
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

The Design and Performance of MedJava

Prashant Jain, Seth Widoff, and Douglas C. Schmidt
Washington University

The Design and Performance of MedJava
A Distributed Electronic Medical Imaging System

Developed with Java Applets and Web Tools

Prashant Jain, Seth Widoff, and Douglas C. Schmidt
fpjain,sbw1,schmidtg@cs.wustl.edu

Department of Computer Science

Washington University

St. Louis, MO 63130, (314) 935-4215�

This paper appeared in the4th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS), Sante
Fe, New Mexico, April 1998.

Abstract

The Java programming language has gained substantial popu-
larity in the past two years. Java’s networking features, along
with the growing number of Web browsers that execute Java
applets, facilitate Internet programming. Despite the popu-
larity of Java, however, there are many concerns about its ef-
ficiency. In particular, networking and computation perfor-
mance are key concerns when considering the use of Java to
develop performance-sensitive distributed applications.

This paper makes three contributions to the study of Java for
performance-sensitive distributed applications. First, we de-
scribe an architecture using Java and the Web to develop Med-
Java, which is a distributed electronic medical imaging sys-
tem with stringent networking and computation requirements.
Second, we present benchmarks of MedJava image processing
and compare the results to the performance of xv, which is an
equivalent image processing application written in C. Finally,
we present performance benchmarks using Java as a transport
interface to exchange large medical images over high-speed
ATM networks.

For computationally intensive algorithms, such as image
filters, hand-optimized Java code, coupled with use of a JIT
compiler, can sometimes compensate for the lack of compile-
time optimization and yield performance commensurate with
identical compiled C code. With rigorous compile-time opti-
mizations employed, C compilers still tend to generate more
efficient code. However, with the advent of highly optimiz-
ing Java compilers, it should be feasible to use Java for the

�This research is supported in part by a grant from Siemens Medical En-
gineering, Erlangen, Germany.

performance-sensitive distributed applications where C and
C++ are currently used.

1 Introduction

Medical imaging plays a key role in the development of a reg-
ulatory review process for radiologists and physicians [1]. The
demand for electronic medical imaging systems (EMISs) that
allow visualization and processing of medical images has in-
creased significantly [2]. The advent of modalities, such as
angiography, CT, MRI, nuclear medicine, and ultrasound, that
acquire data digitally and the ability to digitize medical images
from film has heightened the demand for EMISs.

The growing demand for EMISs has been coupled with a
need to access medical images and other diagnostic informa-
tion remotely across networks [3]. Connecting radiologists
electronically with patients increases the availability of health
care. In addition, it can facilitate the delivery of remote diag-
nostics and remote surgery [4].

As a result of these forces, there is also increasing de-
mand fordistributedEMISs. These systems supply health care
providers with the capability to access medical images and re-
lated clinical studies across a network in order to analyze and
diagnose patient records and exams. The need for distributed
EMISs is also driven by economic factors. As independent
health hospitals consolidate into integrated health care deliv-
ery systems [2], they will require distributed computer systems
to unify their multiple and distinct image repositories.

Figure 1 shows the network topology of a distributed EMIS.
In this environment, medical images are captured by modali-
ties and transferred to appropriate Image Stores. Radiologists
and physicians can then download these images to diagnos-
tic workstations for viewing, image processing, and diagnosis.
High-speed networks, such as ATM or Fast Ethernet, allow the

1

DDIIAAGGNNOOSSTTIICC

SSTTAATTIIOONNSS

AATTMM
MMAANN

AATTMM
LLAANN

AATTMM
LLAANN

MMOODDAALLIITTIIEESS

((CCTT,, MMRR,, CCRR))
 CCEENNTTRRAALL

IIMMAAGGEE
SSTTOORREE

CCLLUUSSTTEERR
IIMMAAGGEE
SSTTOORREE

DDXX
IIMMAAGGEE
SSTTOORREE

Figure 1: Topology of a Distributed EMIS

transfer of images efficiently, reliably, and economically.
Image processing is a set of computational techniques for

enhancing and analyzing images. Image processing tech-
niques apply algorithms, calledimage filters, to manipulate
images. For example, radiologists may need to sharpen an
image to properly diagnose a tumor. Similarly, to identify a
kidney stone, a radiologists may need to zoom into an image
while maintaining high resolution. Thus, an EMIS must pro-
vide powerful image processing capabilities, as well as effi-
cient distributed image retrieval and storage mechanisms.

This paper describes the design and performance ofMed-
Java, a distributed EMIS developed using the Java environ-
ment and the Web. The paper examines the feasibility of us-
ing Java to develop large-scale distributed medical imaging ap-
plications with demanding performance requirements for net-
working speed and image processing speed.

To evaluate Java’s image processing performance, we con-
ducted extensive benchmarking of MedJava and compared the
results to the performance ofxv , an equivalent image process-
ing application written in C. To evaluate the performance of
Java as a transport interface for exchanging large images over
high-speed networks, we performed a series of network bench-
marking tests over at 155 Mbps ATM switch and compared the
results to the performance of C/C++ as a transport interface.

Our empirical measurements reveal that an imaging system
implemented in C/C++ always out-performs an imaging sys-
tem implemented using interpreted Java by 30 to 100 times.

However, the performance of Java code using a “just-in-time”
(JIT) compiler is�1.5 to 5 times slower than the performance
of compiled C/C++ code. Likewise, using Java as the transport
interface performs 2% to 50% slower than using C/C++ as the
transport interface. However, for sender buffer size close to
the network MTU size, the performance of using Java as the
transport interface was only 9% slower than the performance
of using C/C++ as the transport interface. Therefore, we con-
clude that it is becoming feasible to use Java to develop large-
scale distributed EMISs. Java is particularly relevant for wide-
area environments, such as teleradiology, where conventional
EMIS capabilities are too costly or unwieldy with existing de-
velopment tools.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the object-oriented (OO) design and features
of MedJava; Section 3 compares the performance of MedJava
with an an equivalent image processing application written in
C and compares the performance of a Java transport interface
with the performance of a C/C++ transport interface; Section 4
describes related work; and Section 5 presents concluding re-
marks.

2 Design of the MedJava Framework

2.1 Problem: Resolving Distributed EMIS De-
velopment Forces

A distributed electronic medical imaging system (EMIS) must
meet the following requirements:

� Usable: An EMIS must be usable to make it as convenient
to practice radiology as conventional film-based technology.

� Efficient: An EMIS must be efficient to process and de-
liver medical images rapidly to radiologists.

� Scalable: An EMIS must be scalable to support the grow-
ing demands of large-scale integrated health care delivery sys-
tems [2].

� Flexible: An EMIS must be flexible to transfer different
types of images and to dynamically reconfigure image pro-
cessing features to cope with changing requirements.

� Reliable: An EMIS must be reliable to ensure that medi-
cal images are delivered correctly and are available when re-
quested by users.

� Secure: An EMIS must be secure to ensure that confiden-
tial patient information is not compromised.

� Cost-effective: An EMIS must be cost-effective to mini-
mize the overhead of accessing patient data across networks.

Developing a distributed EMIS that meets all of these re-
quirements is challenging, particularly since certain features

2

conflict with other features. For example, it is hard to develop
an EMIS that is efficient, scalable, and cost-effective. This is
because efficiency often requires high-performance computers
and high-speed networks, thereby raising costs as the number
of system users increases.

2.2 Solution: Java and the Web

Over the past two years, the Java programming language has
sparked considerable interest among software developers. Its
popularity stems from its flexibility, portability, and relative
simplicity compared with other object-oriented programming
languages [5].

The strong interest in the Java language has coincided with
the ubiquity of inexpensive Web browsers. This has brought
the Web technology to the desktop of many computer users,
including radiologists and physicians.

A feature supported by Java that is particularly relevant to
distributed EMISs is theapplet. An applet is a Java class that
can be downloaded from a Web server and run in a context
application such as a Web browser or an applet viewer. The
ability to download Java classes across a network can simplify
the development and configuration of efficient and reliable dis-
tributed applications [6].

Once downloaded from a Web server, applets run as appli-
cations within the local machine’s Java run-time environment,
which is typically a Web browser. In theory, therefore, applets
can be very efficient since they harness the power of the local
machine on which they run, rather than requiring high latency
RPC calls to remote servers [7].

The MedJava distributed EMIS was developed as a Java ap-
plet. Therefore, it exploits the functionality of front-ends of-
fered by Web browsers. An increasing number of browsers
(such as Internet Explorer and Netscape Navigator and Com-
municator) are Java-enabled and provide a run-time environ-
ment for Java applets. A Java-enabled browser provides a Java
Virtual Machine (JVM), which is used to execute Java applets.
MedJava leverages the convenience of Java to manipulate im-
ages and provides image processing capabilities to radiologists
and physicians connected via the Web.

In our experience, developing a distributed EMIS in Java is
relatively cost effective since Java is fairly simple to learn and
use. In addition, Java provides standard packages that support
GUI development, networking, and image processing. For
example, the packagejava.awt.image contains reusable
classes for managing and manipulating image data, including
color models, cropping, color filtering, setting pixel values,
and grabbing bitmaps [8].

Since Java is written to a virtual machine, an EMIS devel-
oper need only compile the Java source code to Java bytecode.
The EMIS applet will execute on any platform that has a Java

Virtual Machine implementation. Many Java bytecode com-
pilers and interpreters are available on a variety of platforms.
In principle, therefore, switching to new platforms or upgraded
hardware on the same platform should not require changes to
the software or even recompilation of the Java source. Conse-
quently, an EMIS can be constructed on a network of hetero-
geneous machines and platforms with a single set of Java class
files.

2.3 Caveat: Meeting EMIS Performance Re-
quirements

Despite the software engineering benefits of developing a dis-
tributed EMIS in Java, there are serious concerns with its per-
formance relative to languages like C and C++. Performance
is a key requirement in a distributed EMIS since timely diag-
nosis of patient exams by radiologists can be life-critical. For
instance, in an emergency room (ER), patient exams and med-
ical images must be delivered rapidly to radiologists and ER
physicians. In addition, an EMIS must allow radiologists to
process and analyze medical images efficiently to make ap-
propriate diagnoses.

Meeting the performance demands of a large-scale dis-
tributed EMIS requires the following support from the JVM.
First, its image processing must be precise and efficient. Sec-
ond, its networking mechanisms must download and upload
large medical images rapidly. Assuming that efficient image
processing algorithms are used, the performance of a Java ap-
plet depends largely on the efficiency of the hardware and the
JVM implementation on which the applet is run.

The need for efficiency motivates the development of high-
speed JIT compilers that translate Java bytecode into native
code for the local machine the browser runs on. JIT compil-
ers are “just-in-time” since they compile Java bytecode into
native code on a per-method basis immediately before calling
the methods. Several browsers, such as Netscape and Internet
Explorer, provide JIT compilers as part of their JVM.

Although Java JIT compilers avoid the penalty of interpreta-
tion, previous studies [9] show that the cost of compilation can
significantly interrupt the flow of execution. This performance
degradation can cause Java code to run significantly slower
than compiled C/C++ code. Section 3 quantifies the overhead
of Java and C/C++ empirically.

2.4 Key Features of MedJava

MedJava has been developed as a Java applet. Therefore, it
can run on any Java-enabled browser that supports the standard
AWT windowing toolkit. MedJava allows users to download
medical images across the network. Once an image has been
downloaded, it can be processed by applying one or more im-
age filters, which are based on algorithms in the C source code

3

from xv . For example, a medical image can be sharpened by
applying the Sharpen Filter. Sharpening a medical image en-
hances the details of the image, which is useful for radiologists
who diagnose internal ailments.

Although MedJava is targeted for distributed EMIS require-
ments, it is a general-purpose imaging tool that can process
both medical and non-medical images. Therefore, in addition
to providing medical filters like sharpening or unsharp mask-
ing, MedJava provides other non-medical image processing
filters such as an Emboss filter, Oil Paint filter, and Edge De-
tect filter. These filters are useful for processing non-medical
images. For example, edge detection serves as an important
initial step in many computer vision processes because edges
contain the bulk of the information within an image [10]. Once
the edges of an image are detected, additional operations such
as pseudo-coloring can be applied to the image.

Image filters can be dynamically configured and re-
configured into MedJava via theService Configuratorpattern
[6]. This makes it convenient to enhance filter implementation
or install new filters without restarting the MedJava applet. For
example, a radiologist may find a sharpen filter that uses the
unsharp mask algorithm to be more efficient than a sharpen
filter that simply applies a convolution matrix to all the pixels.
Doing this substitution in MedJava is straightforward and can
be done without reloading the entire applet.

Once an image has been processed by applying the filter(s),
it can be uploaded to the server where the applet was down-
loaded. HTTP server implementations, such as JAWS [11, 12]
and Jigsaw, support file uploading and can be used by MedJava
to upload images. In addition, the MedJava applet provides a
hierarchical browser that allows users to traverse directories
of images on remote servers. This makes it straightforward to
find and select images across the network, making MedJava
quite usable, as well as easy to learn.

To facilitate performance measurements, the MedJava ap-
plet can be configured to run in benchmark mode. When
the applet runs in benchmark mode, it computes the time (in
milliseconds) required to apply filters on downloaded images.
The timer starts at the beginning of each image processing al-
gorithm and stops immediately after the algorithm terminates.

2.5 The OO Design of MedJava

Figure 2 shows the architecture of the MedJava framework de-
veloped at Washington University to meet distributed EMIS
requirements. The two primary components in the architecture
include the MedJava client applet and JAWS, which is a high-
performance HTTP server also developed at Washington Uni-
versity [12, 11]. The MedJava applet was implemented with
components from Java ACE [13], the Blob Streaming frame-
work [14], and standard Java packages such asjava.awt

FFiilltteerr
RReeppoossiittoorryy

GGUUII

UURRLL
LLooccaattoorr

IImmaaggee
PPrroocceessssoorr

FFiilltteerr
CCoonnffiigguurraattoorr

IImmaaggee
DDoowwnnLLooaaddeerr

IImmaaggee
UUppLLooaaddeerr

CCoommmmuunniiccaattiioonn PPrroottooccoollss
ee..gg..,, HHTTTTPP,, DDIICCOOMM,, HHLL77

MMeeddJJaavvaa JJAAWWSS

JJaavvaa AACCEEBBlloobb
SSttrreeaammiinngg

BBlloobb
SSttrreeaammiinngg

IImmaaggee
RReessppoossiittoorryy

Figure 2: MedJava Framework

and java.awt.image . Each of these components is out-
lined below.

2.5.1 MedJava Applet

The MedJava client applet contains the following components
shown in Figure 2:

Graphical User Interface: which provides a front-end to
the image processing tool. Figure 3 illustrates the graphical
user interface (GUI) used to display a podiatry image. The

Figure 3: Processing a Medical Image in MedJava

MedJava GUI allows users to download images, apply image
processing filters on them, and upload the images to a server.

4

URL Locator: which locates a URL that can reference an
image or a directory. If the URL points to a directory, the con-
tents of the directory are retrieved so users can browse them
to obtain a list of images and subdirectories in that directory.
The URL Locator is used by the Image Downloader and Image
Uploader to download and upload images, respectively.

Image Downloader: which downloads an image located by
the URL Locator and displays the image in the applet. The
Image Downloader ensures that all pixels of the image are re-
trieved and displayed properly.

Image Processor: which processes the currently displayed
image using the image filter selected by the user. Processing
an image manipulates the pixel values of the image to create
and display a new image.

Image Uploader: which uploads the currently displayed im-
age to the server from where the applet was downloaded
from.1 The Image Uploader generates a GIF-format for the
currently displayed image and writes the data to the server.
This allows the user to save processed images persistently at
the server.

Filter Configurator: which downloads image filters from
the Server and configures them in the applet. The Filter Con-
figurator uses the Service Configurator pattern [6] to dynami-
cally configure the image filters.

2.5.2 JAWS

JAWS is a high-performance, multi-threaded, HTTP Web
Server [11]. For the purposes of MedJava, JAWS stores the
MedJava client applet, the image filter repository, and the im-
ages. The MedJava client applet uses the image filter repos-
itory to download specific image filters. Each image filter is
a Java class that can be downloaded by MedJava. This design
allows MedJava applets to be dynamically configured with im-
age filters, thereby making image filter configuration highly
flexible.

In addition, JAWS supports file uploading by implementing
the HTTPPUTmethod. This allows the MedJava client ap-
plet to save processed images persistently at the server. JAWS
implements other HTTP features (such as CGI bin and per-
sistent connections) that are useful for developing Web-based
systems.

Figure 4 illustrates the interaction of MedJava and JAWS.
TheMedJava client appletis downloaded into a Web browser
from theJAWS server. ThroughGUI interactions, a radiolo-
gist instructs the MedJava client applet to retrieve images from
JAWS (or other servers across the network). Therequesteris

1Due to applet security restrictions, images can only be uploaded to the
server where the applet was downloaded from. In addition, the Web server
must support file uploading by implementing the HTTPPUTmethod.

OS Kernel OS Kernel
OS I/O Subsystem

Network Adapters
Network

Communication Protocol
(e.g, HTTP)

Graphics
Adapter

Requester

HTML
Parser

GUI

Dispatcher

Protocol
Handlers

OS I/O Subsystem

Network Adapters

MedJava
Applet

Browser

JAWS
Server

1: GET
~pjain/xray.gif

HTTP/1.0

2: xray.gif

Figure 4: Architecture of MedJava and JAWS

the active component of the browser running the MedJava ap-
plet that communicates over thenetwork. It issues a request for
the image to JAWS with the appropriate syntax of thetransfer
protocol (which is HTTP in this case). Incoming requests to
the JAWS are received by thedispatcher, which is the request
demultiplexing engine of the server. It is responsible for cre-
ating new threads. Each request is processed by ahandler,
which goes through alifecycleof parsing the request, logging
the request, fetching image status information, updating the
cache, sending the image, and cleaning up after the request
is done. When the response returns to the client with the re-
quested image, it is parsed by anHTML parserso that the
image may be rendered. At this stage, therequestermay is-
sue other requests on behalf of the client,e.g., to maintain a
client-side cache.

2.5.3 Blob Streaming

Figure 5 illustrates the Blob Streaming framework. The frame-
work provides a uniform interface that allows EMIS appli-
cation developers to transfer data across a network flexibly
and efficiently. Blob Streaming uses the HTTP protocol for
the data transfer.2 Therefore, it can be used to communicate
with high-performance Web servers (such as JAWS) to down-
load images across the network. In addition, it can be used to

2Although the current Blob Streaming protocol is HTTP, other medical-
specific communication protocols (such as DICOM and HL7) can also be
supported.

5

ATM

SWITCH

2: pull(image_name)

1: push(image)

3: image

Receiver
JAWS
Server

Sender

IMAGE

STORE

Figure 5: Blob Streaming Framework

communicate with Web servers that implement the HTTPPUT
method to upload images from the browser to the server.

Although Blob Streaming supports both image download-
ing and image uploading across the network, its use within a
Java applet is restricted due to applet security mechanisms. To
prevent security breaches, Java imposes certain restrictions on
applets. For example, a Java applet can not write to the local
file system of the local machine it is running on. Similarly, a
Java applet can generally download files only from the server
where the applet was downloaded. Likewise, a Java applet
can only upload files to the server where the applet was down-
loaded.

Java applets provide an exception to these security restric-
tions, however. In particular, the JavaApplet class provides
a method that allows an applet to download images from any
server reachable via a URL. Since the method is defined in the
JavaApplet class, it allows Java to ensure there are no secu-
rity violations. MedJava uses thisApplet method to down-
load images across the network. Therefore, images to be pro-
cessed can reside in a file system managed by the HTTP Server
from where the MedJava client applet was downloaded or can
reside on some other server in the network. However, Blob
Streaming can only be used to upload images to the server
where the MedJava applet was downloaded.

2.5.4 Java ACE

Java ACE [5] is a port of the C++ version of the ADAPTIVE
Communication Environment (ACE) [15]. ACE is an OO net-

work programming toolkit that provides reusable components
for building distributed applications. Containing�125,000
lines of code, the C++ version of ACE provides a rich set of
reusable C++ wrappers and framework components that per-
form common communication software tasks portably across
a range of OS platforms.

The Java version of ACE Contains�10,000 lines of code,
which is over 90% smaller than the C++ version. The reduc-
tion in size occurs largely because the JVM provides most of
the OS-level wrappers necessary in C++ ACE. Despite the re-
duced size, Java ACE provides most of the functionality of
the C++ version of ACE, such as event handler dispatching,
dynamic (re)configuration of distributed services, and support
for concurrent execution and synchronization. Java ACE im-
plements several key design patterns for concurrent network
programming, such as Acceptor and Connector [16] and Ac-
tive Object [17]. This makes it easier to developing network-
ing applications using Java ACE easier compared to program-
ming directly with the lower-level Java APIs.

Figure 6 illustrates the architecture and key components in
Java ACE. MedJava uses several components in Java ACE. For

FRAMEWORKS

AND CLASS

CATEGORIES

DISTRIBUTED

SERVICES AND

COMPONENTS
NAME

SERVER

TOKEN

SERVER

LOGGING

SERVER

TIME

SERVER

JAVA

WRAPPERS
SYNCH

WRAPPERS
SOCK_SAP

THREAD

MANAGER

LOG

MSG

TIMER

QUEUE

SERVICE

CONFIGURATOR

ADAPTIVE SERVICE EXECUTIVE (ASX)

ACCEPTOR CONNECTOR
SERVICE

HANDLER

JAVA VIRTUAL MACHINE (JVM)

Figure 6: The Java ACE Framework

example, Java ACE provides an implementation of the Service
Configurator pattern [6]. MedJava uses this pattern to dynam-
ically configure and reconfigure image filters. Likewise, Med-
Java uses Java ACE profile timers to compute performance in
benchmark mode.

3 Performance Benchmarks

This section presents the results of performance benchmarks
conducted with the MedJava image processing system. We
performed the following two sets of benchmarks:

1. Image processing performance: We measured the per-
formance of MedJava to determine the overhead of using Java
for image processing. We compared the performance of our
MedJava applet with the performance ofxv . Xv is a widely-
used image processing application written in C. The MedJava

6

image process applets are based on thexv algorithms.

2. High-speed networking performance: We measured the
performance of using Java sockets over a high-speed ATM net-
work to determine the overhead of using Java for transporting
data. We compared the network performance results of Java to
the results of similar tests using C/C++.

Below, we describe our benchmarking testbed environment,
the benchmarks we performed, and the results we obtained.

3.1 MedJava Image Processing Benchmarks

We benchmarked MedJava to compare the performance of
Java withxv , which is a widely-used image processing appli-
cation written in C.Xv contains a broad range of image filters
such as Blur, Sharpen, and Emboss. By applying a filter to an
image inxv , and then applying an equivalent filter algorithm
written in Java to the same image, we compared the perfor-
mance of Java and C directly. In addition, we benchmarked
the performance of different Web browsers running the Med-
Java applet.

3.1.1 Benchmarking Testbed Environment

Hardware Configuration: To study the performance of
MedJava, we constructed a hardware and software testbed
consisting of a Web server and two clients connected by Ether-
net, as shown in Figure 7. The clients in our experiment were

WWW
Server

Filter
Server

Image
Server

Network

Micron Millenia PRO2

Netscape

Micron Millenia PRO2

Internet
Explorer

Micron Millenia PRO2 Micron Millenia PRO2

XV

Figure 7: Web Browser Testbed Environment

Micron Millenia PRO2 plus workstations. Each PRO2 has 128
MB of RAM and is equipped with dual 180 Mhz PentiumPro
processors.

JVM Software Configuration: We ran MedJava in two
different Web browsers to determine how efficiently these
browsers execute Java code. The browsers chosen for our
tests were Internet Explorer 4.0 release 2 on Windows NT and
Netscape 4.0 on NT. Internet Explorer 4.0 on NT and Netscape
4.0 on NT include Java JIT compilers, written by Microsoft
and Symantec, respectively.

As shown in Section 3.1.4, JIT compilers have a substan-
tial impact on performance. To compare the performance of
the xv algorithms with their Java counterparts, we extracted
the GIF loading and processing elements from the freely dis-
tributedxv source, removed all remnants of the X-Windows
GUI, instrumented the algorithms with timer mechanisms in
locations equivalent to the Java algorithms. We compiled this
subset ofxv using Microsoft Visual C++ version 5.0, with full
optimization enabled.

Image filters can potentially requireO(n2) time to execute.
For large images, this processing can dominate the loading and
display times. Therefore, the running time of the algorithms is
an appropriate measure of the overall performance of an image
processing application.

Image processing configuration: The standard Java
image processing framework uses a “Pipes and Fil-
ters” pattern architecture [18]. Downstream sits an
java.image.ImageConsumer that has registered
with an upstream java.image.ImageProducer
for pixel delivery. The ImageProducer invokes the
setPixels method on theImageConsumer , delivering
portions of the image array until it completes by invoking the
ImageComplete method.

The Pipes and Filters pattern architecture allows the
ImageConsumer subclass to process the image as it receives
the pieces or when the image source arrives in its entirety. An
ImageFilter is a subclass ofImageConsumer situated
between the producer and consumer who intercepts the flow of
pixels, altering them in some way before it passes the image to
the subsequentImageConsumer . All ImageFilters in
this experiment override theImageComplete method and
iterate over each pixel. The computational complexity for each
filter depends on how much work the filter does during each
iteration.

We selected the following seven filters, which exhibit dif-
ferent computational complexities. These filters are available
in both xv and MedJava, and are ranked according to their
usefulness in the domain of medical image processing.

1. Sharpen Filter: which computes for each pixel the
mean of the “values” of the 3�3 matrix surrounding the pixel.
In the Hue-Saturation-Value color model, the “value” is the
maximum of the normalized red, green, and blue values of
the pixel; conceptually, the brightness of that pixel. The new

7

value for the pixel is:value�p�(mean value)

1�p
, wherep is a value

between 0 and 1. The filter exaggerates the contrast between a
pixel’s brightness and the average brightness of the surround-
ing pixels.

2. Despeckle Filter: which replaces each pixel with the
median color in a 3�3 matrix surrounding the pixel. Used for
noise reduction, the algorithm gathers the colors in the square
matrix, sorts them using an inlined Shell sort, and chooses the
median element.

3. Edge Detect Filter: which runs a merging of a pair of
convolutions, one that detects horizontal edges, and one that
detects vertical edges. The convolution is done separately for
each plane (red, green, blue) of the image, so where there are
edges in the red plane, for example, the resultant image will
highlight the red edges.

4. Emboss filter: which applies a 3�3 convolution matrix
to the image, a variation of an edge detection algorithm. Most
of the image is left as a medium gray, but leading and trailing
edges are turned lighter and darker gray, respectively.

5. Oil Paint Filter: which computes a histogram of a 3�3
matrix surrounding the pixel and chooses the most frequently
occuring color in the histogram to supplant the old pixel value.
The result is a localized smearing effect.

6. Pixelize Filter: which replaces each pixel in each 4�4
squares in the image with the average color in the square ma-
trix.

7. Spread Filter: which replaces each pixel by a random
one within a 3�3 matrix surrounding the pixel.

Figure 8 illustrates the original image and processed images
that result from applying four of the filters described above.
Although some of these filters are not necessarily useful in
the medical domain, they follow the same pattern of spatial
image processing: the traversal or convolution of a fixed size
or variable size matrix over pixels surrounding each pixel in
the image array. In principle, therefore, the performance of
this set of filters reflect the performance of other more relevant
filters of comparable complexity.

3.1.2 Performance Metrics

We measured the performance of MedJava in comparison with
the NT port of thexv subset by sending an 8-bit image at
equidistant degrees of magnifications through each of eight fil-
ters 10 times, keeping the average of the trials. Bothxv and
Java convert 8-bit images, either greyscale or color, into 24-bit
RGB color images prior to filtering. Moreover, all eight algo-
rithms are functions solely of image dimension and not pixel
value. Thus, there is no processing performance difference
between greyscale and color images in either environment.

cc

bb

dd

aa

Figure 8: (a) Original Image; (b) Oil-painted Image; (c) Sharp-
ened Image; (d) Embossed Image

We expecteda priori that the C code would out perform the
Java filters due to the extensive optimizations performed by
the Microsoft Visual C/C++ compiler.3 Therefore, we coded
the MedJava image filters using the source level optimization
techniques described in Section 3.1.3 to elicit maximum per-
formance from them.

However, contrary to our expectations, the hand optimized
Java algorithms performed nearly as well as their C counter-
parts. Therefore, we also optimized the C algorithms by hand.
This rendered the two sets of algorithms nearly indistinguish-
able in appearance, but not indistinguishable in performance.
For MedJava, we ran three trials, one on Internet Explorer 4.0
release 2 on NT (IE 4), one on Netscape Navigator 4.0 on NT
(NS 4), and one on Internet Explorer 4.0 release 2 with just-
in-time compilation disabled (IE 4 JIT off).

3.1.3 Source Level Optimizations

The Java run-time system, including the garbage collector and
the Abstract Window Toolkit (AWT), was written using C.
Therefore, they cannot be optimized by the Java bytecode in-
terpreter or compiler. As a result, any attempt to improve
the performance of Java in medical imaging systems must im-
prove the performance of code spent outside these areas,i.e.,
in the image filters themselves.

JIT compilers affect the greatest speed up in computation-
ally intensive tasks that do not call the AWT or run-time sys-
tem, as shown by the benchmarks in Table 1. These bench-
marks test the performance of common image filter operations
in the two browsers used in the experiments. These data were

3“Full optimization” on MVC++ includes: inline function expansion,
subexpression elimination, automatic register allocation, loop optimization,
inlining of common library functions, and machine code optimization.

8

operation NS 4 IE 4 IE 4 JIT off
Loop overhead 10.21 10.21 902
Quick Int Assignment 5.01 5.01 339
Local Int Assignment 5.01 5.32 440
Static Member Integer 25.24 20.13 851
Member Integer 5.01 10.02 560
Reference Assignment 5.01 10.12 580
Integer Array Access 11.63 5.21 350
Static Instance Method 35.45 34.95 692
Instance Method 40.46 30.24 922
Final Instance Method 30.35 40.17 922
Private Instance Method 35.46 30.24 992
Random.nextInt() 80.92 86.71 450
int++ 20.33 7.72 180
int = int + int 5.02 10.11 710
int = int - int 15.12 10.12 690
int = int * int 10.12 10.12 691
int = int / int 75.96 71.35 890
int /= 2 16.43 10.92 931
int >>= 1 17.43 7.21 661
int *= 2 19.63 7.42 780
int <<=1 17.33 7.71 731
int = int & int 15.13 5.01 670
int = int | int 5.01 0.11 670
float = float + float 15.12 10.12 730
float = float - float 15.12 10.12 700
float = float * float 10.02 15.22 720
float = float / float 46.82 46.02 841
Cast double to float 4.91 5.01 570
Cast float to int 67.14 347.3 910
Cast double to int 67.15 13.06 920

Table 1: Times in Nanoseconds for Common Operations in the
Testbed Java Environment

obtained by wrapping a test harness around a loop that iter-
ates for a fixed, but large, number of iterations, subtracting the
loop overhead from the result, and dividing by the number of
iterations. Java’s garbage collection routine was called before
the sequence to prohibit it from affecting the test results. The
results are listed in nanoseconds.

Since the conversion from byte-code to native code is al-
ready costly, JIT compilers do not spend a great deal time at-
tempting to further optimize the native code. Therefore, lack-
ing source to a bytecode compiler that optimizes its output,
the most a developer of performance-critical applications can
do to further accelerate the performance of computationally-
intensive tasks is to optimize the source code manually. The
image filters in MedJava leveraged the following canonical
techniques and insight on how to best optimize computation-

ally intensive source code in Java [19]:

Strength reduction: which replaces costly operations with
a faster equivalent. For instance, the Image Filters converted
multiplications and divides by factors of two into lefts and
rights shifts.

Common subexpression elimination: which removes re-
dundant calculations. Image Filters store the pixel values in
a one dimensional array. Thus, for each pixel access this op-
timization calculates a pixel index once from the column and
row values and stores the results of the array access into a tem-
porary variable, rather than continually indexing the same ele-
ment of the array.

Code motion: which hoists constant calculations out of
loops. Thus, although it may be impossible to unroll loops
where the number of iterations is a function of the image
height and width, the Image Filters reduce the overhead of
loops by removing constant calculations computed at each
loop termination check.

Local variables: which are efficient to access. The virtual
machine stores them in an array in the method frame. Thus,
there is no overhead associated with dereferencing an object
reference, unlike an instance variable, a class name, or a static
data member. The bytecodesgetfield andgetstatic
must first resolve the class and method names before pushing
the value of the variable onto the operand stack. Also, the
iload and istore instructions allow the JVM to quickly
load and store the first four local variables to and from the
operand stack [20].

Integer variables, floats, and object references: which are
most directly supported by the JVM since the operand stack
and local variables are each one word in width, the size of
integers, floating points, and references. Smaller types, such as
short andbyte are not directly supported in the instruction
set. Therefore, each must be converted to anint prior to
an operation and then subsequently back to the smaller type,
accruing the cost of a valid truncation [20].

Manually inlining methods: eliminates the overhead asso-
ciated with method invocation. Althoughstatic , final ,
andprivate methods can be resolved at compile time, elim-
inating method calls entirely, especially simple calls on the
java.lang.Math package (e.g., ceil , floor , min , and
max), in critical sections of looping code will further improve
performance.

Thefinal , static , orprivate keywords on a method
advises the run-time compiler or interpreter that it may safely
inline the method. However, because classes are linked to-
gether at run-time, changes made to afinal method in one
class would not be reflected in other already compiled classes
that invoke that method, unless they too were recompiled [21].

9

Naturally, when invoking methods internal to a class, this is
not a problem. Moreover, the-O option on the Sunjavac
source to bytecode compiler requests that it attempt to inline
methods.

As an example of worthwhile manual method in-
lining, an ImageFilter contains a method called
setColorModel . In this method theImageProducer
provides theImageFilter with theColorModel subclass
that grabs the color values of each pixel in the image source.
ColorModel is an abstract class with methodsgetRed ,
getGreen , andgetBlue to retrieve the specific color value
from each pixel. Thus, every time a filter needs a color value, it
must incur the overhead of this dynamically resolved method
call. However, calling thegetDefaultColorModel static
method onColorModel returns aColorModel subclass,
which guarantees that each pixel will be in a known form,
where the first 8 bits are the alpha (transparency) value, the
next 8 are the red, the next 8 are the green, and the last
8 bits are the blue value. Therefore, rather than using the
methods onColorModel to retrieve the color values, the
ImageFilter can retrieve values simply by shifting and
masking the integer value of the pixel,e.g., to obtain the red
value of a pixel: (pixel>> 16) & 0xff.

Of course, for C code many of the same optimization tech-
niques apply. We ran a similar set of operation benchmarks in
C, using the same test harness technique as we did for the Java
benchmarks. The results, shown in Table 2, are the mean of 5
trials, with each measurement exhibiting a standard deviation
of no more than 0.5 nanoseconds.

With “global optimizations” enabled, the MSVC++ com-
piler will actively assign variables to registers at its own dis-
cretion. With optimizations disabled, it takes no special mea-
sures to abide by theregister keyword. Again, the results
are listed in nanoseconds.

Table 2 reveals that the MSVC++ generated code yields
comparable performance with the output of the two JIT com-
pilers. Narrowing casts, for example from floating point to
integer data is more time consuming in the MSVC++ gener-
ated code than the JIT output, however, calls to static, exter-
nal, and library functions (e.g., rand) are less time consuming
than their Java method equivalents. Also, floating point multi-
plication and division, translated into thefmul andfdiv in
MSVC++, lag behind the JIT translation of these operations.

3.1.4 Performance Results and Evaluation

Figures 9–16 plot our results for each of the eight filters on
each of the three language/compiler permutations.

Using insights about the most frequently performed opera-
tions in the algorithms, and the tables enumerating the costs
of those operations on the three configurations (Tables 1 and
2), we can attempt to explain any observed, counter-intuitive

operation MSVC++ output
Local int access 7.40
Extern int access 3.57
Static int access 7.13
Heap byte access 7.62
Heap int access 7.99
Stack byte array 7.72
Stack int array 7.82
Global byte array 8.60
Global int array 8.17
Static function call 25.40
Extern function call 32.02
int++ 7.39
int = int + int 11.88
int = int - int 11.88
int = int * int 21.88
int = int / int 203.27
int *= 2 7.18
int <<=1 3.55
int /= 2 13.47
int >>= 1 7.25
int = int & int 11.86
int = int | int 7.68
float = float + float 16.58
float = float - float 16.51
float = float * float 556.08
float = float / float 611.43
Call to rand() 57.33
cast from float to int 863.11

Table 2: Times in Nanoseconds for Common Operations in
C/C++ on the Testbed Platform

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

P
ro

ce
ss

in
g

 T
im

e
(m

ill
is

ec
on

d
s)

IE 4.0 JIT

xv (both, level 2 opts)

NS 4.0 JIT

Figure 9: Comparative Performance of the Java-enabled
Browsers andxv in Applying the Sharpen Image Filter to an
Image at Various Sizes

10

0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

P
ro

ce
ss

in
g

 T
im

e
(m

ill
is

ec
on

d
s)

NS 4.0 JIT

IE 4.0 JIT

xv (both, level 2 opts)

Figure 10: Comparative Performance of the Java-enabled
Browsers andxv in Applying the Edge Detection Image Filter
to an Image at Various Sizes

0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000 1400000

Image Size (number of pixels)

P
ro

ce
ss

in
g

 T
im

e
(m

ill
is

ec
o

n
d

s)

xv (both, level 2 opts)

xv (both, level 1 opts)

NS 4.0 JIT

IE 4.0 JIT

Figure 11: Comparative Performance of the Java-enabled
Browsers andxv in Applying the Blur Image Filter to an Im-
age at Various Sizes

0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

P
ro

ce
ss

in
g

 T
im

e
(m

ill
is

ec
on

d
s)

NS 4.0 JIT

IE 4.0 JIT

xv (both, level 2 opts)

Figure 12: Comparative Performance of the Java-enabled
Browsers andxv in Applying the Despeckle Image Filter to
an Image at Various Sizes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

P
ro

ce
ss

in
g

 T
im

e
(m

ill
is

ec
on

d
s)

NS 4.0 JIT

IE 4.0 JIT

xv (both, level 2 opts)

Figure 13: Comparative Performance of the Java-enabled
Browsers andxv in Applying the Oil Paint Image Filter to
an Image at Various Sizes

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

P
ro

ce
ss

in
g

 T
im

e
(m

ill
is

ec
on

d
s)

NS 4.0 JIT

IE 4.0 JIT

xv (both, level 2 opts)

Figure 14: Comparative Performance of the Java-enabled
Browsers andxv in Applying the Spread Image Filter to an
Image at Various Sizes

0

100

200

300

400

500

600

0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

P
ro

ce
ss

in
g

 T
im

e
(m

ill
is

ec
on

d
s)

IE 4.0 JIT

NS 4.0 JIT

xv (both, level 2 opts)

Figure 15: Comparative Performance of the Java-enabled
Browsers andxv in Applying the Emboss Image Filter to an
Image at Various Sizes

11

0

50

100

150

200

250

300

350

400

0 200000 400000 600000 800000 1000000 1200000 1400000
Image Size (number of pixels)

P
ro

ce
ss

in
g

 T
im

e
(m

ill
is

ec
on

d
s)

NS 4.0 JIT

IE 4.0 JIT

xv (both, level 2 opts)

Figure 16: Comparative Performance of the Java-enabled
Browsers andxv in Applying the Pixelize Image Filter to an
Image at Various Sizes

differences in the performance of the algorithms.
In general, the hand-optimized Java algorithms executed in

times comparable with their C hand-optimized counterparts.
However, the added benefit of the MSVC++ compile-time op-
timizations gave the C algorithms a competitive advantage.
Thus, for all but two of the filters (Blur image filer and Sharpen
image filter), the C algorithms outperformed their Java equiv-
alents.

Contributing to the overall superiority of the C algorithm
execution is fast array access time and increments, induced
by the rigorous utilization of registers by the compiler. How-
ever, applying the techniques of code movement and strength
reduction help the Java code to negate any benefits of similar
compile-time optimization performed by the C/C++ compiler.

There is one severely aberrational case in which the C run-
time performed more poorly than the Java ones: the sharpen
filter. In the sharpen filter, color values are continually con-
verted between the integer RGB format and the floating point
HSV format. Netscape, whose floating point to integer nar-
rowing conversion performance exceeds Internet Explorer’s
and C/C++’s, has the competitive advantage.

3.2 High-speed Network Benchmarking

As described earlier, high performance is one of the key forces
that guides the development of a distributed EMIS. In particu-
lar, it is important that medical images be delivered to radiol-
ogists and processed in a timely manner to allow proper diag-
nosis of patients exams. To evaluate the performance of Java
as a transport interface for exchanging large images over high-
speed networks, we performed a series of network benchmark-
ing tests over ATM. This section compares the results with the
performance of C/C++ as a transport interface [22].

3.2.1 Benchmarking Configuration
Benchmarking testbed: The network benchmarking tests
were conducted using a FORE systems ASX-1000ATM

switch connected to two dual-processor UltraSPARC-2s run-
ning SunOS 5.5.1. The ASX-1000 is a 96 Port, OC12 622
Mbs/port switch. Each UltraSparc-2 contains two 168 MHz
SuperSPARC CPUs with a 1 Megabyte cache per-CPU. The
SunOS 5.5.1TCP/IP protocol stack is implemented using the
STREAMScommunication framework. Each UltraSparc-2 has
256 Mbytes ofRAM and anENI-155s-MF ATM adaptor card,
which supports 155 Megabits per-sec (Mbps)SONET multi-
mode fiber. The Maximum Transmission Unit (MTU) on the
ENI ATM adaptor is 9,180 bytes. EachENI card has 512 Kbytes
of on-board memory. A maximum of 32 Kbytes is allotted per
ATM virtual circuit connection for receiving and transmitting
frames (for a total of 64 K). This allows up to eight switched
virtual connections per card.

Performance metrics: To evaluate the performance of Java,
we developed a test suite using Java ACE. To measure the
performance of C/C++ as a transport interface, we used an
extended version of TTCP protocol benchmarking tool [22].
This TTCP tool measures the throughput of transferring un-
typed bytestream data (i.e., Blobs [14]) between two hosts.
We chose untyped bytestream data, since untyped bytestream
traffic is representative of image pixel data, which need not be
marshaled or demarshaled.

3.2.2 Benchmarking Methodology

We measured throughput as a function of sender buffer size.
Sender buffer size was incremented in powers of two ranging
from 1 Kbytes to 128 Kbytes. The experiment was carried out
ten times for each buffer size to account for variations in ATM
network traffic. The throughput was then averaged over all the
runs to obtain the final results.

Since Java does not allow manipulation of the socket queue
size, we had to use the default socket queue size of 8 Kbytes
on SunOS 5.5. We used this socket queue size for both the
Java and the C/C++ network benchmarking tests.

3.2.3 Performance Results and Evaluation

Throughput measurements: Figure 17 shows the through-
put measurements using Java and C/C++ as the transport in-
terface. These results illustrate that the C/C++ transport in-
terfaces consistently out-perform the Java transport interfaces.
The performance of both the Java version and the C/C++ ver-
sion peak at the sender buffer size of 8 Kbytes. This result
stems from the fact that 8 Kbytes is close to the MTU size
of the ATM network, which is 9,180 bytes. The results in-
dicate that for a sender buffer size of 1 Kbytes, C/C++ out-
performs Java by only about 2%. On the other hand, for sender

12

0.0 20.0 40.0 60.0 80.0 100.0 120.0
Sender Buffer Size (KB)

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t (

M
bp

s)

C/C++
Java

Figure 17: Throughput Measurement of Using Java and
C/C++ as the Transport Interface

buffer size of 2 Kbytes, C/C++ out-performs Java by more than
50%. C/C++ out-performs Java by 15%-20% for the remain-
ing sender buffer sizes.

Analysis summary: C/C++ out-performed Java as the trans-
port interface for all sender buffer sizes. The difference in the
performance between Java and C/C++ is reflective of the over-
head incurred by the JVM. This overhead can be either in the
form of interpreting Java byte code (if an interpreter is used)
or in the form of compiling Java byte code at run time (if a JIT
compiler is used).

However, it is important to note that despite the differences
in performance between Java and C/C++, Java performs com-
parably well. A throughput of about 110 Mbps on a 155 Mbps
ATM network is quite efficient considering the default socket
queue size is only 8 Kbytes. Results [23] show that network
performance can improve significantly if the maximum socket
queue size (64 Kbytes) is used. If Java allowed program-
mers to change the socket queue size the throughput should
be higher for larger sender buffer sizes.

4 Related Work

Several studies have measured the performance of Java relative
to other languages. In addition, many techniques have been
proposed to improve the performance of Java. The following
is a summary of the related work in this area.

4.1 Measuring Java’s Performance

Several studies have compared the execution time of Java in-
terpreted code and Java compiled code with the execution time
of C/C++ compiled code. Shiffman [24] has measured and
compared the performance of several programs written both
in Java and in C++. For the tests performed, Java interpreted
code performed 6 to 20 times slower than compiled C++ code,
while Java compiled code performed only about 1.1 to 1.5
times slower than C++ code.

The results obtained in [24] differ from the ones we ob-
tained because the tests run were also different. The tests
carried out by Shiffman involved measuring the timings for
iterative and recursive versions of a calculator of numbers in
the Fibonacci series, as well as a calculator of prime numbers.
The results, however, once again indicate that the Java code
performs reasonably well, compared with C/C++ code. This
finding is consistent with our results for thesv image process-
ing algorithms.

4.2 Improving Java’s Performance

Several groups are working on improving the performance of
JIT compilers, as well as developing alternatives to JIT com-
pilers.

Toba: A system for generating efficient stand-alone Java ap-
plications has been developed at the University of Arizona
[25]. The system is called Toba and generates executables that
are 1.5 to 4.4 times faster than alternative JVM implementa-
tions. Toba is a “Way-Ahead-of-Time” compiler and therefore
converts Java code into machine code before the application is
run. It translates Java class files into C code and then compiles
the C code into machine code making several optimizations
in the process. Although such a compiler can be very useful
for stand-alone Java applications, it can not, unfortunately, be
used for Java applets.

Harrisa: An efficient environment for the execution of Java
programs called Harissa has been developed at the University
of Rennes [26]. Harissa mixes compiled and interpreted code.
It translates Java bytecode to C and in the process makes sev-
eral optimizations. The resulting C code produced by Harissa
is up to 140 times faster than the JDK interpreter and 30%
faster than the Toba compiler described above.

Unlike Toba, Harissa can work with Java applets also.
Therefore, Harissa can be used by MedJava to improve the
performance of image processing and bringing it closer to the
performance of a similar application written in C/C++.

Asymetrix: Another approach similar to Harissa is Su-
perCede VM developed by Asymetrix [27]. SuperCede is a
high-performance JVM that can improve the performance of

13

Java to execute at native C/C++ speed. Unlike JIT compil-
ers, where the interpreter selectively compiles functions, Su-
perCede compiles all class files as they are downloaded from
the server. The result is an application that is fully compiled
to machine code and can therefore execute at native C/C++
speed. SuperCede VM can also work with Java applets and
can therefore be used by MedJava to improve its performance.

4.3 Evaluating Web Browsers Performance

Several studies compare the performance of different Web
browsers.

CaffeineMark: Pendragon Software [28] provides a tool
called that can be used for comparing different Java virtual
machines on a single system,i.e., comparing appletviewers,
interpreters and JIT compilers from different vendors. The
CaffeineMark benchmarks measures Java applet/application
performance across different platforms. CaffeineMark bench-
marks found Internet Explorer 3.01 on NT to contain the
fastest JVM followed by Internet Explorer 3.0 on NT.
Netscape Navigator 3.01 on NT performed sixth in their tests.
Unfortunately, the CaffeineMark benchmarks do not include
the latest versions of the Web browsers that we used to run our
tests,i.e., Internet Explorer 4.0 and Netscape 4.0. Therefore,
their results are out-of-date.

PC Magazine: Java performance tests in PC Magazine re-
veal the strengths and flaws of several of today’s Java environ-
ments [29]. Their tests reveal significant performance differ-
ences between Web browsers. In all their tests, browsers with
JIT compilers out-perform browsers without JIT compilers by
up to 20 times. This is consistent with the results we obtained.
Their tests found Internet Explorer 3.0 to be the fastest Java en-
vironment currently available. They found Netscape Naviga-
tor 3.0 to be consistently slower than Internet Explorer. Once
again their tests did not make use of the latest versions of the
Web browsers and therefore are out-of-date.

5 Concluding Remarks

This paper describes the design and performance of a dis-
tributed electronic medical imaging system (EMIS) called
MedJava that we developed using Java applets and Web tech-
nology. MedJava allows users to download images across the
network and process the images. Once an image has been pro-
cessed, it can be uploaded to the server where the applet was
downloaded.

The paper presents the results of systematic performance
measurements of our MedJava applet. MedJava was run in two
widely-used Web browsers (Netscape and Internet Explorer)
and the results were compared with the performance ofxv ,

which is an image processing application written in C. In ad-
dition, the paper presented performance benchmarks of using
Java as a transport interface to transfer large images over high-
speed ATM networks.

The following is a summary of the lessons learned while
developing MedJava:

Compiled Java code performs relatively well for image
processing compared to compiled C code: In our image
processing tests, interpreted Java code was substantially out-
performed by compiled Java code and compiled C code. The
image processing application written in C out-performed Med-
Java in most of our tests. However, only when the C code was
itself hand-optimized, were the MSVC++ compiler’s compile-
time optimizations able to produce significantly more efficient
code. If techniques become available to employ such opti-
mization techniques in JIT compilers without incurring unac-
ceptable latency, then this advantage will be abated. In addi-
tion, efficient Java environments like Harissa, which mix byte
code and compiled code, can further improve the performance
of Java code and allow it to perform as well as the performance
of C code.

Compiled Java code performs relatively well as a network
transport interface compared to compiled C/C++ code:
Our network benchmarks illustrate that using C/C++ as the
transport interface out-performs using Java as the transport in-
terface by 2% to 50%. The difference of 50% in performance
between Java and C/C++ for a buffer size of 2 KB occurs be-
cause of a sudden jump in the throughput in the case of C/C++
in going from a sender buffer size of 1 KB to a sender buffer
size of 2 KB. In the case of C/C++, throughput jumped from
55.69 Mbps to 104.81 Mbps in going from a sender buffer size
of 1 KB to a sender buffer size of 2 KB. In the case of Java,
however, the increase in throughput was gradual and therefore
resulted in a large performance difference for sender buffer
size of 2 KB.

The performance of using Java as the transport interface
peaks at the sender buffer size close to the network MTU size
and is only 9% slower than the performance of using C/C++
as the transport interface. Therefore, Java is relatively well-
suited to be used as the transport interface.

It is becoming feasible to develop performance-sensitive
distributed EMIS applications in Java: The built-in sup-
port for GUI development, the support for image processing,
the support for sockets and threads, automatic memory man-
agement, and exception handling in Java simplified our task of
developing MedJava. In addition, the availability of JIT com-
pilers allowed MedJava to perform relatively well compared
to a applications written in C/C++.

Therefore, we believe that it is becoming feasible to use
Java to develop performance-sensitive distributed EMIS appli-
cations. In particular, even when Java code does not run quite

14

as fast as compiled C/C++ code, it can still be a valuable tool
for building distributed EMISs because it facilitates rapid pro-
totyping and development of portable and robust applications.

Netscape 4.0 is the fastest Java environment currently
available: Among the Web browsers, those providing JIT
compilers in the JVM clearly out-perform browsers that do
not provide JIT compilers. Both Internet Explorer 4.0 and
Netscape 4.0 running Windows NT on the Intel instruction
set provide JIT compilers in their JVMs. However, in sev-
eral cases, Netscape 4.0 on NT performed more than twice as
fast as Internet Explorer 4.0 on NT . Therefore, among Java-
enabled Web browsers, Netscape 4.0 is the fastest Java envi-
ronment currently available for image processing.

Java has several limitations that must be fixed to develop
production distributed EMIS: Even though Java resolves
several of the forces of developing a distributed EMIS, it still
has the following limitations:

� Memory limitations: We found that applying image
filters to images larger than 1 MB causes the JVM of both
Netscape 4.0 on NT and Internet Explorer 4.0 on NT to run
out of memory. This can hinder the development of distributed
EMISs since many medical images are larger than 1 MB.

� Lack of AWT portability: We found the AWT imple-
mentations across platforms to be inconsistent, thereby mak-
ing it hard to develop a uniform GUI. When we tried running
MedJava on different brower platforms, we found some fea-
tures of MedJava do not work portably on certain platforms
due to lack of support in the JVM where the applet was run.

� Security impediments: We found the lack of ability to
upload images to servers other than the one from where the
applet was downloaded from as another significant limitation
of using Java for distributed EMISs. Although these restric-
tures were added to Java as a security-feature of applets, they
can be quite limiting. The following are several workarounds
for these security restrictions:

� One approach is to run a CGI Gateway at the server from
where the MedJava applet is downloaded. MedJava can
then make uploading requests to the Gateway that can
then upload images to servers across the network.

� Another scheme can be used to solve this problem with-
out requiring an additional Gateway to run at the server.
This requires adding a security authentication mechanism
within the JavaApplet class. This mechanism can then
allow an applet to upload files to servers other than the
one from where the applet was downloaded. Java ver-
sion 1.1 allows an applet context to download signed Java
archive files (JARs), which contain Java classes, images,
and sounds. If these are signed by a trusted entity us-
ing its private key, applets can run in the context with

the full privileges of local applications. The context uses
the public key for a entity, authenticated by a Certificate
from another trusted entity, to verify that the archive file
came from a trusted signer. Therefore, an EMIS signed
by a trusted entity could run in a browser with the abil-
ity to save files to the local file system and open network
connections to machines other than the one from which it
was downloaded.

In summary, our experience suggests that Java can be
very effective in developing a distributed EMIS. It is simple,
portable and distributed. In addition, compiled Java code can
be quite efficient. If the current limitations of Java are re-
solved and highly-optimizing Java compilers become avail-
able, it should be feasible to develop performance-sensitive
distributed applications in Java.

The complete source code for Java ACE is available at
www.cs.wustl.edu/ �schmidt/JACE.html .

Acknowledgments

We would like to thank Karlheinz Dorn and the other members
of the Siemens Medical Engineering group in Erlangen, Ger-
many for their technical support, sponsorship, and friendship
during the MedJava project.

References
[1] W. L. R. J. J. Conklin, “Digital Management and Regulatory

Submission of Medical Images from Clinical Trials: Role and
Benefits of the Core Laboratory,”Proc. SPIE, Health Care
Technology Policy II: The Role of Technology in the Cost of
Health Care: Providing the Solutions, vol. 2499, Oct. 1995.

[2] G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scalable
Bandwidth for the BJC Health System,”HIMSS, Health Care
Communications, pp. 71–81, 1994.

[3] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[4] F. L. Kitson, “Multimedia, Visual Computing, and the Informa-
tion Superhighway,”Proc. SPIE, Medical Imaging 1996: Image
Display, vol. 2707, Apr. 1996.

[5] P. Jain and D. Schmidt, “Experiences Converting a C++ Com-
munication Software Framework to Java,”C++ Report, vol. 9,
January 1997.

[6] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration of Services,” inProceedings of the
3
rd Conference on Object-Oriented Technologies and Systems,

USENIX, June 1997.

[7] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object
Model for the Java System,”USENIX Computing Systems,
vol. 9, November/December 1996.

15

[8] Java API Documentation Version 1.0.2. Available from
http://java.sun.com:80/products/jdk/1.0.2/api.

[9] M. P. Plezbert and R. Cytron, “Does Just in Time = Better Late
than Never?,” inACM 1997 Symposium on the Principles of
Programming Languages, 1997.

[10] H. R. Myler and A. R. Weeks,Computer Imaging Recipes in C.
Prentice Hall, Inc. Englewoods Cliffs, New Jersey, 1993.

[11] J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Develop-
ing and Measuring High-performance Web Servers over ATM,”
in Proceeedings of INFOCOM ’98, March/April 1998.

[12] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact
of Event Dispatching and Concurrency Models on Web Server
Performance Over High-speed Networks,” inProceedings of the
2
nd Global Internet Conference, IEEE, November 1997.

[13] Java ACE Home Page. Available from
http://www.cs.wustl.edu/ schmidt/JACE.html.

[14] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” inProceedings of
the2nd Conference on Object-Oriented Technologies and Sys-
tems, (Toronto, Canada), USENIX, June 1996.

[15] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[16] D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” inPattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[17] R. G. Lavender and D. C. Schmidt, “Active Object: an Ob-
ject Behavioral Pattern for Concurrent Programming,” inPat-
tern Languages of Program Design(J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[19] D. Bell, “Make Java fast: Optimize!.” JavaWorld, April
1997. Available from http://www.javaworld.com/javaworld/jw-
04-1997/jw-04-optimize.html.

[20] T. Lindholm and F. Yellin,The Java Virtual Machine Specifica-
tion. Addison-Wesley, 1997.

[21] J. Gosling, B. Joy, and G. Steele,The Java Programming Lan-
guage Specification. Reading, MA: Addison-Wesley, 1996.

[22] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317,
ACM, August 1996.

[23] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Programming,”
in Proceedings of the1st Conference on Object-Oriented Tech-
nologies and Systems, (Monterey, CA), USENIX, June 1995.

[24] H. Shiffman, “Boosting Java Performance: Na-
tive Code & JIT Compilers.” Available from
http://reality.sgi.com/shiffman/Java-JIT.html, 1996.

[25] T. A. Proebsting, G. Townsend, P. Bridges, J. H. H. T. New-
sham, and S. Watterson, “Toba: Java For Applications, A
Way Ahead of Time (WAT) Compiler,” inProceedings of the
3rd Conference on Object-Oriented Technologies and Systems,
1997.

[26] G. Muller, B. Moura, F. Bellard, and C. Consel, “Harissa:
A Flexible and Efficient Java Environment Mixing Bytecode
and Compiled Code,” inProceedings of the 3rd Conference on
Object-Oriented Technologies and Systems, 1997.

[27] Asymmetrix, “SuperCede.” Available from
http://www.asymetrix.com/products/supercede/index.html,
1997.

[28] P. Software, “CaffeineMark(tm) 2.5: The Indus-
try Standard Java Benchmark.” Available from
http://www.webfayre.com/pendragon/cm2/index.html, 1996.

[29] R. V. Dragan and L. Seltzer, “Java Speed Trials.” Available from
http://www8.zdnet.com/pcmag/features/pctech/1518/java.htm,
1996.

16

