i

The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)
Sant Fe, New Mexico, April 27-30, 1998

Dynamic Management of CORBA Trader Federation

Djamel Belaid, Nicolas Provenzano,
and Chantal Taconet
Institut National Des Telecommunications

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Dynamic Management of CORBA Trader Federation

Djamel Belaid, Nicolas Provenzano, Chantal Taconet
Institut National des Télécommunications
Evry, France

Abstract In WANSs, huge number oflients, and distances be-
tween clients, have naturally led to replicate some
In Wide Area Networks, tools for discovering objectsserver objects on geographically distributed networks.
that provide a given service, and for choosing one ouEvery day, new replicas may appear. One issue is to
of many are essential. The CORBA trading service i®ffer final users tools for transparent discovering
one of these tools. A trader federation extends theervices and in the case of replicated servers, for dis-
limit of a discovery, thanks to the cooperation of sev-covering the “best” one, which may be different for
eral trading servers. However, in a federation, coopeach client.
eration links are manually and statically established.
In this article, we propose an Extended Trading Serviools currently offered to find out server objects are
ice, which manages a trader federation dynamicallynot adapted for finding the “best” server for each cli-
With Extended Trading Service, optimized links be-ent. Traditional name servers suchDa$S [Mock87],
tween traders are automatically set up thanks to theompel one to give different names to different repli-
use of a minimum-weight spanning tree. Cycles incas (e.g. differendRLs[Bern94]) and so don't help
discovery propagation are eliminated. Links evolveend users to choose the best server. DN8 support
dynamically in order to adapt to the modification of for replication [Bris95] automatically selects a server
the underlying topology and the failure of an interme-through a round robin algorithm and as a result the
diate trader or link. The Extended Trading Service ixhosen server is not adapted to each client. Discovery
able to organize discovered objects from the nearest tools, such a#lta Vista Search EngingSeit96], offer
the furthest according to a distance function chosen faglobal searching on the Internet but selection is on text
the federation. Such management is provided by spéformation only.
cialized trading servers conforming @MG Trading
Service Specification. Some new kinds of discovery tools are appearing.
With the Globelocation service, servers are registered
in a global hierarchical tree [vS96], which is then used
for finding the nearest server. The Internet community
is thinking of URN (Uniform Resource Name)
[Moat97] to replaceURL in order to have better sup-
1. Introduction port for replicated and movable serverShe trading
service specification, proposed fODP [ODP93] and
The expansion of Wide Area Network@/ANs) has then CORBA[OMG96], has been defined to find the
already led to information superhighways. From nowbest server(s) for each client thanks to a service type
on, a huge number of computer services are being dend a list of properties.
veloped and made available omrAWs. These seiges
should be available from a wide range of computetn WANs, some seiges are available thanks to the
stations and through a wide range of networks. Objeatooperation of a set of distributed servers. We illus-
middleware, such as those built wi@ORBA (Com- trate this feature through the following examples. The
mon Object Request Broker Architectur@)MlG97], News USENETKant86] is distributed to final users
help to implement distributed services without takingthanks to the cooperation of several news servers dis-
care of distribution configuration. tributed on the Internet. In tHdBone [Deer90], the

YINT, 9 rue Charles Fourier, 91 011 Evry Cedex, France.
{Djamel.Belaid, Nicolas.Provenzano, Chantal. Taconet}@int-evry.fr

subset of Internet supporting multicast routing, packetfaces, no matter where objects are located or how ob-
are forwarded thanks to tunnels set up between a set j@cts are implemented.

cooperating multicast routers. And a federation of

cooperating traders may offer the trading service. Thén CORBAeach object is identified by abject ref-
study of theseexamples shows that cooperation linkserenceand is associated to an interface and an imple-
between these servers are set up manually by humamnentation. An interface allows clients to access a set

administrators on each server. These cooperation linksf services offered by a server object.

Interfaces are

are neither necessarily adapted to the underlying netescribed with th€€ ORBAInterface Description Lan-
work topology nor fault tolerant. One issue is to offerguage(CORBA-IDL).

a tool for linking cooperating servers efficiently and
dynamically.

CORBAArchitecture consists of the following compo-

nents:

The CORBAtrading specification does not offer any o
tool for linking cooperating traders dynamically either.
In this article, we define a specialized trader, con-
forming to theOMG specification, which offers dy-
namic management of trader federation. Our federa-
tion is based on the cooperating server graph model
[Taco97] that optimizes the links set up between coop-
erating traders and helps them to find the nearest
server to each client.

This article is organized as follows. In Section 2, we
present a synthesis of th€ORBA trading service
specification and we study limitations of this service in
the WAN context. In Section 3, we summarize the
Cooperating Server Graph model that offers to manage
links between cooperating servers dynamically. We
use this model in Section 4 to define the architecture
of a specialized trader for MNs. In Sction 5 we
study its implementation and compare its behavior
with traditional traders in the WAN context.

2. CORBA Trading Service description

In this section, after a brief description of G®RBA
architecture, we present the main features of the
CORBA Trading Service, and then some optimizations
of this service intended to the WAN context.

2.1. CORBA Architecture

Common Object Request Broker
(CORBA [OMG97] is an open distributed object com-
puting infrastructure standardized by ®&ject Man-
agement GroufOMG). CORBAallows development

Object Request Broker (ORB) is a middleware
that establishes client-server interaction between
distributed objects. When a client invokes a
method on a server, whatever programming lan-
guage or operating system used for server imple-
mentation,ORB has to find the server implemen-
tation location, deliver the request to this server,
and return invocation results to the client. In or-
der to allow interaction between objects on differ-
entORBs OMG has defined &eneral Inter-ORB
Protocol (GIOP), which specifies a standard trans-
fer syntax and protocolGIOP is designed to op-
erate over a connection-oriented transport proto-
col. Internet Inter-ORB ProtocqlllOP) is a con-
crete implementation of the abstraGiOP for
TCP/IP.

Object Services is a collection of services that
provide basic, nearly system-level, functions for
implementing objects. We can mention Naming
Service, Life Cycle Service, and Trading Service.

Common Facilities is a collection of services
shared by many applications. For example,
graphical objects may be used by every applica-
tion for providing a user interface.

Applications Objects are specific to each appli-
cation. They may use anfyORBA objects (e.qg.
Object Services and Common Facilities). They
are not standardized I9MG.

Architecture2.2. Obtaining an object reference

In order to invoke a method on a server object, a client
must first hold arobject referenceto this server. An

of applications in which distributed objects communi-object reference is associated to at most one CORBA
cate with one another thanks to well-defined inter-object. With an object reference, t&&RBis in charge

of locating the object and delivering the invocation toLookup interfaces. TheRegister interface pro-

the server. vides theexport method for exporting a service of-
fer. The Lookup Interface provides theguery

Object references may be obtained by the followingmethod for importing a list of service offers. The im-

means. First, with re- porter may express itgreferenceswith a constraint
solve_initial_references ORB operation, language. Traders organize discovered service offers
clients may obtain references to well known servicesccording to these preferences.

such as InterfaceRepository and Name-

Service . Clients may also obtain object referencesTraders can be linked together itrader federation.
from output parameters of any method. The Namindrigure 2.1. gives a simple example of federation be-
Service allows clients to obtain object referencedween traderd\, B, andC. Target trader (e.g. tradBj
thanks to object symbolic names. And finally, theestablishes a link with a source trader (e.g. tréjer
Trading Service allows clients to get object referencesising thelink interface. Then, the source trader (i.e.
selected thanks to a type of service name and a list ofader A) is able to invoke target trader (i.e. trader B)
properties. with aquery method. These links are therefore ex-
plicitly created and are unidirectional. All the links
form a directed graph called theading graph. The
Link interface provides methods to manage the links,
2.3. Trading Service such as thadd_link method used by a target trader
to define a new link to a source trader, and rihe
In this subsection we describe the main features of thmove_link method to remove a link.
trading service.

The trading service has been designed to allow th{ |mporter Exporter
registration and discovery of objects. tiader is an

object that provides the trading service in a distributed

environment. Server objects advertiseegport their J

service offers to traders.Exporters may be server

objects or other objects acting on the behalf of the L ooku Admin Rei Prox }7
server. Client objects invoke traders to discover or P H H egister H y

import service offers matching a given type of service

and a set oproperties. Clients are callednporters; Senvi A
. vice Offers

they can be the consumers of the service or act on b

half of other objects. OMG-Trader

Link

A service typeis defined in a Service Repository with
an interface type and a set of zero or more properties.
Each property is described by a name, a mode and a
type of value. If a property mode is mandatory, then
each instance of the service type must provide an ap-
propriate value for this property when exporting its
service offer. Each service type is identified by a
uniqueServiceTypeName

L ookup HAdmin HRegister H Proxy

Service Offers B

OMG-Trader

Lookup HAdmin HRegister H Proxy

A service offer consists of &erviceTypeName , a

list of properties (property name and value), and an

object reference to the interface providing the service.

Some properties are dynamic; for these, values are not

in the service offer, but obtained explicitly from the Figyre 2.1: Traders Interfaces and Federation

interface of a dynamic property evaluator given by the

exporter of the service. A federation allows traders to extend an importation to
a trading graph.Importation policies modify trader

The main trader interfaces are shown in Figure 2.1pehavior for a discovery in a federation. Importation
The most important ones are tRegister and the

Service Offers c

OMG-Trader

policies are associated to each trader, each link, argkrvice on several traders. However, improvement
each importation. A combination of these policiescould be achieved on the following points.
conditions the list of traders visited for an importation.
Trader policy overrides link policy, which itself over- As they are now defined, trader federations are bound
rides importer policy. The main importation policies to be established “manually” by an administrator. As
are given as follows(i) search_card , gives the a result, they may not be adapted to the underlying
number of service offers to be searchédii) re- network topology. Furthermore, trader graphs may
turn_card , gives the number of ordered servicecontain cycles (i.e. a search may visit the same trader
offers to be returned to the cliergtii) hop_count , several times).
gives the maximum number of links that may be vis-
ited for a search(iv) starting_trader , gives a As the federation is usually static, it cannot react in a
path to a remote trader on which the search must statransparent way to network events such as trader or
(v) follow_policy , defines the trader behavior for communication link failures, or changes on the un-
propagating a search. The following policies &ig: derlying network topology. Therefore, it doesn’t adapt
local_only , only locally registered service offers to events occurring on the underlying WAN.
are returnedyfii) if _no_local , the search is only
propagated if the number of local offers matching thelhe trading service doesn’t define the concept of dis-
request is less than the number of offers to be returnadnce between objects. Consequently, the client can-
(i.e. return_card); (iii) always , the search is not express the search of the nearest service, and the
propagated till the expected number of offers istrader cannot organize service offers according to dis-
reached (i.esearch_card). tance between clients and servers, even though this

information could be important because of differences
Besides theRegister , Lookup and Link inter- in communication costs in a WAN.
faces, the trading service defines three other interfaces.
The Admin interface allows one to modify and list The integration of theCooperating Server Graph
interfaces and policies supported by a trader. Thenodel, which we describe in Section 3, in the trading
Proxy interface is used to register service offers forservice bring solutions to the above remarks and there-
which the object reference is not known at the exporfore would improve and optimize this service. We
tation but obtained at query time thanks to a proxypresent in Section 4 a proposal ofxtended Trading
object. And theServiceTypeRepository inter- Serviceusing this model.
face is used for the management of the repository
service types. Traders have to implement at least the
Lookup interface.

3. Cooperating Server Graph model

In this section, we summarize tR®operating Server
2.4. Trading service optimization Graph model CSG), which is described in details in
[Taco97b]. The aim of the CSG model is to optimize
In this sub-section, we present possible optimizationand dynamically manage links between cooperating
of OMG trading service and especially for that par-servers over a WAN. This model defines a protocol for
ticular part which concerns trader federation. dynamically updating the links according to different
events happening, either to some servers, or to the un-
Because of the huge number of services available oderlying WAN. This model has already been adapted
WANsSs, it is easier for end users to search a servicér the cooperation of WAN location servers for the
according to its characteristics rather than to its nameChorus micro-kernel [Taco97a]. We present in Sec-
Indeed, it's easier to get information on Internettion 4 the use of this model for dynamically managing
through a search engine than by giving its URLs. Bea trader federation.
cause of the increase in the number of services, the
trading service is bound to become more useful than
the naming service.
3.1. Cooperating Server Graph definition
Trader federation is an interesting feature in the con-
text of WANS: itallows one to distribute the trading On a WAN, we consider a set oboperating servers
(several hundred or so) which cooperate in order to

offer a service (e.g. a federation of traders which offerégate the samdroadcast tree between all the nodes.

the trading service). The cooperating servers are gedVe use a minimum-weight spanning tree calculated by

graphically distributed on different computgtes(e.g. the Prim algorithm [Prim57]. This tree is used to

LANs) which may be separated by long distancesbroadcast information to all the cooperating servers.

Each site is made up of physically close machines. Th#/ith the broadcast tree, broadcasting is made with a

sites are logically linked (e.g. they belong to the sameninimum communication cost (according to the dis-

company or cooperate for a given project) and physitance function), with a distribution of the communica-

cally connected by an underlying WAN. tion load between all the nodes and without the need
of a stop control for eliminating the CSG cycles.

As there may be several sets of cooperating servers on

the same WAN, we associate to each one a uniquéigure 3.1-a gives a simple example of a CSG with

identifier (e.g. symbolic name). eleven cooperating servers distributed all over the
world. Figure 3.1-b shows the broadcast tree calcu-

The model uses distance function. At a given time, lated for this configuration.

this function associates a value to each couple of co-

operating servers. This value has to be representative

of the communication cost between the couple of co-

operating servers (e.g. financial cost, latency induced.2. Dynamic update of the CSG

by physical distance or available bandwidth), and may

change over time. For Inter'net, we have gsed the dIﬁ:he model includes a protocol for updating the CSG
tance function used by routing protocols (i.e. number

i and its associated broadcast tree in order to take into
of hops between sites). .) -
account the following events: the addition or removal
. . . of a cooperating server, modification of the underlying
We build a graph, namely a CSG, in which the node AN topology which leads to some CSG distance

are the cooperating servers. The nodes are linked by . .

. L : changes and temporary failure of a cooperating server
weighted edge providing that a distance value has beeonr of & communication link
evaluated between the two nodes. The CSG is simple, '

k-connected and not oriented. In order to be more efficient and because of differ-

ences in the duration of events, the model offers three

levels for taking those events into accouit:the al-

ternative behavior in case of failurgij) the local
Amsterdam modifications;(iii) and the global change of CSG ver-
sion.

4
15 12
New York
Phnom Penl ‘

Washington -
6 2 Paris |

Austin
(3 estimated distance between two nodes j Marseille

When a failure is just discovered, i.e. when one node
can't propagate an information to its neighbors in the
tree, this node uses the alternative behavior in case of
failure. It propagates the information on behalf of the
BEIIG . Tokyo failed neighboTto the neighbors of the failed neighbor
g msterdam in the tree. For example, in Figure 3.1, if n&@om
Penh cannot propagate to nodekyq node Phnom
Muich Penhwill decide to propagate to nod&eijung and
Austinon behalf of noddokya This behavior is pos-
sible because of the global knowledge of the broadcast

Lille

Phnom Penh

Mersaille tree. This behavior maintains the continuity of the
service.
Figure 3.1: A CSG example (a) and its associated
broadcast tree (b) The local modification level is used for long time fail-

ure, long time failure recovery, addition and removal
We assume that the number of nodes in a CSG is low
(some hundreds or so). So each cooperating server o])]
stores in its own memory the layout of the CSG. In order to simplify, we call it the failed neighbor but

Thanks to the CSG, all the cooperating servers calc'® communication failure may come from a failed
server or from a network failure.

of cooperating servers. A local modification consistsWe present in Section 4 how the integration of this

in a coherent change of the broadcast tree seen onganeral model optimizes@GORBATrader federation.

node, its neighbors, and the neighbors of its neighbors.

For example, if the failure of nodeokyolasts after a

given delay (e.g. several minutes), a new configuration

of the tree shown on Figure 3.2 between nodes 4. The Extended Trading Service

jung, Phnom Penhand Austin is calculated. This

modification concerning nod&okyo is made coher-

ently onTokyds neighbors in the broadcast tree (i.e.

Beijung PhnomPenh and Austi) and on the neigh- 4.1. Global description

bors of its neighbors broadcast tree (iNew York

Local modifications keep a broadcast tree, but this treéhe Extended Trading Service is an evolution of the

is no longer a minimum-weight spanning tree. OMG trading serice, which integrates the Cooperat-
ing Server Graph model (cf. Section 3). The aim of
this evolution is to optimize the management of trader
federations and object importation over a set of traders

Belgd o glokvo scattered on a WAN.

Amsterdam

Lille e The Extended Trading Service is offered by a federa-
tion of CSG-traders belonging to the same logical do-
main. A CSG-trader is a specialization of @vG-
trader preserving OMG-trader intades. For an im-

Marssille porter or an exporter, the CSG-trader is therefore en-

tirely conform to the OMG sification and offers the

same service as t@MG-trader. Any imfementation

. . . f the OMG tradi i b ialized i
A CSG version change is activated as soon as the decé'SGirader rading seree may be specialized in a

radation ratéof the broadcast tree goes past a given

threshold. The activation is triggered by a Changinqu consider a CSG in which each node is a CSG-
Version Server@QVS) chosen dynamically in the set of trader. Besides its OMG trading siee function, a
cooperating servers. The new version takes into A sG-trader ensures automatic federation of, CSG-
count all the events considered as permanent since tt&%ders. Each CSG-trader storesd8Gand calculates
'6?5‘ version: very Iong. 'time failures, very long timethe broadcast tree. In a CSG-traders' federation, the
distance phahges, addition and removal of nodes. T\:gropagation of importations follow the broadcast tree.
new version is propagated on the 'broadcast tree. T very CSG-trader manages dynamically (in collabora-
nodes hgve to agree on a version before they C&bn with the other CSG-traders) the links of the fed-
communicate. eration. Links evolve according to events occurring on

. the network. CSG-traders may be linked to OMG-
All the CSG updates are made dynamically. Thanks t?raders using OMG links. Qirt search is then per-

the three update levels, the number of version chang(?armed according to client choice eitherOMG mode
is reduced. The links between all the nodes follow th

i MG link i ing th
evolutions of a CSG and its underlying WAN topol-%ISIng OMG links or in CSG mode using the broadcast

Th del tolerat (b £ fail tree. Finally, in order to reduce the number of ex-
ogy. € model tolerates a great number ot 1allureSy qq g importation, each CSG-trader manages a cache
In case of too many failures leading to dividing theof service offers
CSG into several isolated classeserver cooperation '

is limited inside each class.

Figure 3.2: Local modification of the broadcast tree

4.2. The CSG-trader architecture

3 The degradation rate is estimated with the sum of the

weights of the degraded broadcast tree and the sum off he general architecture of a CSG-trader is presented
the weights of the minimum spanning tree that could in Figure 4.1. A CSG-trader consists of one OMG-
be used.
“If a node cannot communicate with a node and someis a partition. Its class is made up with the sub-trees
of the neighbors of the failed neighbor it assumes theraith which the communication is still possible.

trader part, called the trader part, and a CSG specialFhe CSGManagementinterface provides methods for
zation called the CSG part. the management of a CSG. Among them we can men-
tion ask_for_csg that allows a new CSG-trader to

get theCSG in order to set up a link with the nearest
mporter Exporter | | CSG-Trader | | OMG-Trader CSG-trader using the add_extended_link
method.

query() extended qu

The ExtendedLookup interface is a derivation of

% ExtendedL ookup % the OMG-traderLookup interface. It provides sev-

eral methods(i) the overridedquery for all clients

Savice (except CSG-tradersjji) the extended query for
Cache the propagation of a search over a CSG-trader federa-

tion; (iii) theextended_answer to return the result

Lookup HAdmm HRegiSter H Proxy of a search to the source trader. Compared to the

query method, theextended_query add two pa-
Service Offers rameters: a&CSGidentifier and the name of the CSG-
OMG-Trader part trader initiator of the importation. It is invoked in a

CSG-Trader part

one way method. The service offer result (if any), as
well as the reference of the CSG-trader that gives the
offer, is returned directly to the initiator CSG-trader
later, using the extended_answer one way
method. The initiator trader is then able to evaluate

As a CSG-trader is derived from an OMG-trader, itthe distances of each discovered offer.

inherits from all theOMG-trader interfices namely the
Lookup interface and possibly theRegister

Admin, Eroxy andLink mterfacgs. Thetink in- In the CSG mode, a search is limited in a CSG. In
terface is only used to create links betwe@MG- . . : o
) . order to allow clients to specify @SGidentifier, we
traders and CSG-traders, which we c@aMG links. . X
. ! o define theCSGproperty. TheCSGproperty is useful
These links and their follow policies are managed byonl for the CSG part of a CSG-trader
the trader part. Because links between CSG-traders y P '
have a different semantic they are managed by a sp

cial interface.

Figure 4.1: CSG-trader Architecture

4.2.1. The OMG-trader part

4.2.4. Service importation in a CSG-trader federation

When a CSG-trader receives a query request with its
CSGidentifier, it firstly asks its trader part witlo-
cal_only policy (without the CSG property), and
then, if necessary, propagates the request. If the CSG-

A CSG-trader federation is established according tct)rader does not belong to the indica@8G it can be

the CSG. The links between CSG-traders, which Wcon5|dered as eelay trader and forward the request

call CSG links, are entirely managed by the CSG par oa CSG tra’de_r bglongmg to thg req.u_llfeﬂG If the
gy client doesn't indicate anZSG identifier, then the

and are not explicitly created. Indeed, every CSG-
search is not carried out over the CSG federation but is

trader knows all others CSG-traders, calculates & . . ; .
. . accomplished following th©MG links exclusively.

broadcast tree, and consequently knows its neighbors

in the broadcast tree. A CSG link is essentially com- 25 Service offer cache
posed of the target CSG-trader name as well as a ref-~""
erence to its interfaces.

4.2.2. The CSG-trader federation

The goal of the CSG-trader is to optimize importation
over a WAN. For this purpose, each CSG-trader stores
a service offer cache in which it stores results of pre-

: Lo o vious extended importations. All clients of the same
The extended trading service inherits interfaces froanG—trader benefit from this cache

the OMG trading service. We add two new interfaces:
the CSGManagementinterface and th&xtended-
Lookup interface.

4.2.3. The CSG-trader specific interfaces

The service offer cache holds an LRU table in which
each cell consists of a service type name, a set of prop-
erties, the policy used to discover this offer, and the
reference of the CSG-trader that returned this service

offer. When a CSG-trader receivesgja@ery request it
looks in the cache for a cell matching tpeery . If it
finds any, it sends aldcal only " query request

5.1. Representation of a CSG

A CSG-trader federation is represented on each CSG-

to the CSG-trader referenced in that cell in order tdrader with the same data structure, in which each node
verify the validity of the service offer and get its dy- or CSG-trader is described by TaaderElement
namic properties. |If the target CSG-trader returns thehich consists of the following components.

service offer, the cell age is updated; otherwise the cell
is deleted. .

4.2.6. Importation policies

The CSG-trader provides the same importation polie
cies as th©OMG-trader. We present here the importa-
tion policies whose semantic has been adapted to CSG
federations.

With the if_no_local and always policies, the
client request is propagated following the broadcast
tree. Each intermediate CSG-trader invokes the one
way extended_query method in parallel to all the

following sub-trees. Results, if any, are returned di-

The CSG-trader identification in the CSG.

The distance function type (adapted to the federa-
tion).

The reference of it&SCManagement interface
(for dynamic CSG evolution).

The reference of itExtendedLookup interface

(for query operation propagation).

Its network address (for evaluation of distances
between CSG-traders).

The sequence of its neighbors in the broadcast tree
(this information represents the broadcast tree).

rectly to the initiator CSG-trader. With this behavior, A CSG is represented byGORBAobject (typeCSG.

the number of intermediate traders waiting for answerfn this object is storedi) the running version of the
is significantly reduced, the drawback is that discoveryCSG (global information common to all nodes), and
goes on on each subtree independantly even if resulfs) node specific information for recording local modi-

have been found on other subtrees.

fications. The different components of this object are

as follows.

The hop_count policy preserves its semantic and
applies to the broadcast tree. For example, with a
hop_count of "1", only the initiator CSG-trader’s
neighbors on the tree will be visited.

Only the if_no_local policy uses the cache. In
order to ensure the locality of the service offers, the
cache is not used with thecal_only policy. We
also have chosen not to use the cache withathe |
ways policy, in order to preserve the quality of the
results rather than the performance of the search.

Finally, if every server object exports its service offers
to the nearest CSG-trader, and the client imports from
the nearest one, the extended trading service may or-
ganize the results from the nearest to the furthest,
thanks to the use of the CSG graph.

5. CSG-trader implementation

CSGidentifier
The running CSG version number

The number of CSG-traders (known locally). Be-
cause of local modification unknown on this node,
this number may be different from the number of
CSG-traders in the current broadcast tree.

A sequence offraderElement . This sequence
may not be the same on each node because of lo-
cal modifications.

The distance matrix (distance between CSG-
traders). If a distance has not been evaluated, the
infinite value is attributed.

The table of distance between the local CSG-
trader and other CSG-traderl the distance is in-
finite in the matrix, the distance is evaluated by
the sum of distances in the shortest path between
the two nodes (the CSG is connected).

A CSGis described by atDL interface and may be
In this section, we first present the representation of abtained by another CSG-trader. This feature is inter-
CSGin a CSG-trader, we then describe our CSG-tradeesting for the addition of a new CSG-trader in the
prototype, finally we compare tHeMG trading serv- CSG, and for the propagation ofqaery request to
ice and the Extended Trading Service with a simpleanother CSG.
federation example,.

5.2. Prototype other links are bi-directional. In this figure we present
the invocations needed for a discovery in the OMG

We have implemented a prototype of CSG-trader omgraph (Figure 5.1-a) and in the CSG federation (Figure

Orbix 2.T with Sun Solaris 2.5 This prototype uses 5.1-b).

IIOP references.

At the time of our implementation we did not have the
sources of any OMG-Trader, so we have lengented sging |,
a simplified OMG-trader which supports_ookup ,
Register andLink interfaces. But we can easily A
adapt our prototype to any OMG-trader iempenta-
tion.

New York

=

v// ’/I
[
- >3) I N /‘/7>.
W 6, S - >

Phnom Penh

Austin

Our CSG-trader prototype is a specialization of the
simplified OMG-Trader which furthermore imple- query

ments CSGManagement and ExtendedLookup (&) OMG Federation

interfaces, provides dynamic updates of the CSG andseiug , kayo,,,,, ,,,,,,

manages theffer service cache g odam

Marseille

With this prototype we have done the following ele-
mentary tests on a LAN.

Phnom Penh

* Addition and removal of a CSG-trader in the fed- ' R Marslle

eration. e
(b) CSG Federation

* Automatic CSG version change on all the nodes. [] serviceoffer —~unidirectional link

= invocation <~ bidirectional link
* Propagation of importation on a CSG-trader fed-
eration withlocal_only , if_no_local and

- Figure 5.1: Example of discovery
always policies.

e The alternative behavior in case of failure of anFor this example, we compare the number of method
intermediate CSG-trader. invocations needed f@ddMG Trading Serice and Ex-
- tended Trading Service. The query request example
* CSG-trader and OMG-Trader coliaition. uses the policyif no_local , the search_card
and thereturn_card both have value 1, the initia-
tor trader isWashington The matching service offers
5.3. Comparison between a CSG-trader are on nodesTokyo and Marseille The Extended
and an OMG-Trader Trading request propagates requests in parallel on all
the following sub-trees. Dashed arrows symbolize
In order to give an interesting comparison between aethod invocations.
CSG-trader and an OMG-Trader we would have
needed a comple®MG-traderimplementation and a For this example, an importation @MG federtion
testbed for WANs. We did not have any of these twcgenerates 12 two-way method invocations and on the
conditions, that is the reason why we don’'t give anyCSG-federation it generates only 10 one way method
performance comparison. We present here a compaiirvocations. InOMG fedeations, double links (bi-
son illustrated by an example in order to highlight in-directional links) lead to double invocations (even
teresting features of the Extended Trading Service. though there is a stop control). So, even if the OMG-
trader graph is a tree, two times more invocations
In this section, we use the CSG federation of Figurevould be needed. Number of invocations will also be
3.1. An example of possible associa®MG trading reduced by the CSG trader cache management.
graph is given in Figure 5.1-a. In Figure 5.1 unidirec-
tional OMG links are represented with one arrow,In order to avoid cycles, th©OMG-traders need to
store and compare request identifiers (case of cycle
WashingtonNew YorkandAustir) at each node.

® Jona TechnologCORBA implementation

With anOMG-trader fedeation, no guarantee is given sent to the nearest trader to clients and servers,
on the existence of a path between each pair of nodesearches may find the nearest server to each client.
In the example, th&okyoservice offer can’t be found. Asynchronous treatment of requests increases the
Special attention is needed to configure @WIG- number of requests handled in parallel by each trader.
trader federation.
We have then described a CSG-trader prototype for
With an OMG trader fedation each intermediate Orbix 2.1, which is a specialization of a simplified
trader in the importation has to be waiting for an antrader that we have implemented.
swer (RPC invocation). With the CSG federation only
the initiator trader is waiting for an answer. In the definition and implementation of the CSG-trader
we paid a special attention to stay conform to the
We argue that CSG-traders would facilitate trader fedtrading service interface specification. Our optimiza-
eration. However, more tests are needed to verify thBons are transparent for trading service clients. In
efficiency of the overall CSG federation mechanisms. order to facilitate the choice of a search domain (i.e. a
CSG), and of a starting trader, it would be interesting
to adapt the trader specification.

6. Conclusion

Because of distributed computing, the evolution andlrading service and migration

diversity of services offered on today's and tomorrow’s

WANSs, discovering tools such as the trading servicaVe would like to emphasize that migration, taken into

should become essential for end users. account inCORBAIife cycle service, and trading ex-
portation should be linked together. GORBASspeci-

In this paper, we have described B®RBAtrading fication, an object reference should stay valid after a

service specified by thOMG. With this service cli- migration. So, a service offer stays valid after a mi-

ents may import service offers exported on tradersgration. Yet, in order to both facilitat®RB location

Cooperating traders may be federated to offer exservice and preserve the nearest server semantic of-

tended searches. Yet, we have shown that as links afered by CSG-traders in case of object migration, we

statically and manually established they are notrgue that a server migration should be coupled with

adapted to the underlying network topology and do nothe migration of its associated service offer. And so

evolve dynamically. Moreover, they do not help cli- service offers will be registered on the trader which is

ents to choose the nearest replicated object, whiléhe nearest to the server object.

because of communication delay and cost on WAN;

this would be an important feature.

We have presented th€ooperating Server Graph CORBA domains
model. With this model, the links between cooperat-
ing servers are established dynamically. FurthermoreZORBA specification defines several notion of do-
thanks to an inter server protocol, the links evolve tanains (interoperability domains, policy domains, secu-
react to different events such as intermediate servers dty domains). A more precise definition of adminis-
communication links failures, and modifications in thetrative domain seems to be an important issue.
underlying network topology. With this model, the
propagation of information to all servers is efficient. Just like CSG, a domain may take into account the
The knowledge of distance information between thdogical relationship betwee®RBs For example, all
servers allows traders to organize the results from ththe computer sites of a company may defi@GRBA
nearest to the furthest. domain. Some of th€ORBASservices could benefit
from such domain definition. The life cycle service
We have defined the CSG-trader that integrates theould limit some migration and replication inside a
CSG model in an OMG-Trader. CSG-traders offersCORBAdomain. The trading service could restrict
the following optimizations. Trader federation is es-searches inside @ORBAdomain. Every object would
tablished and evolves dynamically. Extended servicde associated to one or several administration do-
offers searches follow a minimum-weight spanningmains. And so, some operations may be authorized
tree. Assuming that imp@tion and exportation are

between objects of the same domain only, while othe [Taco97b] C. Taconet. Graphe de Réseaux Coopérants et
may be authorized between different domains.

[VS96]

References

[Bern94]

[Bris95]

[Deer9Q]

[Moat97]

[Mock87]

[ODP93]

[OMG96]

[OMG97]

[Prim57]

[Seit96]

T. Berners-Lee, L. Masinter, M. McCat
Uniform Resource Locators (URLRFC173¢
December 1994.

T. Brisco. DNS Support for LoadaBancing.
RFC 1794, April 1995.

E.S. Deering and D.R. Cheriton. Multicast
Routing in Datagram Internetworks and Ex-
tended LANs. ACM transactions on Computer
Systems8(2), May 1990.

R. Moats.
1997.

URN SyntaxRFC 2141 May

P. Mockapetris. Domain Names Implementa-
tion and SpecificationRFC1035 November
1987.

Information Technology- Open Distributed
Computing — ODP Trading Fation. ISO/IEC
JTC1/SC21.59 Draft, ITU-TS-SG 7 Q16 rap-
port, November 1997.

Trading Object ServiceOMG Document 96-
05-06, RFP5 submissipiviay 1996.

Common Object Request Broker: Architecture
and Specification. Revision 2.0MG Docu-
ment,August 1997.

R.C. Prim. Shortest Connection Networks and
some GeneralizationBell Syst. Techno. 36,
1957.

R. Seitzer, E.J. Ray, and D.S. Ray. Alta Vista
Search Revolution: How to find anything on
the InternetDigital Press New Jersey, 1996.

[Taco97a] C. Taconet and G. Bernard. Object Location in

Wide Area Networks. IfPorceedings of ER-
SADS’97 European Research Seminar on Ad-
vances in Distributed Systen¥&nal, Switzer-
land, March 1997.

Localisation Dynamique pour les Systémes
Répartis sur Réseaux Etendu®h.D. Thesis
University of Evry, France, October 1997.

M. Van Steen, F.J. Hauck, and A.S. Tanen-
baum. A model for World wide Tracking of
Distributed Objects. In proceedings of
TINA'96, Heidelberg, Germany, September
1996.

