i

The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)
Sant Fe, New Mexico, April 27-30, 1998

The Design and Performance of MedJava

Prashant Jain, Seth Widoff, and Douglas C. Schmidt
Washington University

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

The Design and Performance of MedJava
A Distributed Electronic Medical Imaging System

Developed with Java Applets and Web Tools

Prashant Jain, Seth Widoff, and Douglas C. Schmidt
{pjain,sbwl,schmidt@cs.wustl.edu
Department of Computer Science
Washington University
St. Louis, MO 63130, (314) 935-4215

This paper appeared in th" USENIX Conference on performance-sensitive distributed applications where C and
Object-Oriented Technologies and Systems (COOTS), Sa@tet+ are currently used.
Fe, New Mexico, April 1998.

Abstract 1 Introduction

The Java programming language has gained substantial popgedical imaging plays a key role in the development of a reg-
larity in the past two years. Java’s networking features, alongatory review process for radiologists and physicians [1]. The
with the growing number of Web browsers that execute Jay@nand for electronic medical imaging systems (EMISs) that
applets, facilitate Internet programming. Despite the popHHow visualization and processing of medical images has in-
larity of Java, however, there are many concerns about its gfeased significantly [2]. The advent of modalities, such as
ficiency. In particular, networking and computation perforangiography, CT, MRI, nuclear medicine, and ultrasound, that
mance are key concerns when considering the use of Javadguire data digitally and the ability to digitize medical images
develop performance-sensitive distributed applications. from film has heightened the demand for EMISs.

This paper makes three contributions to the study of Java forrhe growing demand for EMISs has been coupled with a
performance-sensitive distributed applications. First, we dgeed to access medical images and other diagnostic informa-
scribe an architecture using Java and the Web to develop M@dn remotely across networks [3]. Connecting radiologists
Java, which is a distributed electronic medical imaging sygtectronically with patients increases the availability of health
tem with stringent networking and computation requiremenggre. In addition, it can facilitate the delivery of remote diag-
Second, we present benchmarks of MedJava image procességics and remote surgery [4].
and compare the results to the performance of xv, which is amng 3 result of these forces, there is also increasing de-
equivalent image processing application written in C. Finallynand fordistributedEMISs. These systems supply health care
we present performance benchmarks using Java as a transpefiders with the capability to access medical images and re-
interface to exchange large medical images over high-spggd clinical studies across a network in order to analyze and
ATM networks. _ _ _ _diagnose patient records and exams. The need for distributed
_ For computationally intensive algorithms, such as imagfy|ss is also driven by economic factors. As independent
filters, hand-optimized Java code, coupled with use of & Y&ajth hospitals consolidate into integrated health care deliv-
compiler, can sometimes compensate for the lack of compilg; systems [2], they will require distributed computer systems
time optimization and yield performance commensurate Wﬂ?unify their multiple and distinct image repositories.
identical compiled C code. With rigorous compile-time opti- £ig\ ;e 1 shows the network topology of a distributed EMIS.
mizations employed, C compilers still tend to generate Moge,is environment, medical images are captured by modali-
efficient code. However, with the advent of highly optimigas and transferred to appropriate Image Stores. Radiologists
ing Java compilers, it should be feasible to use Java for thg physicians can then download these images to diagnos-

*This research is supported in part by a grant from Siemens Medical If%}worksmtions for viewing, image processing, and diagnosis.
gineering, Erlangen, Germany. High-speed networks, such as ATM or Fast Ethernet, allow the

However, the performance of Java code using a “just-in-time”

OQ OO (JIT) compiler is~1.5 to 5 times slower than the performance
- of compiled C/C++ code. Likewise, using Java as the transport
B\l interface performs 2% to 50% slower than using C/C++ as the
“\\ transport interface. However, for sender buffer size close to
" the network MTU size, the performance of using Java as the
DIAGNOSTIC transport interface was only 9% slower than the performance
STATIONS of using C/C++ as the transport interface. Therefore, we con-

clude that it is becoming feasible to use Java to develop large-
scale distributed EMISs. Java is particularly relevant for wide-
area environments, such as teleradiology, where conventional
EMIS capabilities are too costly or unwieldy with existing de-
velopment tools.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the object-oriented (OO) design and features
of MedJava; Section 3 compares the performance of MedJava
with an an equivalent image processing application written in

X X

MODALITIES = C and compares the performance of a Java transport interface
CENTRAL ; ; . ;
(cT, MR, CR) IMAGE with the performance of a C/C++ transport interface; Section 4
STORE describes related work; and Section 5 presents concluding re-
marks.

Figure 1: Topology of a Distributed EMIS)
2 Design of the MedJava Framework

transfer of images efficiently, reliably, and economically. 2 1 Problem: Resolving Distributed EMIS De-
Image processing is a set of computational techniques for velopment Forces

enhancing and analyzing images. Image processing tech-
niques apply algorithms, calleichage filters to manipulate A distributed electronic medical imaging system (EMIS) must
images. For example, radiologists may need to sharpenmget the following requirements:

image to properly diagnose a tumor. Similarly, to identify 2 saple: An EMIS must be usable to make it as convenient

kidney stone, a radiologists may need to zoom into an image,ractice radiology as conventional film-based technology.
while maintaining high resolution. Thus, an EMIS must pro-

vide powerful image processing capabilities, as well as effiEfficient: An EMIS must be efficient to process and de-
cient distributed image retrieval and storage mechanisms. !Iver medical images rapidly to radiologists.

This paper describes the design and performanddesf- o Scalable: An EMIS must be scalable to support the grow-
Java a distributed EMIS developed using the Java envirang demands of large-scale integrated health care delivery sys-
ment and the Web. The paper examines the feasibility of tisms [2].
ing Java to develop large-scale distributed medical imaging A lexible:

plications with demanding performance requirements for nﬁ;bes of images and to dynamically reconfigure image pro-

working speed and mage processmg speed. cessing features to cope with changing requirements.
To evaluate Java's image processing performance, we con-

ducted extensive benchmarking of MedJava and compared%fteliable: - An EMIS must be reliable to ensure that medi-
results to the performance x¥ , an equivalentimage processc@l images are delivered correctly and are available when re-
ing application written in C. To evaluate the performance 8fiested by users.

Java as a transport interface for exchanging large images Queecure: An EMIS must be secure to ensure that confiden-
high-speed networks, we performed a series of network benghrpatient information is not compromised.

marking tests over at 155 Mbps ATM switch and compared the

results to the performance of C/C++ as a transport interface. post-effectwe: An EMIS mUSt b? cost-effective to mini-
mize the overhead of accessing patient data across networks.

Our empirical measurements reveal that an imaging system
implemented in C/C++ always out-performs an imaging sys-Developing a distributed EMIS that meets all of these re-

tem implemented using interpreted Java by 30 to 100 timgsirements is challenging, particularly since certain features

An EMIS must be flexible to transfer different

conflict with other features. For example, it is hard to develafirtual Machine implementation. Many Java bytecode com-
an EMIS that is efficient, scalable, and cost-effective. Thispders and interpreters are available on a variety of platforms.
because efficiency often requires high-performance computerprinciple, therefore, switching to new platforms or upgraded
and high-speed networks, thereby raising costs as the nunftzedware on the same platform should not require changes to
of system users increases. the software or even recompilation of the Java source. Conse-
guently, an EMIS can be constructed on a network of hetero-

. geneous machines and platforms with a single set of Java class
2.2 Solution: Java and the Web files.

Over the past two years, the Java programming language has)
sparked considerable interest among software developers2t8 Ca_-Veat Meeting EMIS Performance Re-
popularity stems from its flexibility, portability, and relative quirements

Is;rr?g]]odlgg)ésc%?pared with other object-oriented programmlrtgespite the software engineering benefits of developing a dis-
' tr{Ruted EMIS in Java, there are serious concerns with its per-

th;—Ef)iSttzingoifr};eéisgr?s}\r/‘: \‘;\Z Vt? t')?g\?\;i?: h_?;;?\igggrec?uwmmance relative to languages like C and C++. Performance
quity P ' 9 key requirement in a distributed EMIS since timely diag-

Fhe W?b technology to the dengop of many computer US§Ssis of patient exams by radiologists can be life-critical. For
including radiologists and physicians.

instance, in an emergency room (ER), patient exams and med-

,A feature suppo.rted by Java that is pgrticularly reIevantiE%ll images must be delivered rapidly to radiologists and ER
distributed EMISs is thapplet An applet is a Java class thabh sicians. In addition, an EMIS must allow radiologists to

can .be QOwnIoaded from a Web server and run ina contiihcess and analyze medical images efficiently to make ap-
application such as a Web browser or an applet viewer.

bil q load J | K . priate diagnoses.
ability to download Java classes across a network can simpli eeting the performance demands of a large-scale dis-

the developnjen.t and configuration of efficient and reliable d{ﬁbuted EMIS requires the following support from the JVM.
tributed applications [6]. First, its image processing must be precise and efficient. Sec-
Once downloaded from a Web server, applets run as apgliy its networking mechanisms must download and upload
cat_lon§ Wlthlln the local machine’s Java run-time envwonme[grge medical images rapidly. Assuming that efficient image
which is typically a Web browser. In theory, therefore, appletsocessing algorithms are used, the performance of a Java ap-
can be very efficient since they harness the power of the ol qepends largely on the efficiency of the hardware and the
machine on which they run, rather than requiring high latengy, implementation on which the appletis run.
RPC calls to remote servers [7]. The need for efficiency motivates the development of high-
The MedJava distributed EMIS was developed as a Java@fsed JIT compilers that translate Java bytecode into native
plet. Therefore, it exploits the functionality of front-ends of:gde for the local machine the browser runs on. JIT compil-
fered by Web browsers. An increasing number of browseis are “just-in-time” since they compile Java bytecode into
(such as Internet Explorer and Netscape Navigator and Cqfgtive code on a per-method basis immediately before calling
municator) are Java-enabled and provide a run-time envirgis methods. Several browsers, such as Netscape and Internet
ment for Java applets. A Java-enabled browser provides a &¥giorer, provide JIT compilers as part of their JVM.
Virtual Machine (JVM), which is used to execute Java applets.|though Java JIT compilers avoid the penalty of interpreta-
MedJava leverages the convenience of Java to manipulatetigh, previous studies [9] show that the cost of compilation can
ages and provides image processing capabilities to radiologigificantly interrupt the flow of execution. This performance
and physicians connected via the Web. degradation can cause Java code to run significantly slower
In our experience, developing a distributed EMIS in Javatifan compiled C/C++ code. Section 3 quantifies the overhead
relatively cost effective since Java is fairly simple to learn ag#l Java and C/C++ empirically.
use. In addition, Java provides standard packages that support
GUI development, networking, and image processing. FQr4
example, the packagava.awt.image contains reusable™
classes for managing and manipulating image data, includwgdJava has been developed as a Java applet. Therefore, it
color models, cropping, color filtering, setting pixel valuesan run on any Java-enabled browser that supports the standard
and grabbing bitmaps [8]. AWT windowing toolkit. MedJava allows users to download
Since Java is written to a virtual machine, an EMIS devehedical images across the network. Once an image has been
oper need only compile the Java source code to Java bytecddenloaded, it can be processed by applying one or more im-
The EMIS applet will execute on any platform that has a Jaage filters, which are based on algorithms in the C source code

Key Features of MedJava

from xv. For example, a medical image can be sharpened by MedJava JAWS
applying the Sharpen Filter. Sharpening a medical image e
hances the details of the image, which is useful for radiologist
who diagnose internal ailments. TEL e
Although MedJava is targeted for distributed EMIS require-|{ Locator IFfeE=sT
ments, it is a general-purpose imaging tool that can proce Image —
both medical and non-medical images. Therefore, in additio DownLoader UpL oader Conflgurator
to providing medical filters like sharpening or unsharp mask

ing, MedJava provides other non-medical image processin Srim"bmg JavaACE } [Sr:m"bing }
filters such as an Emboss filter, Oil Paint filter, and Edge De-,

Communication Protocols
tect filter. These filters are useful for processing non-medic eg, HTTP, DICOM, HL7]

images. For example, edge detection serves as an important
initial step in many computer vision processes because edges
contain the bulk of the information within an image [10]. Once
the edges of an i.mage are dete_cted, addit_ional operations %f%]java.am.image . Each of these components is out-
as pseudo-coloring can be applied to the image. lined below.
Image filters can be dynamically configured and re-
configured into MedJava via thgervice Configuratopattern
[6]. This makes it convenient to enhance filter implementatiérP-1 MedJava Applet
or install new filters without restarting the MedJava applet. F?ﬁe MedJava client applet contains the following components
example, a radiologist may find a sharpen filter that uses ewn in Figure 2:
unsharp mask algorithm to be more efficient than a sharpen
filter that simply applies a convolution matrix to all the pixelsGraphical User Interface: which provides a front-end to
Doing this substitution in MedJava is straightforward and céime image processing tool. Figure 3 illustrates the graphical
be done without reloading the entire applet. user interface (GUI) used to display a podiatry image. The
Once an image has been processed by applying the filter(s),
it can be uploaded to the server where the applet was dowr T ===
loaded. HTTP server implementations, such as JAWS [11, 12 @=
and Jigsaw, support file uploading and can be used by MedJa\ 5 i j
to upload images. In addition, the MedJava applet provides v | vt | et | i |_pot | e
hierarchical browser that allows users to traverse directorie
of images on remote servers. This makes it straightforward t
find and select images across the network, making MedJav
quite usable, as well as easy to learn.
To facilitate performance measurements, the MedJava ajf
plet can be configured to run in benchmark mode. Wher
the applet runs in benchmark mode, it computes the time (ir
milliseconds) required to apply filters on downloaded images
The timer starts at the beginning of each image processing a
gorithm and stops immediately after the algorithm terminates

Figure 2: MedJava Framework

)

Forerd

9

Homs

2.5 The OO Design of MedJava

Figure 2 shows the architecture of the MedJava framework de “
veloped at Washington University to meet distributed EMIS febeites
requirements. The two primary components in the architectur:
include the MedJava client applet and JAWS, which is a high- i |
performance HTTP server also developed at Washington Uni-
versity [12, 11]. The MedJava applet was implemented with

components from Java ACE [13], the Blob Streaming frame-
work [14], and standard Java packages suciaes.awt MedJava GUI allows users to download images, apply image
processing filters on them, and upload the images to a server.

Figure 3: Processing a Medical Image in MedJava

4

URL Locator: which locates a URL that can reference al 1: GET

image or a directory. If the URL points to a directory, the con| JedJjava ~pjain/xray.gif
.) HTTP/1.0 JAWS
tents of the directory are retrieved so users can browse thg \ Applet EELLLLEL LSS Server
to obtain a list of images and subdirectories in that director Browserl 2: xray.gif
The URL Locator is used by the Image Downloaderand Image- - —————— . ____ D —
Uploader to download and upload images, respectively. Protocol
HTML Handlers
Image Downloader: which downloads an image located b Parser E E E E
the URL Locator and displays the image in the applet. T :
Image Downloader ensures that all pixels of the image are Requester Dispatcher
trieved and displayed properly. onun 72' —2. *20
0000

Image Processor: which processes the currently displayed
image using the image filter selected by the user. Procesg Graph,cs Commumicaicn Eriass]

an image manipulates the pixel values of the image to cre Adapter (e.g, HTTP)

and display a new image. T oo I

OS Kernel

OS 1/O Subsyste

Image Uploader: which uploads the currently displayed im-JEROSE Gl
age to the server from where the applet was download

from! The Image Uploader generates a GIF-format for t
currently displayed image and writes the data to the ser 0

This allows the user to save processed images persistently at
the server.

Network Adapters

Network

Figure 4: Architecture of MedJava and JAWS
Filter Configurator: which downloads image filters from

the Server and configures them in the applet. The Filter Con-

figurator uses the Service Configurator pattern [6] to dynari{l€ active component of the browser running the MedJava ap-
cally configure the image filters. plet that communicates over thetwork Itissues a request for

the image to JAWS with the appropriate syntax of ttzensfer
552 JANS protocol (which is HTTP in this case). Incoming requests to
"~ the JAWS are received by tltispatcherwhich is the request

JAWS is a high-performance, multi-threaded, HTTP Wetemultiplexing engine of the server. It is responsible for cre-
Server [11]. For the purposes of MedJava, JAWS stores &g new threads. Each request is processed bgrailer
MedJava client applet, the image filter repository, and the itthich goes through Bfecycleof parsing the request, logging
ages. The MedJava client applet uses the image filter regbs-request, fetching image status information, updating the
itory to download specific image filters. Each image filter Bache, sending the image, and cleaning up after the request
a Java class that can be downloaded by MedJava. This deligiPne. When the response returns to the client with the re-
allows MedJava applets to be dynamically configured with ifiuested image, it is parsed by &TML parserso that the
age filters, thereby making image filter configuration highignage may be rendered. At this stage, tequestermay is-
flexible. sue other requests on behalf of the clieng, to maintain a

In addition, JAWS supports file uploading by implementingjient-side cache.
the HTTPPUT method. This allows the MedJava client ap-
plet to save processed images persistently at the server. IBNS3 Blop Streaming
implements other HTTP features (such as CGI bin and per-
sistent connections) that are useful for developing Web-bagégure 5 illustrates the Blob Streaming framework. The frame-
systems. work provides a uniform interface that allows EMIS appli-

Figure 4 illustrates the interaction of MedJava and JAWSation developers to transfer data across a network flexibly
TheMedJava client appldés downloaded into a Web browsegnd efficiently. Blob Streaming uses the HTTP protocol for
from the JAWS server ThroughGUI interactions, a radiolo- the data transfér. Therefore, it can be used to communicate
gist instructs the MedJava client applet to retrieve images fravith high-performance Web servers (such as JAWS) to down-
JAWS (or other servers across the network). Teaguesteiis load images across the network. In addition, it can be used to

1Due to applet security restrictions, images can only be uploaded to the?Although the current Blob Streaming protocol is HTTP, other medical-
server where the applet was downloaded from. In addition, the Web sesecific communication protocols (such as DICOM and HL7) can also be
must support file uploading by implementing the HTFBTmethod. supported.

work programming toolkit that provides reusable components
for building distributed applications. Containingl25,000
lines of code, the C++ version of ACE provides a rich set of
reusable C++ wrappers and framework components that per-
-— form common communication software tasks portably across
a range of OS platforms.

The Java version of ACE Containgl0,000 lines of code,
which is over 90% smaller than the C++ version. The reduc-
tion in size occurs largely because the JVM provides most of
the OS-level wrappers necessary in C++ ACE. Despite the re-
duced size, Java ACE provides most of the functionality of
the C++ version of ACE, such as event handler dispatching,
dynamic (re)configuration of distributed services, and support
for concurrent execution and synchronization. Java ACE im-
plements several key design patterns for concurrent network
programming, such as Acceptor and Connector [16] and Ac-
tive Object [17]. This makes it easier to developing network-
ing applications using Java ACE easier compared to program-
ming directly with the lower-level Java APIs.

Figure 6 illustrates the architecture and key components in
Figure 5: Blob Streaming Framework Java ACE. MedJava uses several components in Java ACE. For

LOGGING NAME TIME
SERVER SERVER SERVER

SERVICE
HANDLER

2: pull(image_name
—_—

s 7
Receive

ATM
SWITCH

X

TOKEN

DISTRIBUTED
communicate with Web servers that implement the HPLA CouPONENTS SERVER D
method to upload images from the browser to the server.

Although Blob Streaming supports both image download: " es.
ing and image uploading across the network, its use withincareeories
Java applet is restricted due to applet security mechanisms. To] ADAPTIVE SERVICE EXECUTIVE (ASX)
prevent security breaches, Java imposes certain restrictions o stNcH SOCK_SAPL THREADU Loc u/nMER U SERVICE
applets. For example, a Java applet can not write to the loCal siamess e R
file system of the local machine it is running on. Similarly, a ’ JAVA VIRTUAL MACHINE ~ (3vM)
Java applet can generally download files only from the server
where the applet was downloaded. Likewise, a Java applet
can only upload files to the server where the applet was down-
loaded.

Figure 6: The Java ACE Framework

Java applets provide an exception to these security rest%ample, Java ACE provides an implementation of the Service
Configurator pattern [6]. MedJava uses this pattern to dynam-

tions, however. In particular, the Ja#pplet class provides | X) X ! . .
a method that allows an applet to download images from dﬁ@lly configure and reconfigure image filters. Likewise, Med-

server reachable via a URL. Since the method is defined in i@ uses Java ACE profile timers to compute performance in
JavaApplet class, it allows Java to ensure there are no se@gnchmark mode.

rity violations. MedJava uses thispplet method to down-
load images across the network. Therefore, images to be pso-
cessed can reside in a file system managed by the HTTP SgTi{/er Performance Benchmarks
from where the MedJava client applet was downloaded or
reside on some other server in the network. However, Blcgg\
Streaming can only be used to upload images to the se
where the MedJava applet was downloaded.

s section presents the results of performance benchmarks
nducted with the MedJava image processing system. We
rﬁ/glrformed the following two sets of benchmarks:

1. Image processing performance: We measured the per-
254 Java ACE formance of Mengva to determine the overhead of using Java

for image processing. We compared the performance of our
Java ACE [5] is a port of the C++ version of the ADAPTIVBViedJava applet with the performancexf. Xv is a widely-
Communication Environment (ACE) [15]. ACE is an OO netised image processing application written in C. The MedJava

image process applets are based orxthalgorithms. JVM Software Configuration: We ran MedJava in two

2 High d networki ‘ Wi dth different Web browsers to determine how efficiently these
- Aigh-speed networking performance. Ve measuredine, <o s axecute Java code. The browsers chosen for our

performance of using Java sockets over a high-speed ATM qggts were Internet Explorer 4.0 release 2 on Windows NT and

work to determine the overhead of using Java for transportiﬂ tscape 4.0 on NT. Internet Explorer 4.0 on NT and Netscape
data. We compar_ed the netvvprk performance results of JaV8 ¥ on NT include Java JIT compilers, written by Microsoft
the results of similar tests using C/C++. and Symantec, respectively.

Below, we describe our benchmarking testbed environmentAs shown in Section 3.1.4, JIT compilers have a substan-

the benchmarks we performed, and the results we obtainedial impact on performance. To compare the performance of
the xv algorithms with their Java counterparts, we extracted

. the GIF loading and processing elements from the freely dis-
3.1 MedJavalmage Processing Benchmarks tributedxv source, removed all remnants of the X-Windows

We benchmarked MedJava to compare the performanc§é+l,.instrumgnted the algorithms wit.h timer mechani.sms in
Java withxv , which is a widely-used image processing app|lpcat|ons equalent_to the Ja_va algonthms.. We complled this
cation written in CXv contains a broad range of image filter§UPset okv using Microsoft Visual C++ version 5.0, with full
such as Blur, Sharpen, and Emboss. By applying a filter to@jimization enabled. _ _

image inxv, and then applying an equivalent filter algorithm 'Mage filters can potentlally.requ@(nQ) time to execute.
written in Java to the same image, we compared the perfop! large images, this processing can dominate the loading and
mance of Java and C directly. In addition, we benchmarkdigelay times. Therefore, the running time of the algorithms is

the performance of different Web browsers running the Me@i @Ppropriate measure of the overall performance of an image
Java applet. processing application.

Image processing configuration: The standard Java
image processing framework uses a “Pipes and Fil-
Hardware Configuration: To study the performance ofters” pattern architecture [18]. Downstream sits an
MedJava, we constructed a hardware and software testfz@@.image.ImageConsumer that has registered
consisting of a Web server and two clients connected by Ethgith an upstream java.image.lmageProducer

net, as shown in Figure 7. The clients in our experiment weftg pixel delivery. The ImageProducer invokes the
setPixels method on thdmageConsumer , delivering
portions of the image array until it completes by invoking the
ImageComplete method.

The Pipes and Filters pattern architecture allows the
ImageConsumer subclass to process the image as itreceives
the pieces or when the image source arrives in its entirety. An
ImageFilter is a subclass ofimageConsumer situated
between the producer and consumer who intercepts the flow of
pixels, altering them in some way before it passes the image to
the subsequentmageConsumer . All ImageFilters in
this experiment override thenageComplete method and
iterate over each pixel. The computational complexity for each
filter depends on how much work the filter does during each
iteration.

We selected the following seven filters, which exhibit dif-
ferent computational complexities. These filters are available
in bothxv and MedJava, and are ranked according to their
usefulness in the domain of medical image processing.

3.1.1 Benchmarking Testbed Environment

Filter
Server |]
| E

| Internet
| Explorer

Micron Millenia PRO2

Figure 7: Web Browser Testbed Environment 1. Sharpen Filter: which computes for each pixel the
mean of the “values” of the>83 matrix surrounding the pixel.
Micron Millenia PRO2 plus workstations. Each PRO2 has 128 the Hue-Saturation-Value color model, the “value” is the
MB of RAM and is equipped with dual 180 Mhz PentiumPromaximum of the normalized red, green, and blue values of
processors. the pixel; conceptually, the brightness of that pixel. The new

value—p*(mean value)

value for the pixel is: j— , Wherep is a value
between 0 and 1. The filter exaggerates the contrast betwee
pixel's brightness and the average brightness of the surroun
ing pixels.

2. Despeckle Filter: which replaces each pixel with the s
median color in a 3 matrix surrounding the pixel. Used for ey o)
noise reduction, the algorithm gathers the colors in the square a b
matrix, sorts them using an inlined Shell sort, and chooses th A
median element.

3. Edge Detect Filter: which runs a merging of a pair of
convolutions, one that detects horizontal edges, and one thj
detects vertical edges. The convolution is done separately fc-
each plane (red, green, blue) of the image, so where there a _
edges in the red plane, for example, the resultant image wili
highlight the red edges.

Figure 8: (a) Original Image; (b) Oil-painted Image; (c) Sharp-
4. Embossfilter: which applies a 3 convolution matrix ened Image; (d) Embossed Image

to the image, a variation of an edge detection algorithm. Most

of the image is left as a medium gray, but leading and trailing

edges are turned lighter and darker gray, respectively. We expectea priori that the C code would out perform the
Java filters due to the extensive optimizations performed by

5t- .O” Paint F(;I_ter:th whicr: co?pﬁtes a hitsr,]togranlcf)faS the Microsoft Visual C/C++ compilet. Therefore, we coded
matrix surrounding th€ pixel and chooses the most IreqUenY, \1qq java image filters using the source level optimization

occuring color in the histogram to supplant the old pixel Valuféchniques described in Section 3.1.3 to elicit maximum per-
The result is a localized smearing effect. formance from them

6. Pixelize Filter: which replaces each pixel in eackk4 However, contrary to our expectations, the hand optimized
squares in the image with the average color in the square @&va algorithms performed nearly as well as their C counter-
trix. parts. Therefore, we also optimized the C algorithms by hand.

7. Spread Filter: which replaces each pixel by a randomNis _rendered the two sets o_f algqrithms nearly indistinguish-
one within a 33 matrix surrounding the pixel. able in appearance, but not indistinguishable in performance.

For MedJava, we ran three trials, one on Internet Explorer 4.0

Figure 8 illustrates the original image and processed imag@§ase 2 on NT (IE 4), one on Netscape Navigator 4.0 on NT
that result from applying four of the filters described abovE\S 4). and one on Internet Explorer 4.0 release 2 with just-
Although some of these filters are not necessarily usefulifitime compilation disabled (IE 4 JIT off).

the medical domain, they follow the same pattern of spatial

image processing: the traversal or convolution of a fixed si2d.3 Source Level Optimizations

or variable size matrix over pixels surrounding each pixel i . . .
the image array. In principle, therefore, the performance e Java run-time system, including the garbage collector and

this set of filters reflect the performance of other more relevél_ r:? Atf)stracL Window TEO|kIt (AWT()j t\)/va?] wrlttenbusmg dC.'
filters of comparable complexity. erefore, they cannot be optimized by the Java bytecode in-

terpreter or compiler. As a result, any attempt to improve
the performance of Java in medical imaging systems must im-
prove the performance of code spent outside these dreas,

We measured the performance of MedJava in comparison witiihe image filters themselves.

the NT port of thexv subset by sending an 8-bit image at JIT compilers affect the greatest speed up in computation-
equidistant degrees of magnifications through each of eightdily intensive tasks that do not call the AWT or run-time sys-
ters 10 times, keeping the average of the trials. Batrand tem, as shown by the benchmarks in Table 1. These bench-
Java convert 8-bit images, either greyscale or color, into 24-i@rks test the performance of common image filter operations
RGB color images prior to filtering. Moreover, all eight algdh the two browsers used in the experiments. These data were
rithms are functions SOIer of image dimension and not pIXEi 3“Full optimization” on MVC++ includes: inline function expansion,

value. Thus, there is no processing pe_rformange dmere@ﬁ@expression elimination, automatic register allocation, loop optimization,
between greyscale and color images in either environmentinlining of common library functions, and machine code optimization.

3.1.2 Performance Metrics

operation NS4 IE4 IE4JIToff allyintensive source code in Java [19]:

Loop overhead 10.21| 10.21 902
Quick Int Assignment 501 501 339 Strength reductlon: wh!ch replaces costly operations with
Local Int Assignment 501 532 440 a fas.te.r equwalent. Eor instance, the Image F.llters converted
Static Member Integer | 25.24| 20.13 851 multlpllcgtlons and divides by factors of two into lefts and
Member Integer 5.01 | 10.02 50| Mghts shifts.

Reference Assignment| 5.01| 10.12 580 | Common subexpression elimination: which removes re-
Integer Array Access | 11.63| 5.21 350 | dundant calculations. Image Filters store the pixel values in
Static Instance Method| 35.45| 34.95 692 | a one dimensional array. Thus, for each pixel access this op-
Instance Method 40.46| 30.24 922 | timization calculates a pixel index once from the column and
Final Instance Method | 30.35| 40.17 922 row values and stores the results of the array access into a tem-
Private Instance Method 35.46 | 30.24 992 | porary variable, rather than continually indexing the same ele-
Random.nextint() 80.92| 86.71 450 ment of the array.

int++ 20.33| 7.72 180

int = int + int 5.02 | 10.11 710 Code motion: which hoists constant calculations out of
int = int - int 1512 10.12 690 loops. Thus, although it may be impossible to unroll loops
P where the number of iterations is a function of the image
int=int*int 10.12| 10.12 691 . . -

int = int/ int 75 96| 71.35 890 height and W|dtr_1, the Image Filters r.educe the overhead of
int /= 2 16.43| 10.92 931 loops by removing constant calculations computed at each
int >>= 1 17.43| 701 661 loop termination check.

int*=2 19.63| 7.42 780 Local variables: which are efficient to access. The virtual
int<<=1 17.33| 7.71 731 machine stores them in an array in the method frame. Thus,
int=int & int 15.13| 5.01 670 | there is no overhead associated with dereferencing an object
int=int| int 501| 0.11 670 reference, unlike an instance variable, a class name, or a static
float = float + float 15.12| 10.12 730 | data member. The bytecodgstfield andgetstatic

float = float - float 15.12| 10.12 700 must first resolve the class and method names before pushing
float = float * float 10.02| 15.22 720 | the value of the variable onto the operand stack. Also, the
float = float / float 46.82 | 46.02 841 iload andistore instructions allow the JVM to quickly
Cast double to float 4.91| 5.01 570 load and store the first four local variables to and from the
Cast float to int 67.14 | 347.3 910 operand stack [20].

Cast double to int 67.15| 13.06 920

Integer variables, floats, and object references: which are
most directly supported by the JVM since the operand stack
Table 1: Times in Nanoseconds for Common Operations in thied local variables are each one word in width, the size of
Testbed Java Environment integers, floating points, and references. Smaller types, such as
short andbyte are not directly supported in the instruction
set. Therefore, each must be converted tdrdn prior to

obtained by wrapping a test haress around a loop that i@§t-operation and then subsequently back to the smaller type,
ates for a fixed, but large, number of iterations, subtracting #&ruing the cost of a valid truncation [20].

loop overhead from the result, and dividing by the number g, ally inlining methods: ~ eliminates the overhead asso-
iterations. Java’s garbage collection routine was called befg[gieq with method invocation. Althouggtatic final

the sequence to prohibit it from affecting the test results. TQﬁdprivate methods can be resolved at compile time, elim-

results are listed in nanoseconds. inating method calls entirely, especially simple calls on the
Since the conversion from byte-code to native code is fva.lang.Math packaged.g, ceil ,floor ,min, and
ready costly, JIT compilers do not spend a great deal time m@x), in critical sections of looping code will further improve
tempting to further optimize the native code. Therefore, lagierformance.
ing source to a bytecode compiler that optimizes its output,Thefinal ,static ,orprivate keywordson a method
the most a developer of performance-critical applications caalvises the run-time compiler or interpreter that it may safely
do to further accelerate the performance of computationaligline the method. However, because classes are linked to-
intensive tasks is to optimize the source code manually. Tdether at run-time, changes made tinal method in one
image filters in MedJava leveraged the following canoniadhss would not be reflected in other already compiled classes
technigues and insight on how to best optimize computatidhat invoke that method, unless they too were recompiled [21].

Naturally, when invoking methods internal to a class, this is
not a problem. Moreover, thé option on the Sujavac
source to bytecode compiler requests that it attempt to inline
methods.

As an example of worthwhile manual method in-
lining, an ImagekFilter contains a method called
setColorModel In this method thdmageProducer
providesthémageFilter ~ with theColorModel subclass
that grabs the color values of each pixel in the image source.
ColorModel is an abstract class with methogetRed ,
getGreen , andgetBlue to retrieve the specific color value
from each pixel. Thus, every time a filter needs a color value, it
must incur the overhead of this dynamically resolved method
call. However, calling thgetDefaultColorModel static
method onColorModel returns aColorModel subclass,
which guarantees that each pixel will be in a known form,
where the first 8 bits are the alpha (transparency) value, the
next 8 are the red, the next 8 are the green, and the last
8 bits are the blue value. Therefore, rather than using the
methods onColorModel to retrieve the color values, the
ImageFilter can retrieve values simply by shifting and
masking the integer value of the pixelg, to obtain the red
value of a pixel: (pixeb> 16) & 0xff.

Of course, for C code many of the same optimization tech-
niques apply. We ran a similar set of operation benchmarks in

C, using the same test harness technique as we did for the Java

benchmarks. The results, shown in Table 2, are the mean of 5
trials, with each measurement exhibiting a standard deviation
of no more than 0.5 nanoseconds.

With “global optimizations” enabled, the MSVC++ com-
piler will actively assign variables to registers at its own dis-

cretion. With optimizations disabled, it takes no special megable 2: Times in Nanoseconds for Common Operations in
keyword. Again, the resultsC/C++ on the Testbed Platform

sures to abide by thegister
are listed in nanoseconds.

operation

MSVC++ output

Local int access
Extern int access
Static int access
Heap byte access
Heap int access
Stack byte array
Stack int array
Global byte array
Global int array
Static function call
Extern function call
int++

int=int +int
int=int-int
int=int*int
int=int/int
int*=2

int <<=1
int/=2
int>>=1
int=int & int
int=int| int

float = float + float
float = float - float
float = float * float
float = float / float
Call to rand()

cast from float to int

7.40
3.57
7.13
7.62
7.99
7.72
7.82
8.60
8.17
25.40
32.02
7.39
11.88
11.88
21.88
203.27
7.18
3.55
13.47
7.25
11.86
7.68
16.58
16.51
556.08
611.43
57.33
863.11

Table 2 reveals that the MSVC++ generated code yields
comparable performance with the output of the two JIT con
pilers. Narrowing casts, for example from floating point tg
integer data is more time consuming in the MSVC++ gene
ated code than the JIT output, however, calls to static, ext
nal, and library functionsg(g, rand) are less time consuming| &
than their Java method equivalents. Also, floating point mulf
plication and division, translated into tfi@ul andfdiv in
MSVC++, lag behind the JIT translation of these operations|

3.1.4 Performance Results and Evaluation

Figures 9-16 plot our results for each of the eight filters g
each of the three language/compiler permutations.

2500

T |—=IE4.0JT
——xv (both, level 2 opts)

——NS 4.0JIT

~

0

200000 400000 600000 800000 1000000 1200000 1400000

Image Size (number of pixels)

~ Using insights about the most frequently performed opefgure 9: Comparative Performance of the Java-enabled
tions in the algorithms, and the tables enumerating the cqs{swsers andcv in Applying the Sharpen Image Filter to an

of those operations on the three configurations (Tables 1 #d@ge at Various Sizes

2), we can attempt to explain any observed, counter-intuitive

10

3000
——NS 4.0 JIT
2500 1——|-=—|E 4.0 JIT
_ ——xv (both, level 2 opts) /
£ 2000
8
E /
¢ 1500 4
£
1 ///‘//
¢ 1000
e
] ,////::::://‘////,
500
0 : : : : : :
0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

5000
4500 ————NS 4.0 JIT /:/"
4000 —=—|E4.0JT
_ ——xv (both, level 2 opts) /
€ 3500
H
£ 3000 -
E
¢ 2500 4
£ / /
£ 2000
8
£ 1500
g
1000
500 -‘f!i;//‘
0 : : : : : :
0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

Figure 10: Comparative Performance of the Java-enabldure 13: Comparative Performance of the Java-enabled
Browsers anav in Applying the Edge Detection Image FilteBrowsers andkv in Applying the Oil Paint Image Filter to

to an Image at Various Sizes

an Image at Various Sizes

2500

—a—xv (both, level 2 opts)
—%—xv (both, level 1 opts)
T 1—*NS4.0JT
—a—|E4.0JIT

2000

7

P
e
-

200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

1500

1000

Processing Time (milliseconds)

3
o
o

Figure 11: Comparative Performance of the Java-enabfégure 14: Comparative Performance of the Java-enabled
Browsers andv in Applying the Blur Image Filter to an Im- Browsers andv in Applying the Spread Image Filter to an

age at Various Sizes

3000
——NS4.0JIT
2500 = IE4.0JIT -, A~
_ —a—xv (both, level 2 opts) /'//I/
£ 2000
]
: l//-/
¢ 1500
: /
2
£ 1000 —
& / /
500 Z‘é//
0 ‘ ‘ ‘ ‘
200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

8000
7000 | [~—Ns 40T pad
—=—|E4.0JT
__ 6000 ——{—*—xv (both, level 2 opts)
H
§ 5000 -
£
2 4000
=
2
2 3000
8
g /
&
2000
1000
e————— "
0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

Image at Various Sizes

600
——|E4.0JT a
500 T——1——NS 4.0 JIT
_ ——xv (both, level 2 opts)
£ 400
hid
£
¢ 300 A
E
g
¢ 200
e
&
100 /
0 T T T T T T
0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

Figure 12: Comparative Performance of the Java-enabkédure 15: Comparative Performance of the Java-enabled
Browsers andv in Applying the Despeckle Image Filter toBrowsers andv in Applying the Emboss Image Filter to an
an Image at Various Sizes Image at Various Sizes

11

3.2.1 Benchmarking Configuration

N
[=3
o

P Benchmarking testbed: The network benchmarking tests
350 | oS AT / /' were conducted using a FORE systems ASX-10Q01
300 {——|—4—xv (both, level 2 opts) / switch connected to two dual-processor UltraSPARC-2s run-
[ning SunOS 5.5.1. The ASX-1000 is a 96 Port, OC12 622
3 / / Mbs/port switch. Each UltraSparc-2 contains two 168 MHz
g2 SuperspARC cPls with a 1 Megabyte cache per-CPU. The
£ 150 SunOS 5.5.1rcr/ip protocol stack is implemented using the
100 //f/ STREAMS communication framework. Each UltraSparc-2 has
p 256 Mbytes ofRAM and aneNI-155sMmF ATM adaptor card,
%0 / which supports 155 Megabits per-sec (MbE)NET multi-
0 mode fiber. The Maximum Transmission Unit1u) on the

O 00000 A00000 DO ooy 1000000 1200000 1400000 | g1 ATM adaptor is 9,180 bytes. Eaglvi card has 512 Kbytes

. . of on-board memory. A maximum of 32 Kbytes is allotted per
Figure 16: Comparative Performance of the Java-enablgd; virtual circuit connection for receiving and transmitting
Browsers andv in Applying the Pixelize Image Filter to angames (for a total of 64 K). This allows up to eight switched
Image at Various Sizes virtual connections per card.

Performance metrics: To evaluate the performance of Java,

differences in the performance of the algorithms. we developed a test suite using Java ACE. To measure the

In general, the hand-optimized Java algorithms executedgiformance of C/C++ as a transport interface, we used an
times comparable with their C hand-optimized counterpar@tended version of TTCP protocol benchmarking tool [22].
However, the added benefit of the MSVC++ compile-time ophis TTCP tool measures the throughput of transferring un-
timizations gave the C algorithms a competitive advantaggred bytestream data€., Blobs [14]) between two hosts.
Thus, for all but two of the filters (Blur image filer and Sharpe¥¥e chose untyped bytestream data, since untyped bytestream
image filter), the C algorithms outperformed their Java equi¥affic is representative of image pixel data, which need not be
alents. marshaled or demarshaled.

Contributing to the overall superiority of the C algorithm
execution is fast array access time and increments, indugezl2 Benchmarking Methodology

by the rigorous utilization of registers by the compiler. How-) i
measured throughput as a function of sender buffer size.

ever, applying the techniques of code movement and stren . : _ .
gpder buffer size was incremented in powers of two ranging

reduction help the Java code to negate any benefits of si - :
compile-time optimization performed by the C/C++ compileﬁr.om 1 Kbytes to 128 Kbytes. The experiment was carried out

There is one severely aberrational case in which the C rien times for each buffer size to account for variations in ATM
time performed more poorly than the Java ones: the sharEgﬂNork traffic. The throughputwas then averaged over all the

filter. In the sharpen filter, color values are continually co uns to obtain the final results.

verted between the integer RGB format and the floating point>'"¢€ Java does not allow manipulation of the socket queue

HSV format. Netscape, whose floating point to integer n&i2€: We had to use the default socket queue size of 8 Kbytes

rowing conversion performance exceeds Internet Explore}'s Sun(gSh5.5./ We used ttiz socrlfet qll(J'eue size for both the
and C/C++'s, has the competitive advantage. Java and the C/C++ network benchmarking tests.

3.2.3 Performance Results and Evaluation

3.2 High-speed Network Benchmarking _
Throughput measurements: Figure 17 shows the through-

As described earlier, high performance is one of the key forgrg measurements using Java and C/C++ as the transport in-
that guides the development of a distributed EMIS. In particierface. These results illustrate that the C/C++ transport in-
lar, it is important that medical images be delivered to radigkrfaces consistently out-perform the Java transport interfaces.
ogists and processed in a timely manner to allow proper diddpe performance of both the Java version and the C/C++ ver-
nosis of patients exams. To evaluate the performance of Jsiem peak at the sender buffer size of 8 Kbytes. This result
as a transport interface for exchanging large images over higtems from the fact that 8 Kbytes is close to the MTU size
speed networks, we performed a series of network benchmafkihe ATM network, which is 9,180 bytes. The results in-
ing tests over ATM. This section compares the results with ttigate that for a sender buffer size of 1 Kbytes, C/C++ out-
performance of C/C++ as a transport interface [22]. performs Java by only about 2%. On the other hand, for sender

12

4.1 Measuring Java’s Performance

120.0
Several studies have compared the execution time of Java in-

terpreted code and Java compiled code with the execution time
of C/C++ compiled code. Shiffman [24] has measured and

110.0

100.0 compared the performance of several programs written both
g: 500 in Java and in C++. For the tests performed, Java interpreted
s e code performed 6 to 20 times slower than compiled C++ code,
S sl] while Java compiled code performed only about 1.1 to 1.5
% | times slower than C++ code.
£ 1004 . The results obtained in [24] differ from the ones we ob-
| KX Java tained because the tests run were also different. The tests
60.0 I 1 carried out by Shiffman involved measuring the timings for
50.0 | i iterative and recursive versions of a calculator of numbers in
the Fibonacci series, as well as a calculator of prime numbers.
40.0 ‘ ‘ ‘ ‘ ‘ ‘ The results, however, once again indicate that the Java code
0.0 20.0 40.0 60.0 80.0 100.0 120.0

performs reasonably well, compared with C/C++ code. This
finding is consistent with our results for the image process-
Ir?g algorithms.

Sender Buffer Size (KB)

Figure 17: Throughput Measurement of Using Java a
C/C++ as the Transport Interface
4.2 Improving Java’s Performance

buffer size of 2 Kbytes, C/C++ out-performs Java by more thgff/€ral groups are working on improving the performance of
50%. C/C++ out-performs Java by 15%-20% for the remaﬂ:r compilers, as well as developing alternatives to JIT com-
ing sender buffer sizes. pilers.

Toba: A system for generating efficient stand-alone Java ap-
Analysis summary: C/C++ out-performed Java as the tranglications has been developed at the University of Arizona
port interface for all sender buffer sizes. The difference in tfb]. The system is called Toba and generates executables that
performance between Java and C/C++ is reflective of the owie 1.5 to 4.4 times faster than alternative JVM implementa-
head incurred by the JVM. This overhead can be either in tigns. Tobais a “Way-Ahead-of-Time” compiler and therefore
form of interpreting Java byte code (if an interpreter is usegfnverts Java code into machine code before the application is

or in the form of compiling Java byte code at run time (if a Jinun. It translates Java class files into C code and then compiles
compiler is used). the C code into machine code making several optimizations

However, it is important to note that despite the differencsthe process. Although such a compiler can be very useful
in performance between Java and C/C++, Java performs cph-Stand-alone Java applications, it can not, unfortunately, be
parably well. A throughput of about 110 Mbps on a 155 Mbp$ed for Java applets.

ATM network is quite efficient considering the default Sockgfs risa: An efficient environment for the execution of Java

performance can improve significantly if the maximum sockgf pannes [26]. Harissa mixes compiled and interpreted code.
gueue size (64 Kbytes) is used. If Java allowed prograg

: ﬁmslates Java bytecode to C and in the process makes sev-
mers to change the socket queue size the throughput shauldl ,timizations. The resulting C code produced by Harissa

be higher for larger sender buffer sizes. is up to 140 times faster than the JDK interpreter and 30%
faster than the Toba compiler described above.
Unlike Toba, Harissa can work with Java applets also.
4 Related Work Therefore, Harissa can be used by MedJava to improve the
performance of image processing and bringing it closer to the

i performance of a similar application written in C/C++.
Several studies have measured the performance of Java relative

to other languages. In addition, many techniques have béeymetrix: Another approach similar to Harissa is Su-
proposed to improve the performance of Java. The followipgrCede VM developed by Asymetrix [27]. SuperCede is a
is a summary of the related work in this area. high-performance JVM that can improve the performance of

13

Java to execute at native C/C++ speed. Unlike JIT compithich is an image processing application written in C. In ad-
ers, where the interpreter selectively compiles functions, Slition, the paper presented performance benchmarks of using
perCede compiles all class files as they are downloaded frédewa as a transport interface to transfer large images over high-
the server. The result is an application that is fully compilegpeed ATM networks.

to machine code and can therefore execute at native C/C+¥he following is a summary of the lessons learned while
speed. SuperCede VM can also work with Java applets aledeloping MedJava:

can therefore be used by MedJava to improve its performa@smp"ed Java code performs relatively well for image
processing compared to compiled C code: In our image

4.3 Evaluating Web Browsers Performance processing tests, interpreted Java code was substantially out-
_) performed by compiled Java code and compiled C code. The
Several studies compare the performance of different Wahge processing application written in C out-performed Med-

browsers. Java in most of our tests. However, only when the C code was

CaffeineMark: Pendragon Software [28] provides a tod{Self hand-optimized, were the MSVC++ compiler's compile-
called that can be used for comparing different Java virt{ihe optimizations able to produce significantly more efficient
machines on a single systeire., comparing appletviewers,colde-. If technllques.become avfeulable_ to employ .such opti-
interpreters and JIT compilers from different vendors. TH@iZation techniques in JIT compilers without incurring unac-
CaffeineMark benchmarks measures Java applet/applicaBRtable latency, then this advantage will be abated. In addi-
performance across different platforms. CaffeineMark bend9n. efficient Java environments like Harissa, which mix byte
marks found Internet Explorer 3.01 on NT to contain tfg?de and compiled code, can further improve the performance
fastest JVM followed by Internet Explorer 3.0 on nTof Java code and allow it to perform as well as the performance
Netscape Navigator 3.01 on NT performed sixth in their tesf.C code.

Unfortunately, the CaffeineMark benchmarks do not inclu@®mpiled Java code performs relatively well as a network

the latest versions of the Web browsers that we used to runtansport interface compared to compiled C/C++ code:
tests,i.e, Internet Explorer 4.0 and Netscape 4.0. Therefo@ur network benchmarks illustrate that using C/C++ as the
their results are out-of-date. transport interface out-performs using Java as the transport in-
PC Magazine: Java performance tests in PC Magazine r%e_rface by 2% to 50%. The difference of 50% in performance

veal the strengths and flaws of several of today’s Java enviroﬁEWeen Java and C/C+ for a buiier size of 2 KB occurs be-

ments [29]. Their tests reveal significant performance diffefrus€ of asudden jump in the throughput In the case of C/C++
going from a sender buffer size of 1 KB to a sender buffer

. 1N
ences between Web browsers. In all their tests, browsers W?tze of 2 KB. In the case of C/C++, throughput jumped from

X . . S

JIT compilers out-perform browsers without JIT compilers hé%/ . . .

up to 20 times. This is consistent with the results we obtain .'69 Mbps to 104.81 Mbps ingoing from a sender buffer size
oIl KB to a sender buffer size of 2 KB. In the case of Java,

Thei f I Expl . he f - ; :
eir tests found Internet Explorer 3.0 to be the aSteStJavaﬁgwever, the increase in throughput was gradual and therefore

vironment currently available. They found Netscape NaVigraésulted in a large performance difference for sender buffer
tor 3.0 to be consistently slower than Internet Explorer. Once ge p

again their tests did not make use of the latest versions of Izq?h(()afzef%rmance of using Java as the transport interface
Web browsers and therefore are out-of-date. P 9 P

peaks at the sender buffer size close to the network MTU size
and is only 9% slower than the performance of using C/C++

5 Concluding Remarks as the transport interface. Therefore, Java is relatively well-
suited to be used as the transport interface.

This paper describes the design and performance of a tliss becoming feasible to develop performance-sensitive
tributed electronic medical imaging system (EMIS) calladistributed EMIS applications in Java: The built-in sup-
MedJava that we developed using Java applets and Web tedht for GUI development, the support for image processing,
nology. MedJava allows users to download images acrosstthe support for sockets and threads, automatic memory man-
network and process the images. Once an image has beenggement, and exception handling in Java simplified our task of
cessed, it can be uploaded to the server where the applet de@&loping MedJava. In addition, the availability of JIT com-
downloaded. pilers allowed MedJava to perform relatively well compared
The paper presents the results of systematic performaitca applications written in C/C++.
measurements of our MedJava applet. MedJava was run in twdherefore, we believe that it is becoming feasible to use
widely-used Web browsers (Netscape and Internet Exploréaya to develop performance-sensitive distributed EMIS appli-
and the results were compared with the performancevof cations. In particular, even when Java code does not run quite

14

as fast as compiled C/C++ code, it can still be a valuable tool the full privileges of local applications. The context uses
for building distributed EMISs because it facilitates rapid pro- the public key for a entity, authenticated by a Certificate
totyping and development of portable and robust applications. from another trusted entity, to verify that the archive file
came from a trusted signer. Therefore, an EMIS signed
by a trusted entity could run in a browser with the abil-
ity to save files to the local file system and open network
connections to machines other than the one from which it
was downloaded.

Netscape 4.0 is the fastest Java environment currently

available: Among the Web browsers, those providing JIT
compilers in the JVM clearly out-perform browsers that do
not provide JIT compilers. Both Internet Explorer 4.0 and
Netscape 4.0 running Windows NT on the Intel instruction
set provide JIT compilers in their JVMs. However, in sev-)
eral cases, Netscape 4.0 on NT performed more than twice 4§ Summary, our experience suggests that Java can be
fast as Internet Explorer 4.0 on NT . Therefore, among JaV&!Y effective in developing a distributed EMIS. It is simple,

enabled Web browsers, Netscape 4.0 is the fastest Java dif/itable and distributed. In addition, compiled Java code can

solved and highly-optimizing Java compilers become avail-
able, it should be feasible to develop performance-sensitive
istributed applications in Java.

The complete source code for Java ACE is available at
www.cs.wustl.edu/ ~schmidt/JACE.html

Java has several limitations that must be fixed to develop
production distributed EMIS: Even though Java resolve
several of the forces of developing a distributed EMIS, it still
has the following limitations:

e Memory limitations: We found that applying image
filters to images larger than 1 MB causes the JVM of boﬂt&
Netscape 4.0 on NT and Internet Explorer 4.0 on NT to r CknOWIedgmentS

out of memory. This can hinder the development of distributed) .
EMISs since many medical images are larger than 1 MB. We would like to thank Karlheinz Dorn and the other members

of the Siemens Medical Engineering group in Erlangen, Ger-

e Lack of AWT portability: We found the AWT imple- many for their technical support, sponsorship, and friendship
mentations across platforms to be inconsistent, thereby M@ring the MedJava project.

ing it hard to develop a uniform GUI. When we tried running
MedJava on different brower platforms, we found some fea-
tures of MedJava do not work portably on certain platforndeferences

lack of rtin the JVM where th let was run.
due to lack of supportin the J ere the applet was ru [1] W. L. R. J. J. Conklin, “Digital Management and Regulatory

e Security impediments: We found the lack of ability to Submission of Medical Images from Clinical Trials: Role and
upload images to servers other than the one from where the Eenﬁfitf of tgel_ Colrle Tl-r?bOFgatloryJ:?C-hspllE, Healrt]h gare f
H ifi imi i . the Cost 0
applet was downloaded from as another significant limitation ~'€c"nology Folicy 1l: The Role of Technology In
of using Java for distributed EMISs. Although these restric- gegllth Carsl. ;rmgdungdtt;ecs?(ljutlo?:ol: 2‘:989’ OtCt' 19?55' abl
T . blaine, M. boyd, an .criaer, roject spectrum: sScCalable
tres Werg ad.de.d. to Java as a sgcurlty feature of applets, tl%ly Bandwidth for the BJC Health SystenHlIMSS, Health Care
can be quite limiting. The following are several workarounds

for th - L . Communicationspp. 71-81, 1994.
or these security restrictions: [3] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design

o his t CGI Gat th f and Performance of an Object-Oriented Framework for High-
¢ Oneapproachistoruna ateway at the Server irom - peformance Electronic Medical ImagindJSENIX Comput-

where the MedJava applet is downloaded. MedJava can jng Systemsvol. 9, November/December 1996.

then make qploading requests to the Gateway that C?rﬂ F. L. Kitson, “Multimedia, Visual Computing, and the Informa-
then upload images to servers across the network. tion Superhighway,Proc. SPIE, Medical Imaging 1996: Image

¢ Another scheme can be used to solve this problem with- Displ.ay, vol. 2707, AF’“ 1996. . .
out requiring an additional Gateway to run at the servef?] P. Jain and D. Schmidt, “Experiences COEVEF“”Q a C++ Com-
This requires adding a security authentication mechanism Munication Software Framework to Java+ Report, vol. 9,
oy . . January 1997.
within the JavaApplet class. This mechanism can then@] b Jain and D. C. Schmidt. “Service Confiqurator: A Patte
. . In a . C. 1dt, rvi igurator: m
allow an applet to upload files to servers other than th for Dynamic Configuration of Services,” iRroceedings of the
one from where the applet was downloaded. Java ver-

. . 3" Conference on Object-Oriented Technologies and Systems
sion 1.1 allows an applet context to download signed Java ysgnix, June 1997.

archive files (JARs), which contain Java classes, image[s,i A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object

and sounds. If these are signed by a trusted entity us- Model for the Java SystemUSENIX Computing Systems
ing its private key, applets can run in the context with vol. 9, November/December 1996.

15

[8] Java APl Documentation Version 1.0.2 Available from [25] T. A. Proebsting, G. Townsend, P. Bridges, J. H. H. T. New-

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

http://java.sun.com:80/products/jdk/1.0.2/api.

M. P. Plezbert and R. Cytron, “Does Just in Time = Better Late
than Never?,” inACM 1997 Symposium on the Principles of
Programming Language4997.

H. R. Myler and A. R. Week€Computer Imaging Recipes in C [26]

Prentice Hall, Inc. Englewoods Cliffs, New Jersey, 1993.
J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Develop-

ing and Measuring High-performance Web Servers over ATMa71

in Proceeedings of INFOCOM '98&/arch/April 1998.

J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact
of Event Dispatching and Concurrency Models on Web Server
Performance Over High-speed Networks,Piroceedings of the
2"¢ Global Internet ConferenceéEEE, November 1997.

Java ACE Home Page Available
http://www.cs.wustl.edu/ schmidt/JACE.html.

I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” Proceedings of
the 2™? Conference on Object-Oriented Technologies and Sys-
tems (Toronto, Canada), USENIX, June 1996.

D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-

nication Systems,IEE/BCS Distributed Systems Engineering

Journal (Special Issue on Configurable Distributed Systems)
vol. 2, pp. 280-293, December 1994.

D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” iRattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

R. G. Lavender and D. C. Schmidt, “Active Object: an Ob-
ject Behavioral Pattern for Concurrent Programming, Pat-
tern Languages of Program Desigh O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns Wiley and Sons, 1996.

D. Bell, “Make Java fast: Optimize!.” JavaWorld, April
1997. Available from http://www.javaworld.com/javaworld/jw-
04-1997/jw-04-optimize.html.

T. Lindholm and F. Yellin,The Java Virtual Machine Specifica-
tion. Addison-Wesley, 1997.

J. Gosling, B. Joy, and G. Steelhe Java Programming Lan-
guage SpecificatiorReading, MA: Addison-Wesley, 1996.

A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM '9§Stanford, CA), pp. 306-317,
ACM, August 1996.

D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Programming,”
in Proceedings of th&@** Conference on Object-Oriented Tech-
nologies and System@lonterey, CA), USENIX, June 1995.

H. Shiffman, “Boosting Java Performance: Na-
tive Code & JIT Compilers.” Available from
http://reality.sgi.com/shiffman/Java-JIT.html, 1996.

from

16

(28]

[29]

sham, and S. Watterson, “Toba: Java For Applications, A
Way Ahead of Time (WAT) Compiler,” irProceedings of the
3rd Conference on Object-Oriented Technologies and Systems
1997.

G. Muller, B. Moura, F. Bellard, and C. Consel, “Harissa:
A Flexible and Efficient Java Environment Mixing Bytecode
and Compiled Code,” ifProceedings of the 3rd Conference on
Object-Oriented Technologies and Systeh®97.

Asymmetrix, “SuperCede.” Available from
http://www.asymetrix.com/products/supercede/index.html,
1997.

P. Software, “CaffeineMark(tm) 2.5: The Indus-
try Standard Java Benchmark.” Available from
http://www.webfayre.com/pendragon/cm2/index.html, 1996.

R. V. Dragan and L. Seltzer, “Java Speed Trials.” Available from
http://iwvww8.zdnet.com/pcmag/features/pctech/1518/java.htm,
1996.

