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Traditional object-oriented design methods deal with the
functional aspects of systems, but they do not address qual-
ity of service (QoS) aspects such as reliability, availabil-
ity, performance, security, and timing. However, deciding
which QoS properties should be provided by individual sys-
tem components is an important part of the design process.
Different decisions are likely to result in different compo-
nent implementations and system structures. Thus, deci-
sions about component-level QoS should be made at design
time, before the implementation is begun. Since these de-
cisions are an important part of the design process, they
should be captured as part of the design. We propose a
general Quality-of-Service specification language, which we
call QML. In this paper we show how QML can be used to
capture QoS properties as part of designs. In addition, we
extend UML, the de-facto standard object-oriented mod-
eling language, to support the concepts of QML. QML is
designed to integrate with object-oriented features, such as
interfaces, classes, and inheritance. In particular, it allows
specification of QoS properties through refinement of ex-
isting QoS specifications. Although we exemplify the use of
QML to specify QoS properties within the categories of reli-
ability and performance, QML can be used for specification
within any QoS category—QoS categories are user-defined
types in QML.

1. Introduction

1.1 Quality-of-Service in Software Design

In software engineering—like any engineering
discipline—design is the activity that allows engineers
to invent a solution to a problem. The input to the
design activity consists of various requirements and con-
straints. The result of a design activity is a solution
in which all major architectural and technical problems
have been addressed. Design is an important activity
since it allows engineers to invent solutions stepwise and
in an organized manner. It makes engineers consider so-
lutions and trade various system functions against each
other.

To be useful, computer systems must deliver a certain
quality of service (QoS) to its users. By QoS, we refer
to non-functional properties such as performance, relia-
bility, availability, and security. Although the delivered
QoS is an essential aspect of a computer system, tradi-
tional design methods, such as [2, 11, 1, 13, 4], do not
incorporate QoS considerations into the design process.

We strongly believe that, in order to build systems that
deliver their intended QoS, it is essential to systemati-
cally take QoS into account at design time, and not as
an afterthought during implementation.
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FIG. 1. Class diagram for the currency trading system

We use a simple example to illustrate the need for
design-time QoS considerations. Consider the currency
trading system in Figure 1. Currency traders interact
with the trading station, which provides a user inter-
face. To provide its functionality, the trading station
uses a rate service and a trading service. The
rate service provides rates, interests, and other in-
formation important to foreign exchange trading. The
trading service provides the mechanism for making
trades in a secure way. An inaccessible currency trading
system might incur significant financial loss, therefore it
is essential that the system is highly available.

It is important, at design time, to decide the QoS
properties of individual system components. For exam-
ple, we need to decide the availability properties of the
rate service. We can decide that the rate service
should be highly available so that the trading station
can rely exclusively on it for rate information. Alterna-
tively, we can decide that the rate service need not
be highly available. If the rate service is not highly
available, the trading station cannot rely exclusively
on it, but must be prepared to continue operation if the
rate service fails. To continue operation, the trading
station could connect to an external rate service. As
the example shows, different availability properties for
the rate service can result in different system archi-
tectures. It is important to decide on particular QoS
properties, and thereby chose a specific architecture, at
design time.



Besides the system architecture, the choice of QoS
properties for individual components also affects the im-
plementation of components. For example, the rate
service can be implemented as a single process or as
a process pair, where the process-pair implementation
provides higher availability. Different QoS properties
are likely to require different implementations. More-
over, the QoS properties of a component may affect
the implementation of its clients. For example, with
a single-process implementation, the trading station
may have to explicitly detect failures and restart the
rate service, whereas with a process-pair implementa-
tion, failures may be completely masked for the trading
station.

1.2 Quality-of-Service Specification

In the previous section we argued that QoS properties
of individual components reflect important design deci-
sions, and that we need describe these QoS properties as
part of the design process. To capture component-level
QoS properties, we introduce a language called QML
(QoS Modeling Language).

~ Consider the CORBA IDL [17] interface definition for
the rate service in Figure 2.

A rate service provides one operation for retrieving
the latest exchange rates with respect to two currencies.
The other operation performs an analysis and returns a
forecast for the specified currency. The interface defi-
nition specifies the syntactic signature for a service but
does not specify any semantics or non-functional aspects.
In contrast, we concern ourselves with how to specify the
required or provided QoS for servers implementing this
interface.

QML has three main abstraction mechanisms for QoS
specification: contract type, contract, and profile. QML
allows us to define contract types that represent specific
QoS aspects, such as performance or reliability. A con-
tract type defines the dimensions that can be used to
characterize a particular QoS aspect. A dimension has a
domain of values that may be ordered. There are three
kinds of domains: set domains, enumerated domains,
and numeric domains. A contract is an instance of a
contract type and represents a particular QoS specifi-
cation. Finally, QML profiles associate contracts with
interfaces, operations, operation arguments, and opera-
tion results.

The QML definitions in Figure 3 include two contract
types Reliability and Performance. The reliability
contract type defines three dimensions. The first one
represents the number of failures per year. The keyword
“decreasing” indicates that a smaller number of failures
is better than a larger one. Time-to-repair (TTR) repre-
sents the time it takes to repair a service that has failed.
Again, smaller values are better than larger ones. Fi-

interface RateServicel {
Rates latest(in Currency cl,in Currency c2)
raises (InvalidC);
Forecast analysis(in Currency c)
raises (Failed);

+;

FIG. 2. The RateServicel interface

nally, availability represents the probability that a
service is available. In this case, larger values represent
stronger constraints while smaller values represent lower
probabilities and are therefore weaker.

We also define a contract named systemReliabilty
of type Reliability. The contract specifies constraints
that can be associated with, for example, an operation.
Since the contract is named it can be used in more than
one profile. In this case, the contract specifies an upper

type Reliability = contract {
numberOfFailures: decreasing numeric no/year;
TTR: decreasing numeric sec;
availability: increasing numeric;

}s

type Performance = contract {
delay: decreasing numeric msec;
throughput: increasing numeric mb/sec;

}s

systemReliability = Reliability contract {

number0fFailures < 10 no/year;
TTR {

percentile 100 < 2000;

mean < 500;

variance < 0.3

IS

availability > 0.8;

}s

rateServerProfile for RateServicel = profile {
require systemReliability;
from latest require Performance contract {
delay {
percentile 50 < 10 msec;
percentile 80 < 20 msec;
percentile 100 < 40 msec;
mean < 15 msec
s
}s

from analysis require Performance contract {
delay < 4000 msec
}s
b

FIG. 3. Contracts and Profile for RateServicel



bound on the allowed number of failures. It also specifies
an upper bound, a mean, and a variance for TTR. Finally,
it states that availability must always be greater than
0.8.

Next we introduce a profile called rateServerProfile
that associates contracts with operations in the
RateServicel interface. The first requirement clause
states that the server should satisfy the previously de-
fined systemReliability contract. Since this require-
ment is not related to any particular operation, it is
considered a default requirement and holds for every
operation. Contracts for individual operations are al-
lowed only to strengthen (refine) the default contract.
In this profile there is no default performance contract;
instead we associate individual performance contracts
with the two operations of the RateServicel interface.
For latest we specify in detail the distribution of delays
in percentiles, as well as a upper bound on the mean de-
lay. For analysis we specify only an upper bound and
can therefore use a slightly simpler syntactic construc-
tion for the expression. Since throughput is omitted for
both operations, there are no requirements or guarantees
with respect to this dimension.

We have now effectively specified reliability and per-
formance requirements on any implementation of the
rateServicel interface. The specification is syntacti-
cally separate from the interface definition, allowing dif-
ferent rateServicel servers to have different QoS char-
acteristics.

QoS specifications can be used in many different situ-
ations. They can be used during the design of a system
to understand the QoS requirements for individual com-
ponents that enable the system as a whole to meet its
QoS goals. Such design-time specification is the focus of
this paper. QoS specifications can also be used to dy-
namically negotiate QoS agreements between clients and
servers in distributed systems.

In negotiation it is essential that we can match of-
fered and required QoS characteristics. As an example,
satisfying the constraint “delay < 10 msec” implies that
we also satisfy “delay < 20 msec.” We want to enable
automatic checking of such relations between any two
QoS specifications. We call this procedure conformance
checking, and it is supported by QML.

QML allows designers to specify QoS properties inde-
pendently of how these properties can be implemented.
For example, QML enables designers to specify a cer-
tain level of availability without reference to a particular
high-availability mechanism such as primary-backup or
active replication.

QML supports the specification of QoS properties in
an object-oriented manner; it provides abstraction mech-
anisms that integrate with the usual object-oriented ab-
straction mechanisms such as classes, interfaces, and in-
heritance. Although QML is not tied to any partic-

ular design notation, we show how to integrate QML
with UML [2], and we provide a graphical syntax for
component-level QoS specifications.

QML is a general-purpose QoS specification language;
it is not tied to any particular domain, such as real-
time or multi-media systems, or to any particular QoS
category, such as reliability or performance.

We organize the rest of this paper in the following
way. In Section 2, we introduce our terminology for dis-
tributed object systems. We present the dimensions of
reliability and performance that we use in Section 3. We
describe QML in Section 4, and we explain its integra-
tion into UML in Section 5. We use QML and the UML
extensions to specify the QoS properties of a computer-
based telephony system in Section 6. The topic of Sec-
tion 7 is related work, and Section 8 is a discussion of
our approach. Finally, in Section 9, we draw our conclu-
sions.

2. Our Terminology for Object-Oriented
Systems

We assume that a system consists of a number of
services. A service has a number of clients that rely on
the service to get their work done. A client may itself
provide service to other clients.

A service has a service specification and an implemen-
tation. A service specification describes what a service
provides; a service implementation consists of a collec-
tion of software and hardware objects that collectively
provide the specified service. For example, a name ser-
vice maintains associations between names and objects.
A name service can be replicated, that is, it can be im-
plemented by a number of objects that each contain all
the associations. It is important to notice that we con-
sider a replicated name service as one logical entity even
though it may be implemented by a collection of dis-
tributed objects.

A client uses a service through a service reference, or
simply a reference. A reference is a handle that a client
can use to issue service requests. A reference provides
a client with a single access point, even to services that
are implemented by multiple objects.

Traditionally, a service specification is a functional
interface that lists the operations and attributes that
clients can access; we extend this traditional notion of
a service specification to also include a definition of the
QoS provided by the service. The same service specifi-
cation can be realized by multiple implementations, and
the same collection of objects can implement multiple
service specifications.

3. Selected Dimensions

To specify QoS properties in QML, we need a way
to formally quantify the various aspects of QoS. A QoS



category denotes a specific non-functional characteristic
of systems that we are interested in specifying. Relia-
bility, security, and performance are examples of such
categories. Each category consists of one or more di-
mensions that represent a metric for one aspect of the
category. Throughput would be a dimension of the per-
formance QoS category. We represent QoS categories
and dimensions as user-defined types in QML.

To meaningfully characterize services with QoS cat-
egories we need valid dimensions. We are particularly
interested in the dimensions that characterize services
without exposing internal design and implementation de-
tails. Such dimensions enable the specification of QoS
properties that are relevant and understandable for, in
principle, any service regardless of implementation tech-
nology.

We describe a set of dimensions for reliability and
performance. In [8] we have reviewed a variety of liter-
ature and systems on reliability including work by Gray
et al. [7], Cristian [5], Reibman [14], Birman, [3], Maf-
feis [10], Littlewood [9], and others. As a result we pro-
pose the following dimensions for characterizing the re-
liability of distributed object services:

| Name | Type
TTR Time
TTF Time
Availability Probability

Continuous availability Probability

Failure masking set {failure, omission, response,

value, state, timing, late, early}

Server failure enum {halt, initialState, rollBack}

Operation semantics enum {exactlyOnce, atLeastOnce,

atMostOnce}
Rebinding policy enum {rebind, noRebind}
Number of failures Unsigned Integer

Data policy enum {valid, notValid}

We use the measurable quantities of time to failure
(TTF) and time to repair (TTR). Availability is the
probability that a service is available when a client at-
tempts to use it. Assume for example that service is
down totally one week a year, then the availability would
be 51/52, which is approximately 0.98. Continuous
availability assesses the probability with which a
client can access a service an infinite number of times
during a particular time period. The service is expected
not to fail and to retain all state information during this
time period. We could for example require that a par-
ticular client can use a service for a 60 minute period
without failure with a probability of 0.999. Continuous
availabilityis different from availability in that it
requires subsequent use of a service to succeed but only
for a limited time period.

The failure masking dimension is used to describe
what kind of failures a server may expose to its clients.

A client must be able to detect and handle any kind of
exposed failure. The above table lists the set of all pos-
sible failures that can be exposed by services in general.
The QoS specification for a particular service will list the
subset of failures exposed by that service.

We base our categorization of failure types—shown
in Figure 4—on the work by Cristian [5]. If a service
exposes omission failures, clients must be prepared to
handle a situation where the service simply omits to re-
spond to requests. If a service exposes response fail-
ures, it might respond with a faulty return value or an
incorrect state transition. Finally, if the service exposes
timing failures, it may respond in an untimely manner.
Timing failures have two subtypes: late and early tim-
ing errors. Services can have any combination of failure
masking characteristics.

failure

reponse
omission ‘ ‘ timing ‘

’—‘—‘ ‘ value ‘

‘ late H early ‘

state ‘

FIG. 4. Failure type hierarchy

Operation semantics describe how requests are han-
dled in the case of a failure. We can specify that is-
sued requests are executed exactlyOnce, atLeastOnce,
or atMostOnce.

Server failure describes the way in which a service
can fail. That is, whether it will halt indefinitely, restart
in a well defined initialState, or restart rolledBack
to a previous check point.

The number of failures gives a likely upper bound
for the number of times the service will fail during a
specific time period.

When a service fails the client needs to know whether
it can use the existing reference or whether it needs to
rebind to the service after the service has recovered. The
rebinding policy is used to specify this aspect of reli-
ability.

Finally, we propose that the client also needs to know
if data returned by the service still is valid after the
service has failed and been restarted. To specify this
we need to associate data policy with entities such as
return values and out arguments.

For the purpose of this paper we will propose a
minimal set of dimensions for characterizing perfor-
mance. We are only including throughput and latency.
Throughput is the transfer rate for information, and
can, for example, be specified as megabytes per second.
Latency measures the time between the point that an in-



vocation was issued and the time at which the response
was received by the client.

Dimensions such as those presented here constitute
the vocabulary for QoS specification languages. We use
the dimensions to describe the example in section 6.

4. QML: A Language to Specify QoS
Properties

We describe the main design considerations for QML
in Section 4.1. We already introduced the fundamental
concepts of QML in section 1. Sections 4.2-4.8 describe
the syntax and semantics of QML in more detail. For
the full description of QML we refer to the language
definition in [6].

4.1 Basic Requirements

The main design consideration for QML is to sup-
port QoS specification in an object-oriented context. We
want QML to integrate seamlessly with existing object-
oriented concepts. This overall goal results in the follow-
ing specific design requirements for QML:

® QoS specifications should be syntactically separate
from other parts of service specifications, such as
interface definitions. This separation allows us to
specify different QoS properties for different imple-
mentations of the same interface.

e It should be possible to specify both the QoS prop-
erties that clients require and the QoS properties
that services provide. Moreover, these two aspects
should be specified separately so that a client-server
relationship has two QoS specifications: a specifi-
cation that captures the client’s requirements and
a specification that captures the service’s provision-
ing. This separation allow us to specify the QoS
characteristics of a component, the QoS properties
that it provides and requires, without specifying the
interconnection of components. The separation is
essential if we want to specify the QoS characteris-
tics of components that are reused in many different
contexts.

e There should be a way to determine whether the
QoS specification for a service satisfies the QoS re-
quirement of a client. This requirement is a con-
sequence of the separate specification of the QoS
properties that clients require and the QoS proper-
ties that services provide.

e QML should support refinement of QoS specifica-
tions. In distributed object systems, interface def-
initions are typically subject to inheritance. Since
inheritance allows an interface to be defined as a
refinement of another interface, and since we asso-
ciate QoS specifications with interfaces, we need to
support refinement of QoS specifications.

e It should be possible to specify QoS properties at
a fine-grained level. As an example, performance
characteristics are commonly specified for individ-

ual operations. As another example, the data pol-
icy dimension described in Section 3 is applicable to
arguments and return values of operations. QML
must allow QoS specifications for interfaces, opera-
tions, attributes, operation parameters, and opera-
tion results.

Other aspects such as negotiation and utility can be
dealt with as mechanisms using QML or possibly be part
of future extensions of QML. This paper focuses on the
requirements listed above.

We have already briefly introduced the fundamental
concepts of QML: contract type, contract, profile. The
following sections will provide a more detailed descrip-
tion of QML.

4.2 Contracts and Contract Types

A contract type contains a dimension type for each of
its dimensions. We use three different dimension types:
set, enumeration, and numeric. Figure 5 gives an ab-
stract syntax for contract and dimension types.

conType := contract {dimName; : dimType,;...;
dimNamey, : dimType,; }
dimName = n
dimType ::= dimSort
| dimSort unit
dimSort = enum{n;,..., ng}
| relSem enum {ni,..., ny} with order
| set{ni,...,ng}
| relSemset {ni,..., ny}
| relSem set {ni,..., ny} with order
| relSem numeric
order i= order {n; <nj,...,np <nm}
unit = unit/unit | % | msec| ...
relSem := decreasing | increasing

FIG. 5. Abstract syntax for contract types

Contracts are instances of contract types. A contract
type defines the structure of its instances. In general, a
contract contains a list of constraints. FEach constraint
is associated with a dimension. For example, if we have
a dimension “latency” in a contract type, a contract in-
stance may contain the constraint “latency < 10.” Fig-
ure 6 gives an abstract syntax for contracts and con-
straints.

A contract may specify constraints for all or a subset
of the dimensions in its contract type. Omission of a
specification for a particular dimension indicates that
the contract is trivially satisfied along that dimension.

In general, a constraint consists of a name, an op-
erator, and a value. The name is typically the name
of a dimension, but, as we describe in Section 4.3, the
name can also be the name of a dimension aspect. The
permissible operators and values depend on the dimen-



contract := contract {constrainty ;.. .;
constrainty; }
constraint = dimName constraintOp dim Value
| dimName {aspect, ;...; aspect,;}
dim Value = literal unit
| literal
literal =n
BRI
|  number
aspect = percentile percentNum constraintOp
dim Value
| mean constraintOp dimValue
| variance constraintOp dimValue
| frequency freqRange constraintOp
number%
freqRange n= dimValue
| [RangeLimit dimValue , dimValue
rRangeLimit
[RangeLimit == (||
rRangeLimit == ) |]
constraintOp == == | >= | <= | < | >
percentNum == 0|1]...] 99100
dimName w= defined in Figure5
unit = defined in Figured

FIG. 6. Abstract syntax for contracts

sion type. A dimension type specifies a domain of val-
ues. These values can be used in constraints for that
dimension. The domain may be ordered. For example,
a numeric domain comes with a built-in ordering (“<”)
that corresponds to the usual ordering on numbers. Set
and enumeration domains do not come with a built-in
ordering; for those types of domains we have to describe
a user-defined ordering of the domain elements. The do-
main ordering determines which operators can be used
in constraints for that domain. For example, we can-
not use inequality operators (“<,” “>)” “<=" “>=")
in conjunction with an unordered domain.

The domain for a set dimension contains elements
that are sets of name literals. We specify a set domain
using the keyword set, as in “set {ni,...,n;}.” This
defines a set domain where the domain elements are sub-
sets of the set “{ny,...,ng}.” The constraints over a set
dimension will then be constraints with set values, as in
“failures == {response,omission}.”

The domain for an enumeration dimension contains
elements that are name literals. We specify an enu-
meration domain using the keyword enum. For exam-
ple, we could define an enumeration domain as follows:

“enum {ni,...,n;}.” Here, the domain will contain
the name literals “ni,...,n;,” and we can specify con-
straints as “dataPolicy == valid.”

The domain of a numeric dimension contains elements
that are real numbers. Constraints for a numeric dimen-
sion are written as “latency < 10.”

Elements of numeric dimensions are always or-
dered. We can specify a user-defined ordering for
set and enumerated dimensions in the following way:
“order {valid < invalid}.” When dimensions are or-
dered we need to specify whether larger or smaller val-
ues are considered stronger. As an example consider
the dimension of availability. A larger numeric value
for availability is a stronger that a smaller, we say that
availability is an “increasing” dimension. Other dimen-
sions, such as delay, are “decreasing” since smaller val-
ues are consider as stronger guarantees. Consequently,
QML requires that we define ordered dimensions as ei-
ther decreasing or increasing. For the data validity enum
decreasing semantics seems most intuitive, since valid
also satisfies invalid.

The example in Figure 7 gives an example of a con-
tract type expression followed by a contract expression.
Note that the contract expression is explicitly typed with
a contract type name, this explicit typing enables the
QML compiler to determine a unique contract type for
any contract expression. So far we have only covered the
syntax for contract values and contract types. In Sec-
tion 4.4, we describe how to name contract values and
contract types, and how to use those names in contract
expressions.

4.3 Aspects

In addition to simple constraints QML supports more
complex characterizations that are called aspects. An
aspect is a statistical characterization; QML currently
includes four generally applicable aspects: percentile,
mean, variance, and frequency. Aspects are used for
characterizations of measured values over some time pe-
riod.

The percentile aspect defines an upper or lower value
for a percentile of the measured entities. The statement
percentile P denotes the strongest P percent of the
measurements or occurrences that have been observed.

type T = contract { // A contract type expression
s1: decreasing set { el, e2, e3, e4 }
with order {e2<el, el<e3, e3<ed};
el: increasing enum { al, a2, a3 }
with order {a2<al, a3<a2};
nl: increasing numeric mb / sec;

}s

T contract { // A contract expression of type T
sl <= { el, e2 };

el < a2;

nl < 23;

b

FIG. 7. Example contract type and contract expressions



The aspect “percentile 80 < 6” states that the 80th
percentile of measurements for the dimensions must be
less than 6. We allow a constraint for a dimension to
contain more than one percentile aspect, as long as the
same percentile P does not occur more than once.

QML also allows the specification of frequency con-
straints for individual values which is useful with enu-
merated types, and for ranges, which is useful with nu-
meric dimensions. Rather than specifying specific num-
bers for the frequency, QML allows us to specify the
relative percentage with which values in a certain range
occur. The constraint “frequency V > 20%” means
that in more that 20% of the occurrences we should have
the value V. The literal V' can be a single value or if the
dimension has an ordering, and only then, it may be a
range. The constraint “frequency [1,3) > 35%” means
that we expect 35% of the actual occurrences to be larger
than 1 and less than or equal to 3.

Figure 8 shows some examples of aspects in contract
expressions. The contract expression is preceded by the
name of its corresponding contract type. For s1 we de-
fine one constraint for the 20th percentile. The meaning
of this is that the strongest 20% of the value must be
less than the specified set value.

contractTypeName contract {
sl { percentile 20 < { el, e2 }};
el {
frequency al <= 10 %;
frequency a2 >= 80 %;
b
n1 {
percentile 10 < 20;
percentile 50 < 45;
percentile 90 < 85;
percentile 100 <= 120;
mean >= 60;
variance < 0.6;

FIG. 8. Example contract expression

decl conTypeDecl | conDecl
conTypeDecl ::= typey = conType

conDecl w= x. = conEzp

conEzp y contract

z. refined by

{constrainty ;. ..; constrainty ; }
defined in Figureb

defined in Figure6

defined in Figure6

conType
contract

constraint

FIG. 9. Abstract syntax for definition of contracts and
contract types

For el we define the frequencies that we expect for
various values. For the value a1 we expect a frequency of
less than or equal to 10%. For a2 we expect a frequency
greater than or equal to 80%, and so forth.

The constraint on n1 defines bounds for values in dif-
ferent percentiles over the measurements of n1. In ad-
dition, we define an upper bound for the mean and the
variance.

4.4 Definition of Contracts and Contract
Types

The definition of a contract type binds a name to a
contract type; the definition of a contract binds a name
to the value of a contract expression. Figure 9 illus-
trates the abstract syntax to define contracts and con-
tract types. In the astract syntax, we use z. as a generic
name for contracts and y as a generic name for contract
types.

We can define a contract B to be a refinement
of another contract A using the construct “B =
A refined by{...}” where A is the name of a previ-
ously defined contract. The contract that is enclosed by
curly brackets ({...}) is a “delta” that describes the dif-
ference between the contracts A and B. We say that
the delta refines A and that B is a refinement of A.
The delta can specify QoS properties along dimensions
for which specification was omitted in A. Furthermore,
the delta can replace specifications in A with stronger
specifications. The notion of “stronger than” is given
by a conformance relation on constraints. We describe
conformance in more detail in Section 4.8.

Figure 10 and Figure 11 illustrates how a named con-
tract type (Reliability) can be define and how con-
tracts of that type can be defined respectively. The con-
tract type Reliability has the dimensions that we have
identified within the QoS category of reliability described
in section 3

The contract systemReliability is an instance of
Reliability; it captures a system wide property,
namely that operation invocation has “exactly once” (or
transactional) semantics. The systemReliability only
provides a guarantee about the invocation semantics,
and does not provide any guarantees for the other di-
mensions specified in the Reliability contract type.

The contract nameServerReliability is defined as
a refinement of another contract, namely the con-
tract bound to the name systemReliability. In
the example, we strengthen the systemReliability
contract by providing a specification along the
serverFailure dimension, which was left unspecified
in the systemReliability contract.



type Reliability = contract {
failureMasking: decreasing
set {omission, lostResponse, noExecution,
response, responseValue, stateTransition};
serverFailure:
enum {halt, initialState, rolledBack};
operationSemantics: decreasing
enum {atLeastOnce, atMostOnce, once} with
order {once < atLeastOnce, once < atMostOnce};
rebindingPolicy: decreasing
enum {rebind, noRebind} with
order {noRebind < rebind};
dataPolicy: decreasing enum {valid, invalid}
with order {valid < invalid};
numOfFailure: decreasing numeric failures/year;
MTTR: decreasing numeric sec;
MTTF: increasing numeric day;
reliability: increasing numeric;
availability: increasing numeric;

FIG. 10. Example contract type definition

systemReliability = Reliability contract {

operationSemantics == once;
nameServerReliability = systemReliability {
serverFailure == rolledBack;
b

type Performance = contract {
latency: decreasing numeric msec;
throughput: increasing numeric kb/sec;

};

traderResponse = Performance contract {
latency { percentile 90 < 50 msec };

+;

FIG. 11. Example contract definitions

4.5  Profiles

According to our definition, a service specification
contains an interface and a QoS profile. The interface
describes the operations and attributes exported by a
service; the profile describes the QoS properties of the
service. A profile is defined relative to a specific inter-
face, and it specifies QoS contracts for the attributes and
operations described in the interface. We can define mul-
tiple profiles for the same interface, which is necessary
since the same interface can for example have multiple
implementations with different QoS properties.

Once defined, a profile can be used in two contexts:
to specify client QoS requirements and to specify service
QoS provisioning. Both contexts involve a binding be-

profile = profile {req, ;...; req,; }
req = require contractList

| from entityList require contractList
contractList = conEzp,,..., conEzp,
entityList = entity,,..., entity,,
entity == opName

| attrName

| opName.parName

| result of opName
opName == identifier
attrName = identifier
parName = identifier
conExp == defined in Figure9

FIG. 12. Abstract syntax for profiles

tween a profile and some other entity. In the client con-
text this other entity is the service reference used by the
client; in the service context, the entity is a service im-
plementation. We discuss bindings in Section 4.7. Here,
we describe a syntax for profile values, and in Section 4.6
we describe a syntax for profile definition.

Figure 12 gives an abstract syntax for profiles. A pro-
file is a list of requirements, where a requirement specifies
one or more contracts for one or more interface entities,
such as operations, attributes, or operation parameters.
If a requirement is stated without an associated entity,
the requirement is a default requirement that applies by
default to all entities within the interface in question.
Our intention is that the default contract is the strongest
contract that applies to all entities within an interface.
We can then explicitly specify a stronger contract for
individual entities by using the refinement mechanism.

Contracts for individual entities are defined as follows:
“from e require C.” Here e is an entity and C is a
contract. We use C' as a delta that refines the default
contract of the enclosing profile. Using individual entity
contracts as deltas for refinement means that we do not
have to repeat the default QoS constraints as part of
each individual contract.

declaration = conTypeDecl
| conDecl
|  profileDecl
profileDecl = =z, for intName = profileErp
profileExp = profile
| prefined by {req, ;...; req,;}
intName := identifier
conTypeDecl ::= defined in Figure9
conDecl = defined in Figure9
profile = defined in Figurel12
req = defined in Figurel2

FIG. 13. Abstract syntax for definition of profiles



Although a profile refers to specific operations and
arguments within an interface, the final association be-
tween the profile and the interface is established in a
profile definition. Such definitions are described in sec-
tion 4.6.

For each contract type, such as reliability, that a pro-
file involves, we may specify zero or one default contract.
In addition, at most one contract of a given type can be
explicitly associated with an interface entity.

If, for a given contract type T, there is no default con-
tract and there is no explicit specification for a particular
interface entity, the semantics is that no QoS properties
within the category of T" are associated with that entity.

4.6 Definition of Profiles

A profile definition associates a profile with an inter-
face and gives the profile a name. A general require-
ment is that the interface entities referred to by the pro-
file must exist in the related interface. The syntax for
profile definition is given in Figure 13. The definition
“id for intName = prof” gives the name id to the pro-
file which is the result of evaluating the profile expression
prof with respect to the interface intName. The profile
name can be used to associate this particular profile with
implementations of the intName interface or with refer-
ences to objects of type intName.

A profile expression (profileEzp) can be a profile, or
an identifier with a “{...}” clause. If the expression is a
profile value, the definition binds a name to this value. If
a profile expression contains an identifier and a “{...}”
clause, the identifier must be the name of a profile, and
the “{...}” clause then refines this profile. The definition
gives a name to this refined profile.

If we have a profile expression “A refined by {...},”
then the delta must either add to the specifications in A
or make the specifications in A stronger. The delta can
add specifications by defining individual contracts for en-
tities that do not have individual contracts in A. More-
over, the delta can specify a default contract if no default

interface NameServer {
void init();
void register(in string name, in object ref);
object lookup(in string name) ;

}

nameServerProfile for NameServer = profile {
require nameServerReliability;
from lookup require Reliability contract {
rebindPolicy == noRebind;
b

}

FIG. 14. The interface of a name server

contract is specified in A. The delta can strengthen A’s
specifications by giving individual contracts for entities
that also have an individual contract in A. The indi-
vidual contract in the delta are then used as a contract
delta to refine the individual contract in A. Similarly,
the delta can specify a contract delta that refines the
default contract in A. We give a more detailed and for-
mal description of profile refinement in [6].

To exemplify the notion of profile definition, con-
sider the interface of a name server in Figure 14.
The profile called nameServerProfile is a profile for
the NameServer interface; it associates various con-
tracts with the operations defined with the NameServer
interface. The nameServerProfile associates the
nameServerReliability contract (introduced in Fig-
ure 11) as the default contract, and it associates a re-
finement of the nameServerReliability contract with
the lookup operation.

Notice that the contract for the lookup operation
must refine the default contract (in this case, the de-
fault contract is nameServerReliability). Since the
contract for operations must always refine the default
contract, it is implicitly understood that the contract
expression in an operation contract is in fact a refine-
ment.

4.7 Bindings

There are many ways in which QoS profiles can be
bound to specific services. They can be negotiated and
associated with deals between clients and server, or they
can be associated statically at design or deployment
time. For the purpose of this paper we will provide an
example binding mechanism that allows clients to stati-
cally bind profiles to references. In addition, we allow a
server to state the profile of its implementation. These
bindings could be used to ensure compatible characteris-
tics for clients and servers as well as runtime monitoring.
An abstract syntax for our notion of binding is illustrated
in Figure 16.

Figure 17 illustrates our notion of binding. In
the first example the client declares a reference called
myNameServer as a reference to a name server. The
client’s QoS requirements are expressed by means of the
profile called nameServerProfile. In the second exam-
ple, the implementation called myNameServerImp is de-
clared to implement the service specification that con-
sists of the interface called NameServer and the profile
called nameServerProfile.

The binding mechanism need not be a part of QML
but has been included here for clarity. Bindings are more
closely related to interface specification, design and im-
plementation languages. As an example we will propose
a binding mechanism for UML in section 5.



4.8 Conformance

We define a conformance relation on profiles, con-
tracts, and constraints. A stronger specification con-
forms to a weaker specification. We need conformance
at runtime so that client-server connections do not have
to be based on exact match of QoS requirements with
QoS properties. Instead of exact match, we want to al-
low a service to provide more than what is required by a
client. Thus, we want service specifications to conform
to client specifications rather than match them exactly.

Profile conformance is defined in terms of contract
conformance. Essentially, a profile P conforms to an-
other profile ) if the contracts in P associated with an
entity e conform to the contracts associated with e in
the profile Q).

Contract conformance is in turn defined in terms of
conformance for constraints. Constraint conformance
defines when one constraint in a contract can be con-
sidered stronger, or as strong as, another constraint for
the same dimension in another contract of the same con-
tract type.

To determine constraint conformance for set dimen-
sions, we need to determine whether one subset conforms
to another subset. Conformance between two subsets
depends on their ordering. In some cases, a subset rep-
resents a stronger commitment than its supersets. As
an example, let us consider the failure-masking dimen-
sion. If a value of a failure-masking dimension defines
the failures exposed by a server, a subset is a stronger
commitment than its supersets (the fewer failure types
exposed, the better). If, on the other hand, we consider
a payment protocol dimension for which sets represent
payment protocols supported by a server, a superset is
obviously a stronger commitment than any of its sub-
sets (the more protocols supported, the better). Thus,

binding = clientBinding
|  serviceBinding
clientBinding = refDecl with profileEzp
serviceBinding ::= serviceDecl with profileEzp
refDecl := identifier : intName
serviceDecl = identifier implements int Name
FIG. 16. Abstract syntax for bindings

//Client side binding
myNameServer: NameServer with nameServerProfile;

//Implementation binding
myNameServerImp implements NameServer
with nameServerProfile;

FIG. 17. Example bindings

to be able to compare contracts of the same type the di-
mension declarations need to define whether subsets or
supersets are stronger.

A similar discussion applies to the numeric domain.
Sometimes, larger numeric values are considered concep-
tually stronger than smaller. As an example, think of
throughput. For dimensions such as latency, smaller
numbers represent stronger commitments than larger
numbers.

In general, we need to specify whether smaller do-
main elements are stronger than or weaker than larger
domain elements. The decreasing declaration implies
that smaller elements are stronger than larger elements.
The increasing declaration means that larger elements
are stronger than smaller elements. If a dimension is
declared as decreasing, we map “stronger than” to “less
than” (<). Thus, a value is stronger than another value,
if it is smaller. An increasing dimension maps “stronger
than” to “greater than” (>). The semantics will be that
larger values are, considered stronger.

We want conformance to correspond to constraint sat-
isfaction. For example, we want the constraint d < 10
to conform to the constraint d < 20. But d < 10 only
conforms to d < 20 if the domain is decreasing (smaller
values are stronger). To achieve the property that con-
formance corresponds to constraint satisfaction, we al-
low only the operators {==, <=, <} for decreasing do-
mains, and we allow only the operators {==,>=,>}
for increasing domains. Thus, if we have an increasing
domain, the constraint d < 20 would be illegal.

If a profile @ is a refinement of another profile P,
will also conform to P. Refinement is a static operation
that gives a convenient way to write QoS specifications
in an incremental manner. Conformance is a dynamic
operation that, at runtime, can determine whether one
specification is stronger than another specification. For
more details on conformance we refer to [6].

5. An Extension of the Unified Modeling
Language

In order to make QoS considerations an integral part
of the design process, design notations must provide the
appropriate language concepts. We have already pre-
sented a textual syntax to define QoS properties. Here,
we extend UML [2] to support the definition of QoS prop-
erties. Later, we will use CORBA IDL [17] and our ex-
tension of UML [2] to describe an example design that
includes QoS specifications.

In UML, classes are represented by rectangles. In
addition, UML has a type concept that is used to de-
scribe abstractions without providing an implementa-
tion. Types are drawn as classes with a type stereotype
annotation added to it. In UML, classes may implement
types. The UML interface concept is a specialized us-
age of types. Interfaces can be drawn as small circles



that can be connected to class symbols. A class can
use or provide a service specified by an interface. The
example below shows a client using (dotted arrow) a ser-
vice specified by an interface called I. We also show a
class Implementation implementing the I interface but
in this example the interface circle has been expanded
to a class symbol with the type annotation.

Our extension to UML allows QoS profiles to be asso-
ciated with uses and implements relationships between
classes and interfaces. A reference to a profile is drawn
as a rectangle with a dotted border within which the pro-
file name is written. This profile box is then associated
with a uses or implements relationship.

Client
——1=0

<<type>> Implementation
I

|
|
N

Fr(ﬂdedProﬁle

FIG. 15. UML extensions

In example 15, the client requires a server that im-
plements the interface I and satisfies the QoS require-
ments stated in the associated RequiredProfile. The
Implementation on the other hand promises to imple-
ment interface I with the QoS properties defined by the
ProvidedProfile profile. The profiles are defined tex-
tually using our QoS specification language.

Our UML extension allows object-oriented design to
be annotated with profile names that refer to separately
defined QoS profiles. Notice that our UML extension
associates profiles with specific implementations and us-
ages of interfaces. This allows different clients of the
same interface to require different QoS properties, and
it allows different implementations of the same interface
to provide different QoS properties.

6. Example

To illustrate QML and demonstrate its utility, we use
it to specify the QoS properties of an example system.
The example shows how QML can help designers de-
compose application level QoS requirements into QoS
properties for application components. The example also

demonstrates that different QoS trade-offs can give rise
to different designs.

This example is a simplified version of a system for
executing telephony services, such as telephone bank-
ing, ordering, etc. The purpose of having such an ex-
ecution system is to allow rapid development and in-
stallation of new telephony services. The system must
be scalable in order to be useful both in small busi-
nesses and for servicing several hundred simultaneous
calls. More importantly—especially from the perspec-
tive of this paper—the system needs to provide services
with sufficient availability.

Executing a service typically involves playing mes-
sages for the caller, reacting to key strokes, recording
responses, retrieving and updating databases, etc. It
should be possible to dynamically install new telephone
services and upgrade them at runtime without shutting
down the system. The system answers incoming tele-
phone calls and selects a service based on the phone
number that was called. The executed service may, for
example, play messages for the caller and react to events
from the caller or events from resources allocated to han-
dle the call.

Telephone users generally expect plain old telephony
to be reliable, and they commonly have the same ex-
pectations for telephony services. A telephony service
that is unavailable will have a severe impact on customer
satisfaction, in addition, the service company will loose
business. Consequently, the system needs to be highly
available.

Following the categorization by Gray et al. [7], we
want the telephony service to be a highly-available sys-
tem which means it should have a total maximum down-
time of 5 minutes per year. The availability measure
will then be 0.99999. We assume the system is built
on a general purpose computer platform with special-
ized computer telephony hardware. The system is built
using a CORBA [17] Object Request Broker (ORB) to
achieve scalability and reliability through distribution.

6.1 System Architecture

We call the service execution system module
PhoneServiceSystem. As illustrated by Figure 18, it
uses an EventSystem module and a TraderService
module.

Opening up the PhoneServiceSystem module in Fig-
ure 19, we see its main classes and interfaces. Classes are
drawn as rectangles and interfaces as circles. Classes im-
plement and use interfaces. As an example, the diagram
shows that ServiceExecutor implements Servicel and
uses TraderI. In the diagram we have included refer-
ences to QML profiles—such as PlayerProfile P—of
which a subset will be described in section 6.2. To ease
the reading of the diagram we have named required and



provided profiles so that they end with the letters R and
P respectively. We have omitted to draw some interrela-
tionships for the purpose of keeping the diagram simple.

CallHandlerlI, Servicel, and Resourcel are three
important interfaces of the system. The model also
shows that the system uses interfaces provided by the
EventService and TraderService.

When a call is made, the CallHandlerImpl receives
the incoming call through the CallHandlerI interface
and invokes the ServiceExecutor through the Servicel
interface. CallHandlerImpl receives the telephone num-
ber as an argument and maps that to a service identity.
When CallHandlerImpl calls the ServiceExecutor it
supplies the service identifier as an argument and a
CallHandle. The CallHandle contains information
about the call—such as the speech channel—that is
needed during the execution of the service. A new in-
stance of CallHandle is created and initialized by the
CallHandler when an incoming call is received. The in-
formation in the CallHandle remains unchanged for the
remainder of the call.

In order to execute a service, the ServiceExecutor
retrieves the service description associated with the re-
ceived service identifier. It also needs to allocate re-
sources such as databases, players, recorders, etc. To
obtain resources, the ServiceExecutor calls the Trader.
Each resource offer its services when it is initially started
by contacting the trader and registering its offer. To re-
duce complexity of the diagram we omit showing that
resources use the trader.

ServiceExecutor uses the PushSupplier and imple-
ments the PushConsumer interface in the EventService
module. Resources connect to the event service by us-
ing the PushConsumer interfaces. The communication
between the service executor and its resources is asyn-
chronous. When the service executor needs a resource
to perform an operation, it invokes the resource which
returns immediately. The service executor will then con-
tinue executing the service or stop to wait for events.
When the resource has finished its operation, it noti-
fies the service executor by sending an event through
the event service. This communication model allows the

PhoneServiceSystem

;
\
—_

EventService

TraderService

FIG. 18. High-level architecture

service executor to listen for events from many sources
at the same time, which is essential if, for example,
the service executor simultaneously initiates the play-
ing of menu alternatives and waits for responses from
the caller.

Figure 19 also includes references to QoS profiles. In
new designs, clients and services are usually designed to
match each others needs therefore the same profile of-
ten specifies both what clients expect and what services
provide. When clients and services refer to the same pro-
files, it becomes trivial to ensure that the requirements
by a client are satisfied by the service. To point out an
example, CallHandlerImpl requires that the Servicel
interface is implemented with the QoS properties defined
by SEProfile P and at the same time ServiceExecutor
provides Servicel according to the same QoS profile.

In other cases, such as the Trader, are expected
to preexist and therefore have previously specified QoS
properties. In those situations we have one contract
specifying the required properties and another contract
specifying what is provided. Consequently we need to
make sure the provided characteristics satisfy the re-
quired; this is referred to as conformance and is discussed
in section 4.8.

We will now present simplified versions of three main
interfaces in the design. The Servicel interface provides
an operation, called execute, to start the execution of
a service. The service identifier is obtained from a table
that maps phone numbers to services. The CallHandle
argument contain channel identifiers and other data nec-
essary to execute the service.

The Trader allows resources to offer and withdraw
their services. Service executors can invoke the find
or £indA1l operations on the Trader to locate the re-
sources they need. Using a trader allows us to decouple
ServiceExecutorsand resources. This decoupling make
it possible to smoothly introduce new resources and re-
move malfunctioning or deprecated resources. Observe
that this is a much simplified trader for the purpose of
this paper.

Finally, we have the PlayerI that represents a simple
player resource. Players allow us to play a sequence of
messages on the connection associated with the supplied
CallHandle. The idea is that a complete message can be
built up by a sequence of smaller phrases. The interface
allows the service executor to interrupt the playing of
messages by calling stop.

6.2 Reliability

We have already shown in Figure 19 how profiles
are associated with uses and implements relationships
between interfaces and classes. We will now in more
depth discuss what the QoS profiles and contracts should
be for this particular design. For the contracts we will
use the dimensions proposed in section 3. We will not
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present any development process with which you identify
important profiles and their content.

To meet end-to-end reliability requirements, the un-
derlying communications infrastructure, as well as the
execution system, must meet reliability expectations.
We assume that the communications infrastructure is
reliable, and focus on the reliability of the service execu-
tion system.

From a telephone user’s perspective, the interface
CallHandlerI represents the peer on the other side

of the line. Thus, to provide high-availability to tele-

interface ServiceI {
void execute(in Serviceld si, in CallHandle ch)
raises (InvalidSI);
boolean probe() raises (ProbeFailed);

+;

T
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Class diagram for PhoneServiceSystem

phone users, the CallHandlerI service must be highly-
available.

To provide a highly-available telephone service, we re-
quire that the CallhandlerImpl has very short recovery
time and long time between failures. Due to the expected
shopping behavior of telephone service users we must re-
quire the repair time (MTTR) to not significantly exceed
2 minutes and that the variance is small.

The CallHandler does not provide any sophisticated
failure masking, but it has a special kind of object refer-
ence that does not require rebinding after a failure. We

interface TraderI {
OfferId offer(in OfferRec or, in Object obj)
raises (invalidOffer);
Match find(in Criteria cr) raises (noMatch);
MatchSeq findAll(in Criteria cr) raises (noMatch)
void withdraw(in OfferId o) raises (moMatch);

FIG. 20. The Servicel interface

FIG. 21. The TraderI interface



CallServerReliability = Reliability contract {
MTTR {
percentile 100 <= 2;
variance <= 0.3
b
TTF {
percentile 100 > 0.05 days;
percentile 80 > 100 days;
mean >= 140 days;
b
availability >= 0.99999;
contAvailability >= 0.99999;
failureMasking == { omission };
serverFailure == initialState;
rebindPolicy == noRebind;
numQfFailure <= 2 failures/year;
operationSemantics == atMostOnce;

};

CallHandlerProfile P for CallHandlerI = profile {
require CallServerReliability;
}

FIG. 22. Contract and binding for CallHandler

are prepared to accept on average 2 failures per year.
If the service fails, any executing and pending requests
are discontinued and removed. This means we have a at
most once operation semantics. The contract and pro-
file of CallHandlerI as provided by CallHandlerImpl
is described in Figure 22.

From Figure 19 we can see that the reliability of
CallHandlerI directly depends on the reliability of
service defined by Servicel. ServiceExecutor can
not provide any services without resources. Unless
ServiceExecutor can handle failing traders and re-
sources the reliability depends directly on the reliability
of TraderI and any resources it uses. In this example we
want to keep the ServiceExecutor as small and simple
as possible, therefore we propagate high-availability re-
quirements from CallHandlerI to the trader and the re-
sources. This is certainly a major design decision which
will affect the design and implementation of the other
components of the system.

We expect the ServiceExecutor to have a short re-
covery time since it holds no information that we wish
to recover. If it fails, the service interactions it currently

interface PlayerI : Resourcel {

void play(in CallHandle ch, in MsgSeq ms)
raises (InvalidMsg) ;

void stop(in CallHandle ch);

b

executes will be discontinued. We assume that users con-
sider it more annoying if a session is interrupted due to
a failure than if they are unable to connect to the ser-
vice. We therefore require the ServiceExecutor to be
reliable in the sense that it should function adequately
over the duration of a typical service call. Calls are es-
timated to last 3 minutes on average with 80% of the
calls less than 5 minutes. With this in mind, we will re-
quire that the service executor provides high continuous
availability with a time period of 5 minutes.

Since the recovery time is short, we can allow more
frequent failures without compromising the availability
requirements.

The ServiceExecutor recovers to a well defined
initial state and will forget about all executions that
where going on at the time of the failure. The contract
states that rebinding is necessary, which means that
when the service executor is restarted, the CallHandler
receives a notification that it can obtain a reference to
the ServiceExecutor by rebinding. Pending requests
are executed at most once in case of a failure; most likely
they are not executed at all which is considered accept-
able for this system. The contract and profile used for
Servicel are described in Figure 24.

Although the ServiceExecutor itself can recover
rapidly, it still depends on the Trader and the resources.

We expect the Trader to have a relatively short re-
covery time, which relaxes the mean time to failure re-
quirements slightly. We insist that all types of telephony

ServiceExecutorReliability = Reliability contract
{
MTTR < 20 sec;
TTF {
percentile 100 > 0.05 days;
percentile 80 > 20 days;
mean > 24 days;
}
availability >= 0.99999;
contAvailability > 0.999999 ;
failureMasking == { omission };
serverFailure == initialState;
rebindPolicy == rebind;
numQfFailure <= 10 failures/year;
operationSemantics == atMostOnce;

};

SEProfile for Servicel = profile {
require ServiceExecutorReliability;
require Reliability contract

{ dataPolicy == invalid; };

}s

FIG. 23. The PlayerI interface

FIG. 24. Contract and binding for service



services can be executed when the system is up, which
means that all resources must be available and conse-
quently satisfy the high-availability requirements.

The reliability contract for the Trader (Figure 26) is
based on a general contract (HAServiceReliability)
for highly-available services. The contract is abstract in
the sense that it only states the availability requirements
and leaves several of the other dimensions unspecified.
The Trader profile refines it by stating that the recovery
time should be short.

In addition, we state that offer identifiers and object
references returned by the trader are valid even after
a failure. This means that an offer identifier returned
before a failure can be used to withdraw an offer after
the Trader has recovered. Also, any references returned
by the Trader are valid during the Trader’s down period
as well as after it has recovered, assuming, of course, that
the services referred to by the references have not failed.

The start-up time for a service execution is very im-
portant; the time between a call is answered and the
service starts executing must be short and definitely not
more than one second. A start-up time that exceeds
one second can make users believe there is a problem
with the connection and therefore hang-up the phone,

ResourceReliability = Reliability contract {
availability >= 0.99999;

failureMasking == { failure };

serverFailure == initialState;

rebindPolicy == rebind;
PlayerReliability =

ResourceReliability refined by {
MTTR = 7200 sec;
TIF
percentile 100 > 2000 days;
percentile 80 > 6000 days;
mean >= 7000 days;

b

availability >= 0.99999;
contAvailability >= 0.999999;
failureMasking == failure;
serverFailure == initialState;
rebindPolicy == rebind;
num0fFailure <= 0.1 failures/year;
operationSemantics == least_once;
dataPolicy == no_guarantees;

+;

PlayerProfile P for PlayerI = profile {
require PlayerReliability;

};

the consequence being both an unsatisfied customer and
a lost business opportunity.

Having analyzed and estimated the execution times
in the start-up execution path, we require that the find
and findAll operations on the Trader respond quickly.
We do not anticipate the throughput to constitute a bot-
tleneck in this case.

We can relax the performance requirements for the
offer and withdraw operations on the Trader. The rea-
son being that these operations are not time critical from
the service execution point of view. We specify the per-
formance in Figure 26 as part of the TraderProfile P
profile.

The performance profile makes it clear that the im-
plementation of TraderI should give invocations of £ind
and findA11 higher priority than invocations of offer
and withdraw.

A resource service represents a pool of hardware
and software resources that are expected to be highly-
available. If a resource service is down, it is likely that
there are major hardware or software problems that will
take a long time to repair. Since failing resource services
are expected to have long recovery times, they need to
have, in principle, infinite MTTF to satisfy high availabil-

HAServiceReliability = Reliability contract {
availability >= 0.99999;
failureMasking == { omission };
serverFailure == initialState;
rebindPolicy == rebind;
num0fFailure <= 10 failures/year;
operationSemantics == once;

b

TraderProfile_P for TraderI = profile {
require HAServiceReliability refined by {
MTTR {
percentile 100 < 60 ;
variance <= 0.1;

}
+;

from offer.0fferId, result of find, findAll
require Reliability contract
{ dataPolicy == valid; };

from find, findAll require Performance
contract { latency { percentile 90 < 50 }; };

from offer, withdraw require Performance
contract { latency { percentile 80 < 2000 }; };

}s

FIG. 25. Contract and binding for resources

FIG. 26. Contract and binding for the Trader



ity requirements. This does not mean that individual
resource cannot fail, but it does mean that there must
be sufficient redundancy to mask failures.

In Figure 25 we define a general contract, called
ResourceReliability, for ResourceI. The contract
captures that resources need to be highly available. Each
specific resource type—such as PlayerReliability—
will then refine this general contract to specify its in-
dividual QoS properties.

6.3 Discussion

The specification of reliability and performance con-
tracts, and the analysis of inter-component QoS depen-
dencies, have given us many insights and important guid-
ance. As an example, it has helped us realize that the
Trader needs to support fast fail-over and use a reliable
storage. We also found that the reliability of resources
is essential, and that, in this example system, resource
services should be responsible for their own reliability.
The explicit specification also allows us to assign well-
defined values to various dimension which make design
goals and requirements mreo clear.

QML allows detailed descriptions of the QoS asso-
ciated with operations, attributes, and operation pa-
rameters of interfaces. This level of detail is essen-
tial to clearly specify and divide the responsibilities
among client and service implementations. The refine-
ment mechanism is also essential. Refinement allows us
to form hierarchies of contracts and profiles, which al-
lows us to capture QoS requirements at various levels of
abstraction.

Due to the limited space of this paper, we have not
been able to include a full analysis or specification of
the example system. In a real design, we also need to
study what happens when various components fail, es-
timate the frequency of failures due to programming er-
rors, etc. We also need to ensure that the QoS contracts
provided by components actually allows the clients to
satisfy requirements imposed on them. There are vari-
ous modeling techniques available that are applicable to
selected types of systems; see Reibman et al. [14] for an
overview.

In our case, high availability requirements for
CallHandler have resulted in strong demands on other
services in the application. Another design alterna-
tive would be to demand that components such as
the ServiceExecutor can handle failing resources and
switch to other resources when needed. This would re-
quire more from the ServiceExecutor, but allow re-
source services to be less reliable.

Despite the limitations of our example, we believe that
it demonstrates three important points: QoS should be
considered during the design of distributed systems; QoS

requires appropriate language support; QML is useful as
a QoS specification language.

Firstly, we want to stress that considering QoS dur-
ing design is both useful and necessary. It will directly
impact the design and make developers aware of non-
functional requirements.

Secondly, QoS cannot be effectively considered with-
out appropriate language support. We need a language
that helps designer capture QoS requirements and asso-
ciate these with interfaces at a detailed level. We also
need to make QoS requirements and offers first class cit-
izens from a design language point of view.

Finally, we believe the example shows that QML is
suitable to support designers in involving QoS consider-
ations in the design phase.

7. Related Work

Common object-oriented analysis and design lan-
guages, such as UML [2], Objectory [13], Booch nota-
tion [1], and OMT [11], generally lack concepts and con-
structs for QoS specification. In some cases, they have
limited support to deal with temporal aspects or call se-
mantics [1].

Interface definition languages, such as OMG IDL [17],
specify functional properties and lack any notion of QoS.
TINA ODL [19] allows the programmer to associate QoS
requirements with streams and operations. A major dif-
ference between TINA ODL and our approach is that
they syntactically include QoS requirements within in-
terface definitions. Thus, in TINA ODL, one cannot
associate different QoS properties with different imple-
mentations of the same functional interface. Moreover,
TINA ODL does not support refinement of QoS spec-
ifications, which is an essential concept in an object-
oriented setting.

There are a number of languages that support QoS
specification within a single QoS category. The SDL
language [22] has been extended to include specification
of temporal aspects. The RTSynchronizer programming
construct allows modular specification of real-time prop-
erties [15]. These languages are all tied to one particu-
lar QoS category. In contrast, QML is general purpose;
QoS categories are user-defined types in QML, and can
be used to specify QoS properties within arbitrary cate-
gories.

Zinky et al. [20, 21] present a general framework,
called QuO, to implement QoS-enabled distributed ob-
ject systems. The notion of a connection between a client
and a server is a fundamental concept in their framework.
A connection is essentially a QoS-aware communication
channel; the expected and measured QoS behaviors of a
connection are characterized through a number of QoS
regions. A region is a predicate over measurable connec-
tion quantities, such as latency and throughput. When
a connection is established, the client and server agree



upon a specific region; this region captures the expected
QoS behavior of the connection. After connection es-
tablishment, the actual QoS level is continuously moni-
tored, and if the measured QoS level is no longer within
the expected region, the client is notified through an up-
call. The client and server can then adapt to the current
environment and re-negotiate a new expected region.

QuO does not provide anything corresponding to re-
finement, conformance, or fine-grained characterizations
provided by QML.

Within the Object Management Group (OMG) there
is an ongoing effort to specify what is required to extend
CORBA [17] to support QoS-enabled applications. The
current status of the OMG QoS effort is described in [18],
which presents a set of questions on QoS specification
and interfaces. We believe that our approach provides
an effective answer to some of these questions.

8. Discussion

Developing a QoS specification language is only the
first step towards supporting QoS considerations in gen-
eral and, as this paper suggest, as an integral part of
the design process. We need methods that address the
process aspects of designing with QoS in mind. For ex-
ample, we need methods that help the designer make
QoS-based trade-offs, and methods that help the de-
signer decompose the application-level QoS requirements
into QoS properties for individual components. In ad-
dition to methods, we also need tools that can check
consistency and satisfaction of QoS specifications. For
example, it would be desirable, to have a tool that can
check whether a running service meets its QoS specifica-
tion. Although a specification language is not a complete
solution, we still believe it is an important step.

Specifying QoS properties at design time is only the
starting point; eventually we need to implement the de-
sign and ensure that the QoS requirements are satisfied
in the implementation. An important issue that must
be addressed in the implementation, is what action to
take at runtime if the QoS requirements cannot be sat-
isfied in the current execution environment, for exam-
ple, what should happen if the actual response time is
higher than the stated response time requirement. In
most applications, it is not acceptable for a service to
stop executing because its QoS requirements cannot be
satisfied. Instead, one would expect the service to adapt
to its environment through graceful degradation.

For a service to adapt to its environment, it must be
notified about divergence from specified requirements,
and it must be able to dynamically specify relaxed re-
quirements to the infrastructure, and to the services it
depends upon, to communicate how it can gracefully de-
grade and thereby adapt to the current execution en-
vironment. We believe that our concepts of profile and
contract can be used to specify QoS requirements at run-

time as well as at design time. To facilitate runtime
specification, we need profiles and contracts to be first
class values in the implementation language. To achieve
this, we can define a mapping from QML into the im-
plementation language; for example, if the implemen-
tation language is C++, one could map contract types
into classes and contracts into objects instantiated from
those classes. The important thing to notice is that the
concepts remain the same.

9. Concluding Remarks

In this paper we argue that taking QoS into account
during the design of distributed object systems signif-
icantly influences design and implementation decisions.
Late consideration of QoS aspects will often lead to in-
creased development and maintenance costs as well as
systems that fail to meet user expectations.

We have proposed a language, called QML, that will
allow developers to explicitly deal with QoS as they spec-
ify interfaces. In this paper we show how QML can be
used for QoS specification in class model and interface
designs of distributed object systems. QML allows QoS
specifications to be separated from interfaces but asso-
ciated with uses and implementations of services. We
propose a refinement mechanism that allows reuse and
customization of QoS contracts. This refinement mecha-
nism also allows us to deal with the interaction between
QoS specification and interface inheritance; thus we truly
support object-oriented design. We have also described
how we can determine whether one specification satisfies
and other with conformance checking. Finally, QML al-
lows QoS specification at a fine-grained level—operation
arguments and return values—that we believe is neces-
sary in many applications and for many QoS dimensions.

Although this paper focused on the usage of QML
in the context of software design, we intend to use it
for the management of QoS in general. As an example,
based on defined contracts and profiles, we intend to
emit programming language definitions that can be used
to construct concrete QoS parameters. Such parameters
are used to offer and require QoS characteristics at the
application programming interface level.

Our experience suggests that the concepts and lan-
guage proposed in this paper will provide a sound foun-
dation for future QoS specification languages and inte-
gration of such languages with general object-oriented
specification and design languages.
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