe M+38 6 M + 8 AM +8
M is the number of rounds. 5 < M < 8
Meeting Scheduler 60 +5 - 70 +11
O is the number of participants

site where the component is located — subsequent
invocations on the component do not require send-
ing new messages. Applications that rely on agent
mobility generate fewer messages under Aglets (as
in the Lunch application). However, when per-
sistence of components is needed Aglet-based so-
lutions generate messages that are comparable to
the Java/RMI approach. The Java/RMI based ap-
proach would typically generate the maximum num-
ber of messages as each method invocation on a
component requires a new message on the network.
Note that in the current implementation of NetPeb-
bles, during component creation a message is always
sent to the component catalog to resolve component
names and locations. These messages can be easily
avoided by using intelligent caching strategies.

Clearly, the trend seen here may not extend to
large applications. Furthermore, we do not imply
that RMI (and all the classic client/server tech-
niques) and Aglets are irrelevant or inherently in-
ferior. These approaches are valid when an appli-
cation developer wants to use the full power of a
systems programming language, and therefore he or
she 1s willing to invest in the necessary development
costs. But when the developer can satisfy the appli-
cation requirements largely by reusing components,
the NetPebbles approach simplifies program devel-
opment and deployment.

5 Implementation

This section describes two aspects of the current
NetPebbles implementation. First, it describes the
support that exists for creating a NetPebbles pro-
gram, and next it describes the support that exists
for executing a NetPebbles program.

5.1 Support for creating applications

5.1.1 Scripting Language

The NetPebbles research focus is on system de-
sign, but in order to freely experiment with the
system-level issues such as efficient program mo-
bility and so on, we needed our own scripting lan-
guage. Our long term goal is to integrate NetPeb-
bles programming language features into an existing
scripting language. At present, NetPebbles provides
a typeless, object-based scripting language called
NPScript. The language borrows its syntax from
the BASIC programming language, and it supports
basic control flow constructs found in other script-
ing languages. In addition, it allows one to instan-
tiate components and perform method invocations
on those components. The component instances are
persistent through the life of a NetPebbles script.
The language does not provide RMI/RPC-like se-
mantics or provide constructs to define new objects.

For creating components, NPScript provides the
createComponent keyword. The syntax is as fol-
lows:

<varName>=createComponent (<interfaceName>,
<filter>) [at <locationName>]

where varName is the handle to the resulting in-
stance, interfaceName is the InterfaceID that the
component should support, and filter is a stringified
boolean expression of component attribute/value
pairs. Optionally, using the at keyword, one can
also specify the locationName indicating where the
component should be instantiated. Under the cov-
ers, the runtime contacts the component catalog and
resolves the interfaceName and filter to a Compo-
nentID. If a locationName is specified then the run-
time migrates the script to that location and also
downloads the component to that location. Other-
wise, the runtime either migrates the script to the
component host, or downloads the component to the
current location (further details are discussed in sec-
tion 5.2.1). The runtime then creates an instance of
the component and stores a handle to it in varName.
The syntax for performing method invocations is as
follows:

[<resultVar>=]
<varName>.methodName(typel,...,typeN)
<argl,..., argl>

where result Varis the variable to store the results of
the invocation, varName is the handle to the compo-
nent instance, methodName(argTypel,...,arg TypeN)
1s the complete signature of the method to invoke,
and <argl,..., argN> is the list of arguments.

The language is inherently typeless — a programmer
does not have to indicate the type of the variable
before using it. The typeless nature of the language
simplifies programmability. However, NetPebbles
uses typed components written in Java, which re-
quire that data be appropriately converted to the
correct type before the method is called. This re-
quirement makes the runtime more complex because
it has to convert the data values to the correct types
before invoking methods on the components. An-
other artifact of using typed components is that two
methods in the same interface can have the same
name but different argument types. This makes the
method resolution ambiguous at runtime if only the
method name is specified in the scripting language.
Thus, NetPebbles requires the programmer to com-
pletely specify a method with a name and types of
arguments. The combination of a method name and
its argument types uniquely identifies a method in
an interface. It also provides information to the

NetPebbles runtime to appropriately convert data
to the types that the components expect.

As an effort to simplify programming, we are consid-
ering support for collections at the language level.
The basic idea is to allow the programmer to create
a collection and populate it with homogeneous com-
ponents. The programmer can then perform any op-
eration on the collection in a single statement with-
out having to iterate through individual elements
of the collection. Support for language constructs
that allow the NetPebbles script to fork itself, or
perform asynchronous method invocations are also
being considered.

5.1.2 Visual Builder

The NetPebbles environment includes a visual
builder that allows users to build entire scripts.
Current component-based visual builders fall into
two categories, those that provide assistance with
GUI building and those that allow arbitrary con-
nection of component events and properties. Ex-
amples of GUI builders include Visual Basic [4] and
Visual Oblique [5]. Examples of generalized com-
ponent interconnectors include IBM Visual Age for
JavaT™ [6] and the many Java Bean tools now avail-

able.

The NetPebbles Visual Builder design addresses the
following two questions: (1) Why should one use
a visual building environment when scripts are so
simple to write? and (2) Given that a visual builder
1s useful, what should a program look like?

Thus far, some insight to both questions has been
gained. First, a visual building environment is use-
ful for NetPebbles as it can provide a program-
mer with drag-and-drop construction, syntax hid-
ing, NetPebbles-specific error/notification handling,
and migration hints. Second, visual programming
languages, while at first attractive, provide a repre-
sentation that is quickly intractable. However, the
emphasis on dataflow in these languages does help
with data navigation. Therefore, the program rep-
resentation should be textual, but should exploit an
underlying dataflow structure. For simplicity, the
NetPebbles visual builder allows each variable to
be assigned in only one place. (Note that this is
a broadening of a strict “write-once” concept intro-
duced in elementary dataflow to allow for assign-
ments in loops.) Also, to better assist savvy pro-
grammers, the organization of the text should be

capable of illustrating the program’s implicit migra-
tion and some notion of the size of the state must
be visually available. The investigation also has re-
sulted in a sequence of proof-of-concept demos, that
help to assimilate gained insight into the builder ar-
chitecture.

5.2 Support for executing applications

The basic runtime support in NetPebbles includes
resolving InterfacelDs to ComponentIDs, providing
support for script migration, and component in-
stantiation and execution. A few design goals for
the NetPebbles runtime are: heavy client-side infra-
structure to initially launch NetPebbles should not
be mandated, server-side infrastructure (NetPeb-
bles runtime) should not need constant administra-
tion, deployment of special NetPebbles specific pro-
tocols should not be required, and the whole infra-
structure should be portable. The NetPebbles com-
ponent catalog is implemented using an enhanced
CORBA trader service. All of the client and server
side infrastructure is written in Java. The NetPeb-
bles runtime also supports integrated features de-
scribed below.

5.2.1 Launch and Execution

In the current implementation, the runtime is de-
ployed as a Java servlet under a web server at all
machines that host NetPebbles. The NetPebbles
runtime consists of a script execution engine and
necessary data structures to keep keep track of ac-
tive NetPebbles. The runtime uses HTTP for com-
munication. A user initiates execution of a NetPeb-
bles script using a Java program called launchpad.
Lauchpad takes in as arguments the name of the
file containing the NetPebbles script and the name
of the home server machine where the script should
start executing. Launchpad first checks the script
for any syntax errors. If there are no syntax errors
then it constructs a NetPebbles message containing
the script and sends it to the web server using the
HTTP POST command.

After receiving the NetPebbles message, the Net-
Pebbles runtime initializes some data structures and
starts executing the script. The script and its asso-
ciated program state (program counter, stack and
data heap) is transferred to other NetPebbles run-
times as needed. When the script completes execu-
tion, it returns to the home server, which then sends

out cleanup messages to all runtimes visited by the
script. These messages are needed to cleanup any
persistent component instances and data structures
created by the script.

A NetPebbles script need not migrate from one host
to another. Instead, it might download required
components. Optionally, if a location is specified by
the programmer using the at keyword, the runtime
migrates the script to the specified location and also
downloads the component to that location. For ex-
ample in the Lunch application, to find members of
the group the script can either migrate to the data-
base server where the component is located, or the
component can be downloaded to the current script
location. However because of the at keyword, to dis-
play the lunch message the script migrates to and
the component is downloaded to the specified user’s
machine. In the absence of the at keyword, the run-
time makes the decision based on the server affinity
attribute of a component published in the catalog.
The actual classname to instantiate the component
1s also obtained from the catalog. All component
instances accessed by a script are managed by a
private instance manager. When asked to create
an instance of a component, the instance manager
searches through its classpath to locate the appro-
priate class to instantiate. Instead of returning the
actual instance to the script, the instance manager
generates and returns a unique handle (consisting
of the server IP address and a GUID). The instance
manager uses this handle to invoke any methods on
the component instance. The handle is also used
by the runtime to determine if it needs to migrate
to another site before making a method invocation.
We consider script mobility as a valuable feature to
support in the NetPebbles environment. With mo-
bility a NetPebbles script becomes a mobile agent.
It preserves network bandwidth by data forwarding,
naturally supports disconnected operations, allows
for very thin clients, and prevents component piracy.
The NetPebbles environment supports script mobil-
ity and accordingly deals with its implications on
1ssues such as security, monitoring, and state mi-
gration.

Due to the use of servlets, all NetPebbles scripts
run on the same underlying Java virtual machine.
However, each script runs in a separate context with
its own execution thread, state and instance man-
ager. This separation prevents scripts from inadver-
tently accessing/manipulating component instances
created by other scripts. We are currently work-
ing on defining a more detailed security model for

NetPebbles.
5.2.2 Security and Access Control

In light of mobility, security is an important part
of the NetPebbles environment. NetPebbles uses
a certificate based scheme for performing security
and access control. Trust among NetPebbles scripts,
hosts, and components is established by authenti-
cation. Each NetPebbles script is associated with a
principal that identifies a person or role. Each host
is also associated with a principal. Each compo-
nent is associated with a global package name and
a manufacturer. Authentication is performed using
public key certificates, and an authenticated Net-
Pebbles script is transitively trusted by a chain of
NetPebbles servers that have authenticated one an-
other (delegation). A NetPebbles script and compo-
nents are transported using the SSL protocol that
ensures privacy and integrity. Components allow
access by individual principals or by members of a
group of principals. Access control information is
advertised in the catalog for NetPebbles to deter-
mine access rights prior to migrating to a host. We
have implemented a prototype of our security infra-
structure using Java Security APIs.

The NetPebbles runtime uses the certificate asso-
ciated with the script for performing access con-
trol checks at runtime. An application is allowed
to bind to components based on the access control
fields specified in the component entry. The Net-
Pebbles runtime also makes available the principal
of the script to any component instance the script
creates to facilitate component specific access con-
trol checks done by the component.

6 System Management - A Case

Study

To gain experience in applying NetPebbles to large
applications, we are prototyping solutions for sys-
tems management. In this section, we describe this
ongoing case study.

The Problem Statement

Systems management in an enterprise environment
is a challenging problem. System administrators
have to routinely perform tasks to keep the applica-
tion software and system files up-to-date, and take

back up of client machines. The task is further com-
plicated with the presence of portable computers as
the machines could be disconnected from the net-
work when a maintenance task is scheduled.

Current Approaches

The most popular approach to systems management
1s the one based on the SNMP protocol. In this ap-
proach, each client machine runs an SNMP agent
process that executes management procedures as di-
rected by a central control station. The client ma-
chine is assumed to be connected to the network at
all times. Studies have shown that SNMP based so-
lutions are inflexible, less scalable, and difficult to
manage for large environments [7, 8].

To address the scalability limitation of SNMP, re-
searchers have proposed an alternate solution called
Management by Delegation (MbD) [7]. In MbD, the
central control station dispatches delegation agents
to the client machines using a remote delegation
protocol. The agents, which are a collection of pro-
cedures, are executed at the client machines by a
delegation process. The results of the execution can
either be pulled by or pushed to the control station.
Although, the MbD based approach is more scal-
able than SNMP, it is still inflexible and difficult to
manage as the procedures themselves are hard to
modify and maintain.

At IBM Research’s Watson site, system administra-
tors have the responsibility of managing over 4000
machines consisting of IBM RiscSystem 6000s run-
ning the AIX operating system, and IBM PCs and
laptops (running either Windows 95 or OS/2 op-
erating system). The administrators currently use
a central server solution for systems management
(similar to SNMP). A maintenance daemon that im-
plements necessary system administration specific
commands executes on client machines. System ad-
ministrators add commands to a well known file that
is stored on a shared network file system. The dae-
mon periodically monitors this file, reads commands
and performs the necessary tasks on the client ma-
chine. The main challenges faced by the adminis-
trators are to handle heterogeneity of underlying
systems, disconnected machines, and propagating
changes to the maintenance daemon.

The NetPebbles approach

The NetPebbles programming model is a natural
fit to the systems management area. At present,
system administrators routinely manage single sys-
tems using scripts written in Tcl, Perl, or Ksh. The
NetPebbles paradigm extends the notion of script-
ing to the network. In a simple scenario, a sys-
tem administrator would write a script to perform
some management tasks on a set of machines. The
tasks themselves are performed by components that
are available on the network. The script specifies
the interface supported by a component and option-
ally, the location of the component instance. It also
specifies what methods to call on the component in-
stances. The script visits each machine in the list,
downloads (by runtime) relevant components from
a central component repository and completes the
task of management. The use of a scripting lan-
guage simplifies programming. The ability to down-
load components from a central code repository sim-
plifies manageability of the components (equivalent
to the management procedures under SNMP). The
ability to move from one machine to another im-
proves the scalability of the system.

In a more complex scenario, one can envision that
the NetPebbles script could be programmed to per-
form application and machine specific tasks. To
handle disconnection, one can envision a scenario
where the script and related components are down-
loaded on the machine before the machine is dis-
connected. The script continues to perform system
management tasks offline. When the machine recon-
nects later either via a dial-in or a LAN connection,
the script can report back to the system administra-
tor with the results. We are currently prototyping
some of these ideas at IBM Research.

7 Related Work

Mobile agent projects such as Telescript [9],
Aglets [10], Itinerant agents [11], Tacoma [12],
Agent Tcl [13], the Mole project [14], The Frankfurt
project [15], etc. have investigated issues related to
migrating code from machine to machine. These
projects cover issues related to transport, state mi-
gration, language, security, and navigation. It is
beyond the scope of this paper to discuss each of
them in detail. Instead, we mention the noteworthy
aspects of some projects that have influenced the
design of NetPebbles.

The Frankfurt project uses HTTP as a transport
protocol and observes that using a generic infra-
structure for transport is critical for successful de-
ployment of an agent infrastructure. We take a sim-
ilar approach in NetPebbles. The Agent Tcl project
has perhaps the most comprehensive treatment of
security and language issues. They use a public key
security infrastructure based on PGP, and have ac-
cess control mechanisms. Like Telescript they also
stress the usefulness of a limited vocabulary script-
ing language for security. They have influenced the
NetPebbles security model. The Aglets and the
Mole project use Java for infrastructure to ensure
that their infrastructure is generally portable.

Unlike most of the these systems, NetPebbles uses a
scripting language leveraging its inherent simplicity.
Unlike Agent Tcl (which is a scripting language),
NetPebbles supports transparent mobility thus the
programmer is not burdened with the task of pro-
gramming mobility explicitly. We should, how-
ever, point out that NetPebbles does not support
component-instance mobility and hence the concept
of mobility is somewhat simpler in NetPebbles than
in some of the other mobile-agent systems.

NetPebbles has similarities to workflow systems in
that a NetPebbles script can be thought of as ex-
ecuting workflow “items” on different machines.
However, the classical workflow systems such as
IBM’s Flowmark [16] and HP’s OpenPM [17] are
closed systems controlled by a single workflow
server. Thus, they are fundamentally different
from the NetPebbles model. New “WebFlow” sys-
tems [18] are no different than classical workflow
systems, except that they have a browser front-end.
The COSM project [19] suggests mechanisms that
can make programs written in a workflow specifica-
tion language behave like a mobile agent to carry
out workflow functions. Unlike NetPebbles, the fo-
cus of the COSM project was to enable workflow
using CORBA services.

Work in distributed programming environments
(such as Java/RMI, COM/DCOM, DCE, and
CORBA) is also pertinent to NetPebbles. Through-
out the paper we discussed how NetPebbles relates
to these technologies. Unlike these systems, Net-
Pebbles hides the complexities of remote component
access from the programmer. It uses transparent
program mobility as a single mechanism to address
the requirements of both remote component access
as well as mobile agent-like behavior.

8 Summary and Future Work

In this paper, we described NetPebbles, a script-
based programming environment for composing
and executing distributed component-based appli-
cations. NetPebbles uses program mobility to sup-
port both remote component access as well as mo-
bile agent-like behavior. Furthermore, since Net-
Pebbles programmers use components as if they
were local and write programs in a scripting lan-
guage, they find that there is a great deal of sim-
plicity in using NetPebbles. Typically, a NetPebbles
programmer selects needed interfaces from a compo-
nent catalog and writes a script invoking methods
on components implementing the interfaces. The
components are highly self-contained Java Beans
with globally unique identifiers.

We implemented three examples with different in-
formation flow patterns using three different tech-
nologies: NetPebbles, Java/RMI, and Aglets, and
analyzed the implementation complexity and the
number of messages used. Results show that Net-
Pebbles indeed offers a significant amount of sim-
plicity, as seen in the number of lines of code as
well as in the programming effort needed. In addi-
tion, NetPebbles also requires the smallest number
of network messages in most cases. However, to un-
derstand how NetPebbles extends to more realistic
scenarios, we are developing NetPebbles scripts to
manage a large network of PCs, workstations, and
laptops.

Since NetPebbles is a relatively young project, we
recognize many technical challenges that need to be
addressed. The following is an incomplete list of
issues we are working on.

1. Recovery: As a NetPebbles script travels
through the network, there are many opportu-
nities for failures, such as hardware, software,
and communication failures. There must be
mechanisms in NetPebbles runtime or in the in-
frastructure it uses to handle such events. Re-
coverable messaging mechanisms such as the
IBM MQ Series are being investigated as a way
to address this need.

2. Transactional Support: Should there be trans-
actional mechanisms in the NetPebbles lan-
guage? Transactional mechanisms can help
multi-server updates such as a travel reserva-
tion involving hotel, airline, and car, but it can
also increase the programming complexity.

3. Exceptions, Events, and Data Pipes: What are
the ways in which components should be al-
lowed to interact with each other and with the
NetPebbles script? Should we allow a compo-
nent to throw an exception that can be handled
by the script writer? What about Java-style
events? Is there a need to connect components
to form a pipeline for data to flow?

4. Business Model: How will script users pay for
component use and resource consumption of
other machines? The Tacoma project [12] con-
siders an ecash approach where a mobile agent
starts out with a certain amount of ecash and
spends it along its way. For intranets and ex-
tranets, such a scheme may be an overkill.

5. Transitive Trust Issues: As NetPebbles travels
through the network, it becomes necessary for
each server to verify that the preceding servers
in the path have not introduced security viola-
tions (either maliciously or otherwise) into the
program state.

6. The Scripting Language Issues: Using typed
components in a typeless language raises sev-
eral composability issues. In addition, intro-
ducing a new language is always a difficult mar-
keting challenge. We would like to be able to
provide the necessary NetPebbles mechanism in
an existing scripting language while being able
to implement program mobility in an efficient
manner.

In spite of many remaining challenges, the NetPeb-
bles programming environment has been successful
in showing that the complexities of remote compo-
nent access and mobile agent-like behavior can be
hidden from the programmer. It also shows that
scripting languages can be used for distributed com-
ponent programming while retaining the simplicity
inherent in such languages. This work suggests how
the Java Beans style component model can be used
to encourage large-scale reuse of network resources
rather than just GUI programs.

Acknowledgement: The authors gratefully acknowl-
edge the feedback provided by the anonymous re-
viewers of the COOTS ’98 program committee and
the Adventurous Systems and Software Research
projects review committee in IBM Research. We
especially thank our colleague Sandra J. Baylor for
her input on the presentation of this final version,
she nearly re-wrote the abstract for us.

References

[1] John K. Qusterhout. Scripting: Higher Level
Programming for the 21st Century. Computer,
pages 23-30, March 1998.

[2] OMG. CORBA services:
ject Services Specification.
//www.omg.org.

Common Ob-

URL = http:

[3] Timothy Howes and Mark Smith. A Scalable
Deployable Directory Service for the Internet.
In Proceedings of INET 95, 1995.

[4] Steven Holzner. Advanced Visual Basic 4.0
Programming. M & T Books, 1996.

[5] Krishna Bharat and Luca Cardelli. Migratory
applications. In Proceedings of the ACM Sym-
posium on User Interfaces Software and Tech-
nology, November 1995.

[6] IBM. IBM’s Visual Age for Java. URL =
http://www.ptsdirect.co.uk/static/ibmvaj.html,
1997.

[7] German Goldszmidt and Yechiam Yemini. Dis-
tributed management by delegation. In Pro-
ceedings of 15th International Conference on
Distributed Computing Systems, 199b.

[8] James Herman. The Sorry State of Enterprise
Mgmt. URL = http: //www.psgroup.com/ fea-
tures/1996/£396d.htm, 1996.

[9] General Magic. Telescript Technology: The
Foundation for the Electronic Marketplace.
URL = http://www.genmagic.com/Telescript/
Whitepapers/wpl/whitepaper 1.html, 1996.

[10] Danny B. Lange and Daniel T. Chang.
IBM Aglets Workbench: Programming Mo-
bile Agents in Java. URL = http:
//www.trl.ibm.co.jp/aglets/whitepaper.htm,
1996.

[11] David Chess, Benjamin Grosof, Colin Harri-
son, David Levine, and Colin Paris. Itinerant
agents for mobile computing. Technical Report
RC20010, IBM T.J. Watson Research Center,
October 1995.

[12] Fred B. Schneider Dag Johansen, Robbert
van Renesse. Operating System Support for
Mobile Agents. In Proceedings of the 5th IEEE

Workshop on Hot Topics in Operating Systems,
May 1995.

[13] Robert S. Gray. Agent Tcl: A transportable
agent system. In Proceedings of the Work-
shop on Intelligent Information Agents, Fourth
International Conference on Information and
Knowledge Management, December 1995.

[14] Fritz Hohl Markus Straber, Joachim Baumann.
Mole - A Java Based Mobile Agent System.
In Proceedings of the ECOOP 96 Workshop on
Mobile Object Systems, 1996.

[15] Anselm Lingnau and Oswald Drobnik. An In-
frastructure for Mobile Agents: Requirements
and Architecture. In Proceedings of the 13th
DIS Workshop, September 1995.

[16] Frank Leymann and Dieter Roller. Business
Process Management with Flowmark. URL =
http://www.software.ibm.com/ad/flowmark,

1995.

[17] Ming-Chien Shan Jim Davis, Weimin Du.
OpenPM: an Enterprise Process Management
System. Bulletin of the Techincal Commaitee on
Data Engineering, 18(1):27-32, March 1995.

[18] Viewstar Corporation. Internet Workflow.
URL = http://www.viewstar.com, 1997.

[19] M.Merz, B.Liberman, K.Muller-Jones,
W.Lamersdorf. Interorganizational Workflow
Management with Mobile Agents in COSM.
In Proceedings of the First International Con-

ference on Practical Applications of Intelligent
Agents and Multi- Agents, 1996.

and

