USENIX Association

Proceedings of the
6" USENIX Conference on Object-Oriented
Technologies and Systems
(COOTS'01)

San Antonio, Texas, USA
January 29 - February 2, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




Multi-Dispatch in the Java Virtual Machine: Design and | mplementation

Christopher Dutchyn Paul Lu  Duane Szafron Steven Bromlingg Wade Holst

* Dept. of Computing Science ¢ Dept. of Computer Science
University of Alberta The University of Western Ontario
Edmonton, Alberta, Canada, T6G 2E8 London, Ontario, Canada, N6A 5B7
{dutchyn,paullu,duane,bromlih@cs.ualberta.ca wade@csd.uwo.ca
Abstract selection based upon the types of the arguments. This

method selection process is knowndispatch. It can
Mainstream object-oriented languages, such as C+#uccur at compile-time or at execution-time. In the for-
and Javd, provide only a restricted form of polymor- mer case, where only the static type information is
phic methods, namely uni-receiver dispatch. In com-available, we havestatic dispatch (method overload-
mon programming situations, developers must working). The latter case is known aynamic dispatch
around this limitation. We describe how to extend the (dynamic method overriding or virtual functions) and
Java Virtual Machine to support multi-dispatch and ex- object-oriented languages leverage it to provide poly-
amine the complications that Java imposes on multi-morphism — the execution of type-specific program
dispatch in practice. Our technique avoids changes t@ode.
the Java programming language itself, maintains sourc
code and library compatibility, and isolates the perfor-

mance penalty and semantic changes of multi-metho Ing dispatch. Uni-dispatch languages select a method

dispatch to the program sections which use it. We hav: O )
) o ased upon the type of one distinguished argument;

micro-benchmark and application-level performance re- L .
multi-dispatch languages consider more than one, and

Zlijsltjsatf((:)f:e? gyfl:er::adv\\:Ic())ribal S slfjlqzlépFle;:?\t/)(l; I(Dl:AOISeAC) potentially all, of the arguments at dispatch time. For
tions (SRP) dispatcher, and a tuned SRP dispatcher. Ou XLaCr)nSplz,S Sr:gll(t:alk"[164] |rs ; lftri“(';ii'SDEtlt%hl Isnguage.
general-purpose techniqueopides smaller dispatch la- [ ]a_ ec .[ ]a_e ulti-dispatch fanguages.
tency than programmer-written double-dispatch CodeOther terms, like multiple dispatch, are used in the liter-

ature. However, the term multiple dispatch is confusing

with equivalent functionality. since it can mean either successive uni-dispatches or a
single multi-dispatch. In fact, in this paper, we compare
multi-dispatch to double dispatch, which uses two uni-
dispatches.

?Ne can divide OO languages into two broad categories
é)ased upon how many argemts are considered dur-

1 Introduction

Object-oriented (O0) languages provide powerful tools
for expressing computations. One key abstraction is theC++ [24] and Java [15] are dynamic uni-dispatch lan-
concept of aype hierarchy which describes the relation- guages. However, for both languages, the compiler
ships among types. Objects represent instances of thes®nsiders the static types of all arguments when com-
different types. Most existing object-oriented languagespiling method invocations. Therefore, we ceggard
require each object variable to have a programmerthese languages as supporting static multi-dispatch. Fig-
assignedtatic type. The compiler uses this information ure 1 depicts both dynamic uni-dispatch and static multi-
to recognize some coding errors. Trenciple of sub- dispatch in Java.

stitutability mandates that in any location where type  Uni-dispatch limits the method selection process to con-
is expected, any sub-type dfis acceptable. But, substi- sider only a single argument, usually the receiver. This
tutability allows that object variable to have a different is a substantial limitation and standard programming id-
(but relatedynamic type at runtime. ioms exist to overcome this restriction. As a motivation
d for multi-dispatch, we describe one programming idiom

Another key facility found in OO languages is metho
y Taciity founc 1 guages | that demonstrates the need for multi-dispatch, describe

1Java is a trademark of Sun Microsystems, Inc.



class Point { the type of thelbj ect argument before continuing to
int x, y; ' o perform a type-specific comparison. Another common
void draw Canvas c) { // Point-specific code }| yse fordouble dispatch is in drag-and-drop applications,

void translate(int t) {x+=t; y+=t;} .

void translate(int tXint tY) {x+=tX y+=tY:} Where the result of a user action depgnds on both.the data
} object dragged and on the target object. A generic drag-
class Col or Poi nt extends Point { and-drop sche_ma forces the programmer to test d_ata

Col or c; types and re-dispatch to a more specific method. A third

void draw(Canvas C) { // ColorPoint code } example is in event-driven programming. As we saw
} . _ _ in Figure 2, applications are written using base classes
// same static type, different dynamc types such asConponent andEvent , but we need to take ac-

Point Pp = new Point(); . o
Point Pc = new Col or Point(); tion based upon the specific types of batinponent

// static milti-dispatch andEvent . Indeed, the need for multi-dispatch is ubig-

Pp.translate(5); // one int version uitous enough that two of the original design patterns,
Pp.translate(1,2); // two int version Visitor and Strategy, are work-arounds to supply multi-
// dynamic uni-dispatch dispatch functionality within uni-dispatch languages.
EE; ﬂij&} jgﬂxgﬁi x '23; Zi ',_-,'(,,d;f%fj,aw) Consider how the AWT example could be re-written if
dynamic multi-dispatch was available in Java. An equiv-
Figure 1: Dispatch Techniques in Java alent program, partially using multi—dispatch, would re-

semble Figure 2(b). For clarity, we have not completely

converted the code to use multi-dispatch; we maintain
how it can be replaced by multi-dispatch, list the ad-the case statement and double dispatch to select among
vantages of using multi-dispatch to replace the idiomaticMouseEvent categories. A more complete factoring
code, and measure the cost of using multi-dispatch withof MouseEvent into MouseBut t onEvent andMouse-

one of our current multi-dispatch algorithms. Mot i onEvent would eliminate the remaining double
dispatch, resulting in &ull Multi-Dispatch version of
1.1 Double Dispatch the code. The dynamic multi-dispatcher will select the

correct method at runtime based upon tigpatchable

Doubledispatch occurs when a method explicitly checks arguments in addition to thereceiver argument (the in-

an argument type and executes different code as a restance ofConponent ). Individual component types can
sult of this check. Double dispatch is illustrated in Fig- Still override the methods that accept specific event types
ure 2(a) (from Sun’s AWT classes) where tivecess- (e.g. KeyEvent , FocusEvent ) and will do so without
Event (AWEvent ) method must process events in dif- invoking the double-dispatch code.

ferent ways, since event objects are instances of differtpq multi-dispatch version is shorter and clearer.

ent classes. Since all of the events are placed in a queY§owever, it requires the Java Virtual Machine
whose static element type BATEvent , the compiler (JVM) [20] to directly dispatch anEvent to the
loses the more specific dynamic type information. Whengqrect processEvent (AWrEvent) method.  Our

an element is removed from the queue for processing, it$ogified JVM povides this facility and correctly
dynamic type must be explicitly checked to pick the ap- gxecytes the multi-dispatch code discussed above.
propri.ate action. This is an example of the well-known Furthermore, Table 1, a subset of Table 4, shows that
container problem [5]. multi-dispatch is substantially faster than interpreted
Double dispatch suffers from a number of disadvan-double dispatch and even faster than JiT-ed double
tages. First, double dispatch has the overhead of indispatch. Note that the numbers in Table 1 are based on
voking a second method. Second, the double-dispatckingle-threaded code.

program is longer and more complex; this provides . ith th . | .
more opportunity for coding errors. Third, the double- Our experience with the Swing GUI classes [26] rein-

dispatch program is more difficult to maintain since fOrces our belief that double dispatch in AWT is a sig-
adding a new event type requires not only the code ton|f|cant factor in Swing applications. First, Swing does
handle the new event. but another cascaelesk i f not operate without AWT, instead ea@WrEvent is
statement. ' accepted by a SwingConponent . Therefore, every

mouse-click and key-press is double dispatched through
The need for double dispatch develops naturally in sev-AWT into Swing. Next, Swing type-checks the event
eral common situations. Consider binary operations [4].and double dispatches again. Internally, Swing avoids

such as theonpar eTo( Ooj ect) method defined inin-  further double dispatch by coding t#eMEvent type
terfaceConpar abl e. The programmer must ascertain



package java.awt ;
cl ass Conponent {

// doubl e dispatch events to subConponent
voi d processEvent (AWTEvent e) {
if (e instanceof FocusEvent) {
processFocusEvent (( FocusEvent)e);
} else if (e instanceof MuseEvent) {
switch (e.getID()) {
case MouseEvent. MOUSE_.PRESSED:

case MouseEvent . MOUSE_EXI TED:
processM©useEvent (( MouseEvent)e);
break;

case MouseEvent. MOUSE.MOVED:

case MouseEvent . MOUSE_DRAGGED:
processMuseMt i onEvent (( MouseEvent)e);
break;

} else if (e instanceof KeyEvent) {
processKeyEvent (( KeyEvent)e);

} else if (e instanceof ConponentEvent) {
pr ocessConponent Event ( ( Conponent Event) e) ;

} else if (e instanceof InputMethodEvent) {
processl| nput Met hodEvent ( (1 nput Met hodEvent)e);

// other events ignored by Conponent
}

voi d processFocusEvent (FocusEvent e) {...}

voi d processMuseEvent (MouseEvent e) {...}

voi d processhMuseMtionEvent (MuseEvent e) {...}

voi d processKeyEvent (KeyEvent e) {...}

voi d processConponent Event (Conponent Event e) {...}

voi d processl nput Met hodEvent (| nput Met hodEvent e) {...}

(a) Double Dispatch in Java

package java.aw;
cl ass Conponent {

(b) Equivalent Codein Multi-Dispatch Java

voi d processEvent (AWEvent e) {...}

voi d processEvent (MuseEvent e) {

switch (e.get1D()) {
case MuseEvent . MOUSE_-PRESSED:

case MyuseEvent. MOUSE_EXI TED:
processMouseEvent (( MbuseEvent)e);
br eak;

case MyuseEvent. MOUSE_MOVED:

case MyuseEvent . MOUSE_DRAGGED:
processMouseMt i onEvent ( ( MouseEvent)e);
break;

}
}

voi d processEvent (FocusEvent e) {...}

voi d processMuseEvent (MouseEvent e) {...}

voi d processhbuseMtionEvent (MouseEvent e) {...}
void processEvent (KeyEvent e) {...}

voi d processEvent (Conponent Event e) {...}

voi d processEvent (| nput Met hodEvent e) {...}

Figure 2: Double vs. Multi-Dispatch in Java

into the selector (e.gfirelnternal Event()). De-
spite the limitations this imposes on the programmer, it
is clear that double dispatch is still the standard tech-
nique in Swing as well.

Also, a multi-dispatch JVM could benefit other lan-

guages. For example, Standard ML, Scheme, and Eiffel

have implementations which generate JVM-compatible
binary files. Extending these languages to include multi-
dispatch semantics becomes straightforward. Unlike
techniques based on source code translation, our multi
dispatch JVM can be directly used by other languages.

(e) The existing class libraries are not affected.
(H The existing reflection API is preserved.

2. The introduction of a dynamic version of Java’s
static multi-dispatch algorithm.

3. The first performance results for table-based multi-
dispatch techniques in a mainstream language.

\We begin by reviewing some important details about the
uni-dispatch JVM. Next, we sketch our JVM modifica-
tions to enable multi-dispatch. Then, we present experi-

The research contributions of this paper are: mental results for implementations of our multi-dispatch
techniques. This is followed by a discussion of several
1. The design and implementation of an extended Javgomplex issues that a practical multi-dispatch Java must
Virtual Machine that supports arbitrary-arity multi- address and a description of some of the details of our
dispatch with the properties: implementation. Finally, we close with a description of

(a) The Java syntax is not modified.
(b) The Java compiler is not modified.

future work and a review of related approaches to multi-
dispatch.

(c) The programmer can select which classes) Background

should use multi-dispatch.

(d) The performance and semantics of uni- The Java Programming Language [15] is a static

dispatch methods are not affected.

multi-dispatch, dynamic uni-dispatch, dynamic loading



Dispatch Interpreter OpendIT

Type Time in us (¢) | Normalized || Timeinus (e) | Normalized
Double 091 (0.00) 1.00 048 (0.01) 1.00
Multi- 0.34 (0.00) 0.37 032 (0.01) 0.67
Full Multi- 0.32 (0.00) 0.35 0.32 (0.00) 0.67

Table 1: AWT Event Dispatch Comparison
(Call-site Dispatch Time in microseconds, Subset of Table 4)

object-oriented language. Our primary design goal isConceptually, the constant pool consists of an array con-
to extend the dynamic method selection to optionally taining text strings and tagged references to text strings.
and efficiently consider all arguments, without affecting In Figure 3, clas®oi nt is represented by a tag entry at
the syntax of the language or any other semantics. Oultocation 1 that indicates that it isa.Asstag and that we
secondary goals are to retain the dynamic and reflectiveshould look at constant pool location 2 for the name text.
properties of Java. Then, the constant pool contains the text strirgi‘nt ”

In order to meet these goals, we chose to modify theat location 2. Therefore, a class symbol requires two

JVM [20] implementation, rather than modifying the constant pool (_antrl_es. Method reference_s are similar, ex-
. . cept they require five constant pool entries.
programming language itself. Java programs are com-

piled byj avac (or other compiler) into sequences of .

bytecodes — primitive operations of a simple stack- ; ;:'E-’Qfs f’foim,, Point

based computer. These bytecodes are interpreted by a| 3 ciass #a ColorPoint

JVM written for each hardware platform. Weed@an 4 TEXT "ColorPoint

with the classic VM (now known as theResearch Vir- o NeHOD e Pomt<nt0%
tual Machine?) written in C and distributed by Sun Mi- 7 TEXT ninit>" and forour infializer
crosystems, Inc. Other JVM implementations exist and | 8 TEXT "Ov"

many includgust-in-time (JIT) compiler technology to 13 “N"E,\TA'EETDYPE zil 11102 F;‘r’]‘gtf:;drrg‘évr:(r'ﬁg;’;‘(’fs?’v
enhance the interpretation speed at runtime by replacing | 11| Text “draw"

the bytecodes with equivalent native machine instruc- | 12| TEXT "(LCanvas;)V"

tions. At present, our modified JVM is compatible with 12 #‘g"("TE&TYPE f‘éf‘ #15 used for our field
the OpenJIT 1.1.15 [21] compiler. 15| TEXT “Color"

Before we look at how to implement multi-dispatch in ] _ ]
the virtual machine, we first need to understand the bi- Figure 3: A Simple Constant Pool

nary representation that the virtual machine executesy, our example, constant pool location 9 contains the tag
how method invocations are translated into the virtuald(_xjarmg that it contains ®ETHOD. It references the

machine code, and how the JVM actually dispatches the;| ass tag at location 1, to define the static type of the

call-sites. class containing the method to be invoked. In this case,
the class happens to Ii nt itself, but, more often,
2.1 Java Classfile format this is not the case. TheETHOD entry also references

the NAME-AND-TYPE entry at location 10. ThiSAME-

The JVM reads the bytecodes, along with some necesAND-TYPE entry contains pointers to text entries at lo-
sary symbolic information from a binary representation, cations 11 and 12. The first location, 11, contains the
known as a cl ass file. Each. cl ass file contains a method name,draw’. The second location, 12, con-
symbol table for one class, a description of its super-tains an encoded signatureL'Canvas; ) V" describing
classes, and a series of method descriptions containinte number of arguments to the method, their types, and
the actual bytecodes to interpret. We leverage the symthe return type from the method. In our example, we see
bolic information, called theconstant pool, to imple- ~ one class argument with nameahvas” and that the
ment multi-dispatch. return type isvoi d.

Figure 3 shows the layout of the constant pool for thep 2 Static Multi-Dispatch in Javac
Col or Poi nt class shown in Figure 1.

e T eh v rel — The Java compiler converts source code into a binary
The Research Virtual machine was initially released aslssic ; ; ; _
reference VM. Sun later renamed it th&act VM. With the advent representation. When it encounters a method invoca

of the HotSpot VM, the classic VM was renamed again, becoming thetior?’ j avac must emit a C_OnStant pool entry tha_‘t de-
Research VM. scribes the method to be invoked. It must provide an



exact description, so that, for instance, the twans- M.. If so, then the compiler drop&/. from the candi-
late(...) methods inPoi nt can be distinguished at date list.

runtime.  Therefore, '.t must examine the types of the.Unfortunater, both tests can fail. To illustrate this, con-
arguments at a call-site and select between them. This

. . : . ider the first two methods in Figure 4. The first argu-
selection process, which considers the static types of al : . .
. . o ment of the first methoddpl or Poi nt ) can be widened
arguments, can be viewed as a static multi-dispatch.

to the type of the first argument of the second method
The Java Language pecification, 2nd Edition (Poi nt). But the opposite is true for the second ar-
(JLS) [15] provides an explicit algorithm for static gument of each method. If we invoks! or Box with
multi-dispatch calledMost Specific Applicable (MSA). two Col or Poi nt arguments, both methods apply. If the
At a call-site, the compilebegins with a list of all  third method was not present, we would haveuabigu-
methods implemented and inherited by the (static)ousmethod error. The third method, taking tw@ol or -
receiver type. Through a series of culling operations,Poi nt s, removes the ambiguity because it is more spe-
the compiler reduces the set of methods down to a singleific than both of the other methods. It allows both of the
most specific method. The first operation removesothers to be culled, giving a single most specific method.
methods with the wrong name, methods that accept
an incorrect number ofrgunents, and methods that |col or Box(Col or Poi nt p1, Point p2) {...}

are not accessible from the call-site. This latter group| col or Box(Point pi1, ColorPoint p2) {...}
includes private methods called from another class and Bof(fcgl"g:%ic;t ”stlhogo(gfggfit agtz’; gg’ ty}
protected methods called from outside of the package. ' -

. . ) Figure 4: Ambiguous and Conflict Methods
Next, any methods which are not compatible with the 9 g

static type of theargunents are also removed. This Primitive types*, when used as arguments, are tested at
test relies upon testingidening conversions, where one  compilation time in the same way as other types. Primi-
type T, can be widened to anothét,,,., if and only  tive widening conversions are defined which effectively
if Tsyp is the same type &5, Or a subtype of s, pe-- impose a standard type hierarchy on the primitive types.
For example, &ocusEvent can be widened to afAT- The compiler inserts widening casts as needed.
Event because the latter is a super-type of the for-
mer. The opposite is not valid: aAWrEvent cannot 2.3 Dynamic Uni-Dispatch in the JVM
be widened to &ocusEvent ; indeed a type-cast from
AWEvent to FocusEvent would need to be a type- NOw we turn our attention to dispatching polymorphic
checkecharrowing conversion. call-sites at runtime. Methods are stored in tlé ass

file as sequences of virtual machine instructions. Within
Finally,j avac attempts to locate the singiost specific 5 stream of bytecodes, method invocations are repre-
method among the remaining subsestlically appli-  sented byi nvoke bytecodes that occupy three bytes
cable methods. One methoM(Ty,, ..., i) IS CON-  The first byte contains the opcodexps for i nvoke-
sidered more specific tha(T»,., ..., Tzx) ifand only i rtyal ). The remaining two bytes form an index
if each argument typd’,,; can be widened t@%,; for  intg the constant pool. The constant pool must con-
each(i = 1,...,n), and for somej, T, ; cannot be  4in a METHOD entry at the given index. Thientry
widened toTy ;. In effect, this means that any set of contains the static type of the receiver argument (as
arguments acceptable KTy 1, ..., Tz.») IS also acCept-  the cLass linked entry), and the method name and
able toMTy1, ..., i), but not vice versa. signature (through theAME&TYPE entry). Figure 5

Given the subset of applicable metholayac selects ~Shows the pseudo-bytecdtiéor invoking the method
one M, as its tentatively most specific. It then checks Component . processEvent (AWIEvent) twice.

each other candidate methdd, by testing whether its From the opcodej nvokevi rtual , the JVM knows
arguments can be widened to the corresponding arguthat the next two bytes contain the constant pool index
ment in M;. If this is successful, the/, is at least of aMETHOD descriptor. From that descriptor, the JVM
as specific as\f;; the compiler adoptd/,. as the new can locate the method name and signature. The JVM
tentatively most specific method — the methdf} is  parses the signature to discover that the method to be
culled from the candidate list. If the first test, whether invoked requires a receivargument and onetloer ar-

M, be widened tal;, is unsuccessful, then the com- gument. Therefore, the JVM peeks into the operand

piler checks the other direction: cadd,; be widened to 4Java provides non-object typest e, char, short , i nt, | ong,
f1 oat, anddoubl e. These are called primitive types.
3The JLS separately recognizes identity conversionSo@us- 5Thei nvokei nt er f ace bytecodes occupy 5 bytes.
Event can be converted into BocusEvent). Javac does not dis- 6Rather than show constant pool indices, we show their values di-

tinguish them, so we do the same for our exposition. rectly.



Conponent aConponent = new SubConponent (...);
AWEvent anEvent = new FocusEvent(...);
FocusEvent aFocusEvent = new FocusEvent(...);

aConponent . processEvent (anEvent) ;
aConponent . processEvent (aFocusEvent);

(a) Polymorphic Call-sites in Source.

apush aComponent
apush anEvent
i nvokevi rtual Component::processEvent:(LAWTEvent;)V
apush
apush
i nvokevi rtual

aComponent
aFocusEvent
Component::processEvent:(LAWTEvent;)V

(b) Polymorphic Call-sites in Bytecodes.

Figure 5: Polymorphic Call-sites — two views

stack and locates the receiver argument. At this point,
the VM has the information it needs to begin searching
for the method to invoke. The JVM has the name, the
signature, and the receiver of the message.

The VM Specification (section 5.4.3.3) provides a re-
cursive agorithm for resolving a method reference and
locating the correct method: Beginning with the meth-
ods defined for the precise receiver argument type, scan
for an exact match for the name and signature. If one
is not found, search the superclass’ of the receiver argu-
ment, continuing up the superclass chain until Cbj ect ,
the root of the type hierarchy, is searched. If an exact
match is not found, throw an Abst r act Met hodEr r or .
This look-up process applies to each of the i nvoke
bytecodes.

This look-up process is a time-intensive operation. To
reduce the overhead of method look-up, the resolved
method is cached in the constant pool alongsidethe orig-
inal method reference. The next time this method refer-
enceis applied by another i nvoke bytecode, the cached
method is used directly.

Once amethod is resolved, a method-specific invoker is
executed to begin the interpretation of the new method.
This invoker performs method-specific operations, such
as acquiring alock in the case of synchr oni zed meth-
ods, constructing aJVM activation record in the case of
bytecode methods, or preparing a machine-level activa-
tion record for nat i ve methods.

The Research JVM recognizes aspecial caseininvoking
methods: any private methods, final methods, or con-
structors can be handled in a non-virtual mode. Each of
these situations do not require dynamic dispatch. But,

7 Java provides only single inheritance of program code.

multi-dispatch will need to handle these special cases.

3 Design

We now have sufficient information to describe the gen-
eral design for extending the JVM to support multi-
dispatch. In short, we mark classes which are to use
multi-dispatch and replace their method invokers with
one that selects a more specific method based on the ac-
tual arguments. Hence, existing uni-dispatch method in-
vocations are unchanged in any way.

Marking the . cl ass files without changing the lan-
guage syntax is straightforward. We created an empty
interface Mul ti Di spat chabl e and any class which
will provide multi-dispatch methods must implement
that interface. The . cl ass file retains that interface
name and the virtual machine can easily check for this at
classloading time. Our implementation does not change
the syntax of the Java programming language or the bi-
nary . cl ass file format in any way.

Our interface-based technique allows us to retain com-
patibility with existing programs, compilers, and li-
braries. Any class that implements our marker interface
has different semantics for dispatch. But, the semantics
of existing uni-dispatch programs and libraries are not
changed since they do not implement the interface. The
programmer retains complete control and responsibility
for designating multi-dispatchable classes. This allows
the developer to consciously target the multi-dispatch
technique to known programming situations, such as
double dispatch.

At dispatch time, our multi-invoker executes instead of
the origina VM invoker. Our invoker locates a more-
precise method based on the dynamic types of the invo-
cation arguments and executes it in place of the original
method.

The non-virtual mode invocations need to be handled
specialy. Constructors are never multi-dispatched. We
found that constructor chaining within a class could
cause infinite loops. Private and final multi-methods are
still multi-dispatched.

We implemented two different dispatch agorithms.
First, MSA implements a dynamic version of the
Java Most Specific Applicable dgorithm used by the
j avac compiler. Second, Single Receiver Projections
(SRP) [17] is a high performance table-based technique
devel oped at the University of Alberta. We examine both
a framework-based SRP and a tuned SRP implementa-
tion. Section 6 provides implementation details, but we
first present the results of our experiments.



4 Experimental Results

So far, we have used four different micro-benchmarks
and a new implementation of Swing/AWT to test our
multi-dispatcher.

The first micro-benchmark uses the j avac compiler
to recompile itself while running on the multi-dispatch
VM. Thej avac compiler has not been modified, there-
fore the experiment demonstrates the backward compat-
ibility of the modified VM for uni-dispatch applications.
The measured overheads of uni-dispatch j avac running
on the multi-dispatch VM are minimal. The other three
micro-benchmarks demonstrate multi-dispatch correct-
ness, multi-dispatch performance as compared to dou-
ble dispatch, and multi-dispatch performance as arity
increases. All of the micro-benchmarks are single-
threaded.

For our application-level tests, we modified Swing, the
second-generation GUI library bundled with Java 2, to
use multi-dispatch. As expected, Swing is a double-
dispatch-intensive library. We dso converted AWT be-
cause Swing depends heavily on AWT to dispatch the
events into top-level Swing components.

All experiments were executed on a dedicated Intel-
architecture PC equipped with two 550MHz Celeron
processors, a 100MHz front-side bus, and 256 MB of
memory. The operating system is Linux 2.2.16 with
glibc version 2.1. The Sun Linux JDK 1.2.2 code was
compiled using GNU C version 2.95.2, with optimiza-
tion flags as supplied by Sun’s makefiles®. The table-
based multi-dispatch code [22] was compiled using GNU
G++ version 2.95.2°. The Sun JDK only supports the
gr een threading model, which is implemented using
pthreads under Linux. We report average and standard
deviations for 10 runs of each benchmark.

We tested three different virtual machines. First, we
have jdk, the standard JDK 1.2.2 Linux runtime, run-
ning in interpreter mode. This VM serves as abaseline
for comparing the remaining four multi-dispatch sys-
tems. Second, we have a non-JIT multi-dispatch VM
with three different multi-dispatch techniques, jdk-MSA,
and two implementations (jdk-fSRP, and jdk-tSRP) of
the same a gorithm. Third, we have customized OpendI T
1.1.15 to be compatible with our multi-dispatch VM.

For the first and second micro-benchmarks, (Tables 2
and 3) we report user+system time in seconds, along
with normalized values against the jdk runtime. For the
third and fourth experiments (Table 4 and Figure 7), we
describe individual dispatch times in microseconds, ig-

8Typical flagsare- 2
Swith options -ansi -fno-inplicit-tenplates -fkeep-
inline-functions -Q2.

noring other costs. Inthefinal benchmark, Swing, were-
port execution times for a synthetic application that cre-
ates a number of components and inserts 200,000 events
into the event queue.

4.1 Javac — Compatibility Test

The first experiment requires the runtime to load and
execute the j avac compiler to trandate the entire
sun. t ool s hierarchy of Java source filesinto . cl ass
files. This hierarchy includes 234 source files encom-
passing 49,798 lines of code (excluding comments).
Each compilation was verified by comparing the error
messages'® and by checksumming the generated bina-
ries. Each virtual machine passed the test; the timing
results are shown in Table 2. These times come from the
Unix ti me user command and are averages, with stan-
dard deviation, of 10 runs.

[ vm | Timeinsec. (o) ] Norm. ]|
jok 6541+ 025 (0.39) | 100
jok-MSA | 6738+031 (0.14) | 103
jok-TSRP | 68.22+045 (0.25) | 105
jdk-tSRP | 67.13+051 (0.35) | 103

Table 2: Compeatibility Testing and Performance

(User+System Time to Recompile sun. t ool s, in seconds)

The negligible differences between the uni-dispatch
and multi-dispatch execution times demonstrate that
the overhead of running uni-dispatch code on a multi-
dispatch VM is essentially zero. Note that in our im-
plementation, table-based JVMs do not construct a dis-
patch table until the first multi-dispatchable method is
inserted.

4.2 Simple Multi-Dispatch

In this micro-benchmark, we show that multi-dispatch
is correct and measure its overhead. The testing code
is short and is shown in Figure 6. Note that class MD-
JDri ver implements the marker interface Mul ti Di s-
pat chabl e. The compiler uses static multi-dispatch to
code al four calls to MDIDri ver. n( X, X) to execute
the method for two arguments of type A, because that is
the static type of both anA and aB. Multi-dispatch ac-
tually selects among the four methods based upon the
dynamic types of the arguments. Therefore, correct out-
put consists of 100,000 repetitions of four consecutive
lines: AA, AB, BA, and BB. For timing purposes, al out-
put was redirected to / dev/ nul | to reduce the impact
of input/output. Our results are summarized in Table 3.

The table-based techniques, jdk-fSRP and jdk-tSRP, suf-
fer from a substantial startup time, whereas j dk- MSA

10There is one warning noting that 8 files used deprecated APIs.



class A { }
class B extends A { }

class MDIDriver inplenents MultiDispatchable {
String m(A al, A a2) { return "AA"; }
String m(A al, B b2) { return "AB"; }
String m(B bl, A a2) { return "BA"; }
String m(B bl, B b2) { return "BB"; }

static public void main(String args[]) {
final int LOOPSIZE = 100000;

A anA = new A();

A aB = new B();

MDIDriver d = new MDJIDriver();

for( int i=0; i<LOOPSIZE; i++) {
Systemout . println(d. n(anA, anA));
Systemout. println(d. m(anA, aB));
Systemout.println(d.m(aB, anA));
Systemout.println(d.m(aB, aB));
}

}

}

Figure 6: Simple Multi-Dispatch Testing Code

primarily uses existing data structures found in the VM
interpreter and lazily computes any additional val ues.
This reduces the cost of program startup.

[ VM | Timein sec. (o) [ Norm. | Correct ||
jok 2640+068 (0.07) | 100 No
jdk-MSA | 28.88+0.83 (0.22) 1.10 Yes
jok-TSRP | 3153+091 (0.11) | 1.20 Yes
jok-1SRP | 29.48+0.84 (0.17) | 1.12 Yes

Table 3: Simple Multi-Dispatch
(User+System Execution Time in seconds)

4.3 Double Dispatch of Events

Our third experiment involves computing the perfor-
mance differences between double dispatch and the two
multi-dispatch implementations of the example given in
Figure 2. We constructed a synthetic type hierarchy of
AWTEvent classes, to match those in Figure 2. The dis-
cussion of Swing follows in Section 4.5. We aso con-
structed three different component types:

Double Dispatch (DD) implements double dispatch
via type-cases and programmer-coded type num-
bering as shown in Figure 2(a). ™

Multi-Dispatch (MD) implements multi-dispatch as
shown in Figure 2(b), where the type-cases from
DD have been replaced with multi-dispatch.

1 Type-cases are not the most effective double-dispatch technique,
but this code matches Sun’s AWT implementation. For a comparison
with other double-dispatch techniques, see [8, 13].

Full Multi-Dispatch (FMD) eliminates the type-cases
and the programmer-coded type-numbering from
DD. It divides MouseEvent into two different
classes and eliminates the swi t ch statement.

To avoid inlining effects, we added code for updating
an instance variable to the body of each process-

Event (AWIEvent). This experiment consists of dis-
patching atotal of one million eventsthrough pr ocess-

Event (AWIEvent ). Each event type appears equally
often, as we iterate over an array containing equal num-
bers of each event. We compute the loop overhead, sub-
tract the overhead amount, and then divide the remaining
time by the number of events dispatched. Thetiming re-
sults are shown in Table 4.

Also, we give an additional timing value for our cus-
tom SRP implementation, where we disabled mutual ex-
clusion in the dispatcher. Currently our implementation
uses a costly monitor to ensure that no other thread is up-
dating the dispatch tables during a multi-dispatch. High-
performance concurrent-read exclusive-write protocols
can eliminate this overhead; the nolock value represents
this highest-performance case.

As DD does not declare itself multi-dispatchable, the
similarity of the results in column 2 of Table 4 again
shows that our multi-dispatchable virtual machines do
not significantly penalize uni-dispatch code. Further,
we see that the cost of interpreting numerous expen-
sive VM bytecodes, such asi nst anceof , followed by
another i nvokevi rtual (which is DD’s strategy), is
more costly than our multi-dispatch techniques. The full
multi-dispatch implementation (FM D) is faster than the
partial multi-dispatch (M D). Thisis reasonable because
M D ends up doubl e-dispatching two of every six events.

Again, we see that the framework-based SRP technique
suffers from considerable initial overhead. We hypothe-
sizethat it isaresult of the object-oriented nature of our
implementation of the table-based techniques. In each
dispatch, several C++ objects are created and destroyed
on the heap. Our tuned SRP implementation, jdk-tSRP,
removes this overhead and provides faster dispatch per-
formance than programmer-coded double dispatch.

OpendIT compilation gains only minor improvements
for the multi-dispatch system. This matches our ex-
pectations since OpendIT callsthesamesel ect Mul ti -
Met hod() routinethat the interpreter uses, thereisonly
a dlight benefit from avoiding some interpreter frame
manipul ations.

4.4  Arity Effects

Our final micro-benchmark explores the time penalties
as the number of dispatchable arguments and applicable



Interpreter Opend T

Dispatch DD MD FMD DD MD FMD
VM Time (o) | Time (o) | Time (o) Time (o) | Time (o) | Time (o)
jdk 091 (0.00) — — 048 (0.00) — —
jdk-MSA 0.95 (0.00) 263 (0.01) 249 (0.02) 0.95 (0.00) 255 (0.04) 243 (0.03)
jdk-fSRP 0.96 (0.01) 312 (0.08) 252 (0.05) 0.96 (0.01) 290 (0.05) 247  (0.05)
jdk-tSRP 094 (0.00) 0.75 (0.03) 0.72 (0.02) 0.95 (0.00) 0.74  (0.02) 0.71 (0.01)
nolock 095 (0.00) 0.34 (0.00) 0.32 (0.00) 0.95 (0.00) 032 (0.01 0.32 (0.00)

Table 4: Event Dispatch Comparison
(Call-site Dispatch Timesin microseconds)

methods grow. To do this, we built a simple hierarchy
of five classes (one root class A, with three subclasses
B, C, and D, and finally class E as a subclass of C) and
constructed methods of different arities against that hi-
erarchy. We defined the following methods:

e classes A, B, C, D, and E contain unary methods
R n() (where R represents the receiver argument
class).

e classes A, B, C, D, and E aso implement five binary
methods, R n( X) where X can beany of A, B, C, D,
or E.

e classesA, B, C, D, and E implement 25 ternary meth-
ods, R m( X, Y) where X and Y can be any of A, B,
C, D, orE.

e classes A, B, C, D, and E implement 125 quaternary
methods, R m( X, Y, 2) where X, Y, and Z can be
any of A, B,C, D, or E.

MSA looks at one fewer dispatchable arguments than
the table-based techniques because the receiver argu-
ment has already been dispatched by the VM. For in-
stance, given a unary method, MSA makes no widen-
ing conversions for dispatchable arguments. A binary
method requires MSA to check only one widening con-
version. The table-based techniques dispatch on all ar-
guments and gain no benefit from the dispatch done by
the VM.

We invoke one million methods for each arity. This
means that each of the unary methods is executed
200,000 times. However each of the quaternary methods
is executed only 1,600 times. After computing the loop
overhead via an empty loop, we determine the elapsed
time to millisecond accuracy and determine the time
taken for each dispatch. Our results are shown in Fig-
ure’”.

We can eval uate the arity effectsin the uni-dispatch case
by coding a third level of double dispatch. Already the
overhead of constructing a third activation record ex-
ceeds the dispatch time of our tuned SRP implementa-

tion. Also, our SRP implementations suffer only lin-
ear growth in time-penalties as arity increases, whereas
MSA suffers quadratic effects.

Avrity Effects on Multi-Dispatch

Dispatch Latency (microseconds)

L L
1 2 3 4
Arity (including single receiver)

Figure 7: Impact of Arity on Dispatch Latency
4.5 Swing and AWT

Our final test is to apply multi-dispatch to AWT and
Swing applications. To do this, we needed to rewrite
AWT and Swing to take advantage of multi-dispatch.

We modified 11% (92 out of 846) of the classes in the
AWT and Swing hierarchies. We eliminated 171 deci-
sion points, but needed to insert 123 new methods to
replace existing double-dispatch code sections. Within
the modified classes, we removed 5% of the condition-
as and reduced the average number of choice points per
method from 3.8 to 2.0 per method. Thisreductionillus-
trates the value of multi-dispatch in reducing code com-
plexity.

Inal, 57 classes were added, al of them new event types
to replace those previously recognized only by a specia
typeid (asin the AWT examples described previously).
Our multi-dispatch libraries are a drop-in replacement
that executes a total of 7.7% fewer method invocations
and gives virtually identical performance with applica-
tions such as Swi ngSet . In our sample application,
we found that the number of multi-dispatches executed
almost exactly equaled the total reduction in method in-



Uni-Swing Multi-Swing
Stage Methods || Uni-Methods | Multi-methods
warm-up 901,938 901,795 160  (0.02%)
event loop || 32,543,684 27,807,327 | 2,350,172 (7.7%)

Table 5: Swing Application Method Invocations

vocations. This suggests that every multi-dispatch re-
placed adoubl e dispatch in the original Swing and AWT
libraries.

We verified the operation of the entire unmodified
Swi hgSet application with our replacement libraries.
Finally to measure performance, we timed a simple
Swing application that handles 200,000 AWTEvent s of
different types. The timing results are givenin Table 6.

Dispatch Uni-Swing Multi-Swing
VM Time (o) | Time (o)
jdk 28.03 (0.35) —
jok-MSA | 28.69 (0.31) | 70.09 (0.15)
jok-tSRP | 29.33 (0.42) | 28.30 (0.36)

Table 6: Swing Application Execution Time
(Event loop timesin seconds)

The Swing and AWT conversion also demonstrates the
robustness of our approach. We needed to support multi-
dispatch on instance and static methods. Nolock values
are not given because Swing breaks our simplification
that dispatch tables are not updated concurrently, and
jdk-fSRP values are not given because the framework-
based system does not support static methods. Swing
and AWT expect to dispatch differently on Cbj ect and
array types. In modifying the libraries, we found numer-
ous opportunities to apply multi-dispatch to private, pro-
tected, and super method invocations. In addition, sev-
eral multi-methods required the JVM to accept covariant
return types from multi-methods. All of these features
are required for a mainstream programming language.

5 Multi-Dispatch Issues

Besides performance and correctness, multi-dispatch
must contend with anumber of serious difficultieswhich
the j avac compiler cannot recognize. They are: am-
biguous method invocations caused by inheritance con-
flicts, incompatible return type changes, masking of
methods by primitive widening operations, and null ar-
guments. Each of these is illustrated in Figure 8. We
have developed a tool called MDLi nt that can identify
these problems and warn the programmer.

The first difficulty is that multi-dispatch, even in a
single-inheritance language, can suffer from ambiguous
methods. The two examples using the mL methodsiillus-
trate this. For the first method invocation, the compiler

knowsthat A. mi(B) and B. niL( A) are candidates. Nei-
ther one is more specific than the other, so the compiler
aborts with an error. We can fix that by statically typing
the receiver argument to A, but multi-dispatch sees ex-
actly the same conflict at runtime. Our MDLi nt program
warns about the problem. If the programmer disregards
the warning, our VM detects the error and throws an
Anbi guousMet hodExcepti on.

Throwing a runtime exception may seem neither elegant
nor acceptable, but one of the key attributes of the VM
is to maintain security. A malicious programmer can
separately compile each class so that errors are not evi-
dent until execution. The VM must protect itself from
these possihilities, and throwing an exception is the only
option. As we noted, our MDLi nt tool can recognize
and report potential ambiguities, exception inconsisten-
cies and return-type conflicts at compiletime.

The second difficulty centers around the fact that j avac
considers methods with different argument types as dis-
tinct. This means that they can have different return
types. Multi-dispatch forges additional connections be-
tween classes based on the additional dispatchable argu-
ments. This means that methods which j avac consid-
ered distinct are now overriding each other. In the exam-
ple, we seethat thetwon2(. . .) methodsoverride each
other for multi-dispatch. Our multi-dispatch implemen-
tations throw an | | | egal Ret ur nTypeChange excep-
tion, unless the more specific method returns a subtype
of the original returned value.

Ancther ramification of the fact that uni-dispatch Java
considers different argument combinations as distinct
methods is that j avac does not ensure that thet hr ows
clauses are compatible.  As with any overriding
method, we would want a more specific multi-method to
covariantly-specialize the set of exceptions. Our type-
checker validates this, but, in compliance with the VM
specification, our virtual machine neither checks nor re-
ports this inconsistency.

The third difficulty involves the use of literal null as an
argument. If null istyped, as in the first invocation of
n8(), then j avac performs static multi-dispatch with
that type. This restricts the set of applicable methods
j avac will consider. In our example, an ordinary VM
can avoid loading class C. The multi-dispatch VM rec-
ognizes that n8( C) might apply (sincea is dynamically



class A {
void m(B bl) {...}
void mi(int i) {...}}

class B extends A {
void mi(A al) {...}
void mi(byte b) {...}}

class C extends B {...}

class MDJlssues {

int n2(A al, Aa2) {...}
String n2(B bl, B b2) {...}
void nB(A al) {...}

void nB(B bl) {...}

void nB(Ccl) {...}

public static void main(String args[]) {
A Ab = new B(); // static: A dynamic: B
B Bb = new B(); // static: B, dynamic: B

// nulti-dispatch difficulties
Bb. nLl(Bb); // javac: anbi guous net hod
Ab. ml(Bb); // javac: OK M2J: anbi guous

// inconpatible return type change

int i = n2(Bb, Bb); // javac: bad return type
int j = nm2(Ab, Ab); // javac: OK MDJ: exception
// null argunents are nore consistent

Aa=null;

n3(a); // regular Java: executes nB(A)
// MDJ: loads C executes nB(C)
nB(null); // both execute nB(C)

// stronger referential integrity
nB(Ab); // regul ar Java: executes nB(A)
// MDJ: executes nB(B)

nm3(new B()); //both execute nB(B)

// prinmtive widening hides correct nethod
byte b = 7;
Ab. md(b); // javac: widens, calls A nmd(int)
// MDJ: ignores B.mi(byte), calls A nd(int)
Ab. md(int(b)); // progranmer w dening

Figure 8: Examples of Multi-Dispatch Issues

of null type and null is subtype of class C). Therefore,
multi-dispatch Java loads class C in order to determine
its place in the type hierarchy, and decidesthat n8( C) is
the most-specific method. Litera nulls, as shown in the
second invocation of n8(), illustrate the inconsistency
of standard Java; it now agrees with the multi-dispatch
JVM that n8( C) should be invoked. The ordinary VM
can till avoid loading class C, because j avac has al-
ready static multi-dispatched to n8( C) 2. Presumably,
theargument isused in n8( C) , so the ordinary VM will
end up loading class C, just like the multi-dispatch VM.

The null argument problem is an example of amore gen-
erd referentia transparency problem in Java. Inconsis-
tent invocations can occur when expressions are substi-
tuted in place of variables. Thisisbecausej avac might
apply more precisetypeinformation from the substituted
expression. As an example, compare the execution of
the third and fourth invocations of n8(. . . ) . By replac-

LThere is a subtlety here because j avac selects the most-specific
method from the method dictionary of the static type of the receiver.
Therefore, dynamic uni-dispatch still may not select the most-specific
method of the receiver’s dynamic class.

ing Ab with its value, we have atered the execution of a
program.

The last difficulty is more complex and, at this time,
unsolved. The compiler selects a method based upon
widening operations and may change the type of primi-
tive arguments. In the example, the compiler inserts in-
structions to convert b fromabyte toani nt. At run-
time, we have lost al traces that b was originally spec-
ified as a byt e. Indeed, the programmer might have
wanted to force that exact conversion; the bytecodes
would be identical to compiler-generated conversions.

6 Implementation

In this section, we describe how the JVM is extended to
support dynamic multi-dispatch. We begin by examin-
ing how to indicate to the VM which classes are multi-
dispatchable. We then examine where multi-dispatch
must occur and, finally, we review three different multi-
dispatch implementations.

6.1 Marking Multi-Dispatch Classes

We tell the VM that multi-dispatch is required on a
class-by-class basis by implementing the empty inter-
face Mul ti Di spat chabl e in each class that is multi-
dispatchable. The Java programming language has al-
ready leveraged this idea for marking class capabilities
with the d oneabl e interface. We use the Mul ti -
Di spat chabl e interfaceto denote that any method sent
to a multi-dispatch receiver should be handled by the
multi-dispatcher. For efficiency, we add a flag to the
internal class representation to indicate that a class is
multi-dispatchable, rather than searching itslist of inter-
faces at each method invocation. The value of this flag
is set once, at class load time.

Our selection of Mul ti Di spat chabl e as the marker
requires us to recognize multi-dispatch on a class-by-
class basis, not on a method-by-method or argument-
by-argument basis. That is, every method invocation
where the uni-dispatch receiver is a member of a multi-
dispatchable class goes through our multi-dispatcher.
Furthermore, because interfaces are inherited, this ap-
proach requires any subclass of a multi-dispatchable
class to aso be multi-dispatchable. Most importantly,
any method invocation where the receiver argument
is not marked for multi-dispatch continues unchanged
through the uni-dispatcher. The benefit of thisisthat the
syntax of Java programs is unchanged, and the perfor-
mance and semantics of uni-dispatch remains intact.

The techniques used to mark code as multi-dispatchable
and to implement multi-dispatch method invocations
are independent. Mul ti Di spat chabl e marks entire



classes without language extensions, but our VM ac-
tually supports multi-dispatch on a method-by-method
basis. An aternate tagging mechanism, that marked in-
dividual methods as multi-dispatchable, may be possible
if we permitted language extensions.

6.2 Adding Multi-Dispatch

As part of the uni-dispatch of ani nvoke bytecode, the
JVM finds a method pointer from the array of methods
in the receiver argument class. At this point, the in-
terpreter loop is about to build a new frame to execute
the found method. The interpreter loop (and classic VM
JT compilers) proceed to call a specia function, called
the i nvoker that handles the details of building the
new frame and starting the new method. The Research
VM uses different invokers for native, bytecode, syn-
chronized, JT-compiled, and other method types. Sim-
ilar to the OpendI T system [21], we replace this invoker
function with a custom multi-invoker that computes the
correct multi-dispatch method. Once the more precise
method is known, we simply invoke it directly.

The multi-invoker is installed at class-load time. The
interpreter loop and invoker for uni-dispatch are un-
changed. This supports our claim that uni-dispatch pro-
grams and libraries suffer no execution time penalties.

OpendIT is supported in exactly the same way. Ev-
ery method contains aconpi | edCode function pointer
onto which OpendIT installs its compiled method body.
Once the compilation is complete, OpenJIT saves the
compiled method body of any multi-method to a new
field ol dConpi | edCode and installs a pointer to a rou-
tineDi spat chMul ti (). Thisreplacement invoker sim-
ply calls the same method specializer sel ect Mul ti -
Met hod() that the interpreter uses. If the more precise
method-body is aready compiled, then OpendIT jumps
into the ol dConpi | edCode, executing the more spe-
cific compiled method. Alternately, if the more precise
method is not already JIT-ed, then Di spat chMul ti ()
sets it to be compiled and invokes the interpreter on the
bytecode version.

Unfortunately, we must disable much of the inlining
facility of OpendIT when using multi-dispatch. The
uni-dispatch OpenJIT compiler can inline private,
static, and fi nal methods because they can never
change. With multi-dispatch, thisis no longer true — at
a given call-site, the selected multi-method may change
depending on the arguments to the current invocation.
The JT compiler and VM must work together to en-
sure that every method invocation is checked for multi-
dispatch and correctly specialized.

The core component of our system is the sel ect -

Mul ti Met hod() routine, which locates a more-specific
method applicable to aset of arguments. We have exper-
imented with three different multi-dispatch techniques;
they are examined in the following sections. For each
technique, we also describe our solution for the imple-
mentation issues described in section 5.

6.3 Reference Implementation:MSA

Our reference implementation is an extension of the
Most Specific Applicable algorithm described in section
15.11 of The Java Language Specification and in sec-
tion 2.2 of this paper. In particular, we re-examine the
steps described in section 2.2 in light of the dynamic ar-
gument types being used.

When the multi-invoker is called, it has access to the
nmet hodbl ock that has aready been found by the uni-
dispatch resolution mechanism. We also have the top of
the operand stack, so we can peek at each of the argu-
ments. Last, we have the actual receiver, which can pro-
vide the list of methods (including inherited ones) that it
implements.

Every method is represented by a net hodbl ock con-
taining many useful pieces of information. First, it holds
the name of the method. Second, it contains a handle
to the class that contains this method3. Third, it con-
tains the signature which we can parse to get the arity
and types of the dispatchable arguments. For perfor-
mance, we parse the signature only once. We add two
fields to the met hodbl ock: int arity to cache the
arity and d assCl ass **ar gQd ass to hold the class
handles for the dispatchable arguments.

With these three pieces of information, we implement a
dynamic version of the MSA agorithm directly. Wher-
ever the origind agorithm would use the static type
of an argument, we apply the known dynamic type in-
stead. In step 2(b) from section 2.2, the compiler would
compare the static type of each argument with the cor-
responding declared type for the candidate method. In
the dynamic case, we have the arguments on the stack,
so we can find their dynamic types. We compare each
argument’s dynamic type against the declared type of
the corresponding argument of the method. We dis-
card any method that is not applicable due to access
rights (pri vat e methods) or whose declared types do
not match the arguments on the stack. The remaining
methods are dynamically applicable.

The issue of null-valued arguments becomes significant
at this point. JLS chapter 4 recognizes the need for a
null type to represent (untyped) null values. It further

13Recall that methods might be inherited; this class handle is the
original implementing class.



declaresin section 4.1 that the null type can be coerced
to any non-primitivetype. Also, section5.1.4 alowsnull
typesto be widened to any object, array or interfacetype.
Statically, this means that an (untyped) null argument
can be widened to any class. In the dynamic case, we
want to do the same. Therefore, whenever we encounter
anull argument we accept the conversion of that null to
amethod argument of type class, array, or interface.

Unfortunately, if we have anull argument, we may retain
amethod which accepts arguments of classesthat are not
yet loaded. We need to force these classes to be loaded
to ensure that the next step operates correctly.

Given the list of applicable methods, step 2(d) finds the
unique most specific method. Again the operation is
identical to the process that the j avac compiler fol-
lows. One applicable method is tentatively selected as
the most specific. Each other applicable method istested
by comparing argument by argument (including the re-
celver argument) against the tentatively most specific.
At each step, we discard any methods that are less spe-
cific. We continue this process until only one candi-
date method remains, or two or more equally specific
methods remain. In the latter case, we have an ambigu-
ous method invocation and we throw an Anbi guous-

Met hodExcept i on to advertise this fact.

Next, we verify that the return type for our more spe-
cific method is compatible with the compiler-selected
method. This check relaxes JL S 8.4.6.3, where we must
reject any invocation that has a different return type,
yet ensures type-safety. If the return type is different,
wethrow anl | | egal Ret ur nTypeChange exception at
runtime.

6.4 Table-based Dispatch

Our SRP framework-based techniques is taken from the
Dispatch Table Framework (DTF) [22]. Thisis atoolkit
of many different uni-dispatch and multi-dispatch tech-
niques. In order to call the DTF to dispatch a call-site,
we need to inform the DTF of the various classes and
methods present in our Java program. Our interface con-
sists of anumber of straight-forward routinesto perform
this registration.

The JVM maintains in-memory structures for each
loaded . cl ass file. We have extended that O ass-
d ass structure to contain aDTF _Type field. It contains
a pointer to the C++ object generated by the DTF. Once
a class is dynamically loaded by the JVM, we check
to see if we must register it with the dispatcher. If the
dispatcher has aready been instantiated, we register the
classviaj avaAddd ass(...) and store away the re-
turned DTF_Type pointer.

If a dispatcher has not been instantiated, and the just-
loaded class is uni-dispatch only, we defer the regis-
tration in order to reduce the overhead to uni-dispatch
programs. If the just-loaded class is marked for multi-
dispatch and the dispatcher has not been instantiated, the
processis more complex. First, weinstantiate anew dis-
patcher. Then, we register each class that has already
been loaded, ensuring that its superclasses and superin-
terfaces are registered first.

Finaly, as the last part of registering a class with the
dispatcher, we need to see whether any methods from
other classes were held in abeyance until this class was
loaded. This can occur if the methods from other classes
expect dispatchable arguments of the class we are just
now loading. As we shall see below, we deferred regis-
tering these methods until the class was loaded.

Java's facility for dynamically reloading classes forces
us to ensure that two classes with the same name are
assigned different DTF Types. Java ensures that two
classes with the same name are treated as distinct by
insisting that each one is loaded by a different class-
loader [19]. We apply the same technique by supply-
ing the DTF framework with a name consisting of the
classloader name, followed by “: : " and followed by the
class name. They system classloader is given the empty
name“” .

For a class marked for multi-dispatch, we need to reg-
ister its methods along with their types, via j ava-
AddMet hod( . ..). If this class implements Mul ti -
Di spat chabl e directly, then weregister al of its meth-
ods, including inherited ones. Alternately, if Mul ti -
Di spat chabl e is an inherited interface for this class,
then we know that its superclass has aready registered
its methods. Therefore, we do not need to register them;
we only need to register the methods that we directly
implement.

This method registration process is complicated by our
desiretoload classeslazily. If amethod accepts an argu-
ment with a class not yet seen by the VM, we know that
we could never dispatch to it until that classis loaded!*.
We set that method aside for future registration.

If al of the argument types for the method are al-
ready registered with the DTF, then we proceed to reg-
ister the method. We provide a met hodbl ock pointer
that we want the framework to return if this method
is the dispatched target. We bundle up the DTF Type
values found in the Cl assd ass structures for each
argument class (including the receiver argument) and
pass them to the framework. The framework returns a

14As mentioned above, our DTF-based systems do not permit null
as adispatchable argument. Therefore, this guarantee holds.



DTF_Behavi or pointer that we store in the net hod-
bl ock.

Dispatch becomes a very simple operation. We build
an array of the DTF_Type pointers from the arguments
on the Java stack. If we encounter a null argument,
we throw a Nul | Poi nt er Excepti on. The DTF_Type
array, aong with the DTF Behavi or pointer from the
compiler-selected method allow the framework to locate
the met hodbl ock pointer that we had previously regis-
tered.

We expect that the returned net hodbl ock pointer is
the method for multi-dispatch. We validate it against
the compiler-selected method. If the return type has
changed, we abort the dispatch and throw an I | | egal -
Ret ur nTypeChange exception. Otherwise, we call the
found method's original invoker and return its value as
the result of the interpreter’s call to a method invoker.

Single ReceiverProjections  Single Receiver Projec-
tions (SRP) [16] is a technique that considers a multi-
dispatch as a request for the joint most specific method
available on each argument. For a given argument posi-
tion and type, an ordered (most-specific to | east-specific)
vector of potential methods is maintained. The vectors
for all the argument positions are intersected to provide
an ordered vector of all applicable methods. Because of
the ordering, this vector can be quickly searched for the
most applicable method.

SRP uses a uni-dispatch technique to maintain the
vector of potential methods for each individual argu-
ment. These vectors are typically compressed to con-
serve space. Many different compression techniques are
known: row displacement, selector coloring [2], and
compressed sdlector table indexing [25]. Our imple-
mentation uses selector coloring, because timing exper-
iments [17] indicates that technique provides the fastest
dispatch times.

7 Future Work

Our MSA and tuned SRP dispatchers are the most com-
plete. They support nul | as a dispatchable argument,
multi-dispatch on other i nvoke bytecodes'®, widening
of primitive dispatchable arguments, and multi-threaded
dispatch. Our table-framework-based dispatchers do not
currently support all of these facilities. Adding them
would provide additional flexibility and allow them to
fully support the Java programming language semantics.
In particular, we have a two-table design that will alow
one thread to dispatch through an existing table, while
we register additional methods and/or classes to a new

B5gignaled by implementing the empty interfaces St ati cMil ti -
Di spat chabl e and Speci al Mul ti Di spat chabl e.

one.

Our custom SRP code implements multi-dispatch as a
critical section, protected by a mutual-exclusion lock.
We have devised, but not as yet implemented, a tech-
nigque which would eliminate the lock overhead (approx-
imately 0.38 usfor every multi-dispatch) and alow con-
current multi-dispatch. The trade-off isthat every thread
would need to halt while the multi-dispatch tables are
being updated.

The OpendIT support for multi-dispatch is still primi-
tive; in particular, we eliminate al inlining actions. This
is a conservative approach and one can identify situa
tions where inlining in multi-dispatch Java would pro-
vide correct results. Identifying these opportunities will
yield higher overall performance.

Other multi-dispatch techniques exist, including com-
pressed n-dimensional tables [1, 12], look-up au-
tomata [9, 10], and efficient multiple and predicate dis-
patch [7]. A comprehensive exploration of these tech-
niques using Javaisincomplete at thistime.

Another significant improvement for multi-dispatchisto
incorporate our code testing tool into the j avac com-
piler. At this time, MDLi nt exists as a separate ex-
ecutable which will recognize and warn the program-
mer about common ambiguities and difficulties. It ana
lyzes a complete application and identifies the code sec-
tions where the programmer could invoke an ambiguous
method, or have a conflicting return type.

Our reference implementation, MSA, supports multi-
dispatch on all method types (instance, st atic, in-
terface, privat e, €c.), except constructors. Because
the same bytecode is used to invoke a constructor in the
superclass and a constructor with different arguments,
we cannot distinguish the two possibilities. This issue
is a specific instance of the need to apply a super to
an argument other than the receiver. Fortunately, in our
experience, this requirement does not arise in common
programming practice (except for constructors).

Our tuned SRP implementation allows our dispatch
tables to identify only those types that are muilti-
dispatched. This lazy type humbering is reversible, al-
lowing the tables to shrink as classes are unloaded.
In turn, multi-methods can revert to lower arity multi-
dispatch (or even uni-dispatch). We see great promisein
this technique for long-lived Java server applications.

The DTF framework contains another dispatcher, Mul-
tiple Row Displacement [22] (MRD) that operates 15%
faster than SRP. Therefore, we expect that dispatch could
be enhanced to provide even lower latency by applying
this technique. Unfortunately, MRD currently does not



support incremental dispatch table updates in the same
way that SRP does. In a dynamic environment such as
Java, incremental updating of dispatch tables is desir-
able. Enhancing MRD to support incremental updatesis
another research priority.

Last, our marker interface Mul ti Di spat chabl e de-
notes that each method in a given class is to be multi-
dispatched. Our JVM relies on this tag only to inform
it about which methods are eligible for multi-dispatch.
Therefore, without changing our multi-dispatch imple-
mentation, aternate Java syntax would alow us to se-
lectively mark individual methods (and their overriding
multi-methods) as multi-dispatchable, rather than entire
classes. We would like to explore the space of conserva-
tive language extensions to expose this feature.

8 Related Work

Others have attempted to add multi-dispaich to
Java through language preprocessors. Boyland and
Castagna [3] provide an additional keyword parasite to
mark methods which should have multi-dispatch proper-
ties. They effectively trandate these methodsinto equiv-
alent double-dispatch Java code. By translating directly
into compiled code, they apply atextual priority to avoid
the thorny issue of ambiguous methods. Unfortunately,
the parasitic method selection process is a sequence of
several dispatches to search over a potentially exponen-
tial tree of overriding methods.

The language extension and preprocessor approach has
other limitations. First, existing tools do not support
the extensions; for example, debuggers do not elide the
automatically generated double-dispatch routines. Sec-
ond, instance methods appear to only take arguments
that are objects, which is too limiting. Our experience
with Swing shows that existing programs often dou-
ble dispatch on literal nul | and array arguments and
pass primitive types as arguments; multi-methods need
to support these non-object types. Third, preprocessors
limit code reuse and extensibility; adding multi-methods
to an existing behaviour requires either access to the
original source code or additional double-dispatch lay-
ers.

Chatterton [8] examines two different multi-dispatch
techniques in mainstream languages. C++ and Java.
First, he considers providing a specialized dispatcher
class. Each class that participates as a method receiver
must register itself with the dispatcher. To relieve the
programmer of this repetitive coding process, he pro-
vides a preprocessor that rewrites the Java source to in-
clude the appropriate calls. Each method, marked with
the keyword multi, is also expanded by the preprocessor
into many individual methods, one for each combina-

tion of classes (and superclasses). A method invocation
isreplaced by acall to the dispatcher which searchesvia
reflection for an exact match. That method is then in-
voked. This system suffers from exponential blowup of
methods.

Chatterton’s second approach examines the performance
of various double dispatch enhancements. He pro-
vides a modified C++ preprocessor which analyses the
entire Java program. It can build a number of dif-
ferent double-dispatch structures, including cascaded
and nested if...el se-if...el se statements, inline
swi t ch statements, and simple two-dimensional tables.
Again, he expands every possible argument-type com-
bination in order to apply fast equality tests rather than
slow subtype checks. A significant restrictionisthat full-
program analysis is required. This defeats the ability
to use existing libraries and diminishes Java's dynamic
class loading benefits.

One interesting language for multi-dispatch is Leavens
and Millstein’s Tuple [18]. They describe a language
“similar in spirit to C++ and Java’ that permits the pro-
grammer to specify at each cal-site the individual argu-
ments that will be considered for multi-dispatch. This
paper does not describe an implementation; it appearsto
be a model of potential syntax and semantics only. A
future project might be to implement his syntax specif-
icaly into the Java environment. In particular, a sim-
ple syntax extension would allow super method invo-
cations on arbitrary multi-dispatch arguments.

Another recent development is MultiJava [11]. There,
the authors extend the Java language with additional
syntax to support open classes and multi-dispatch.
The MultiJava compiler emits doubl e-dispatch type-case
bytecodes for invocations of the open-class methods and
multi-methods. The emitted bytecode is accepted by
standard JVMs, but suffers a substantial overhead from
interpreting slow subtype-testing bytecodes. Unfortu-
nately, multi-dispatch can only apply to methods defined
using the open-class syntax and only within the program
text that imports the open-class definitions. If subclasses
wish to further specialize the multi-methods, additional
open-class definitions are required. Compilation of these
further open-subclasses may result in multiple layers of
type-case double-dispatch. Internally, MultiJavainlines
the multi-method bodies into a static method in a sep-
arate anchor class — this means that the multi-methods
disappear from the binary code and become invisible to
the reflective subsystem in Java. Finaly, MultiJavais a
paper design at thistime'®, so performance comparisons
are not possible.

18personal communication at OOPSLA 2000.



9 Concluding Remarks

We have presented the design and implementation of
an extended Java Virtual Machine that supports multi-
dispatch. This is the first published description of how
to implement arbitrary-arity multi-dispatch in Java. In
contrast to the more verbose and error-prone double-
dispatch technique, currently found in the AWT (Fig-
ure 2), multi-dispatch typically reduces the amount of
programmer-written code and generaly improves the
readability and level of abstraction of the code.

Our approach preserves both the performance and se-
mantics of the existing dynamic uni-dispatch in Java
while allowing the programmer to select dynamic multi-
dispatch on a class-by-class basis without any language
or compiler extensions. The changes to the VM it-
self are small and highly-localized. Existing Java com-
pilers, libraries, and programs are not affected by our
JVM modifications and the programs can achieve per-
formance comparable to the origina VM (Table 2).

In a series of micro-benchmarks, we showed that our
prototype implementation adds no performance over-
head to dispatch if only uni-dispatch is used (Table 2)
and the overhead of multi-dispatch can be competitive
with explicit double dispatch (Table 4).

We have a so introduced and implemented an extension
of the JavaMost Specific Applicable (MSA) static multi-
dispatch algorithm for dynamic multi-dispatch. In ad-
dition, we have performed the first head-to-head com-
parison of table-based multi-dispatch techniques imple-
mented in a mainstream language. In particular, we im-
plemented Single Receiver Projections (SRP). Overall,
our tuned SRP implementation performs as well (or bet-
ter) than programmer-targeted multi-dispatch. With per-
formance improvements in concurrency, we expect our
tuned system to out-perform type-case double dispatch.

References

[1] E. Amiel, O. Gruber, and E. Simon. Optimizing multi-method
dispatch using compressed tables. In OOPSLA 1994 Conference
Proceedings, pages 244-258. Association for Computing Ma-
chinery, October 1994.

[2] P. Andre and J. Royer. Optimizing method search with |ookup
caches and incremental coloring. In OOPSLA 1992 Conference
Proceedings. Association for Computing Machinery, 1992.

[3] J. Boyland and G. Castagna. Parasitic methods: An implemen-
tation of multi-methods for Java. In OOPSLA 1997 Conference
Proceedings, pages 66—76. Association for Computing Machin-
ery, November 1997.

[4] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group,
G. T. Leavens, and B. Pierce. On binary methods. Theory and
Practice of Object Systems, 1(3):221-242, 1995.

[5] T.Budd. An Introduction to Object Oriented Programming, Sec-
ond Edition. Addison-Wedley, 1997.

(6]

(7]

(8]

(9]

[10]

(11

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

C. Chambers. Object-oriented multi-methods in Cecil. In
ECOOP 1992 Conference Proceedings, pages 33-56. Springer-
Verlag, June 1992.

C. Chambers and W. Chen. Efficient multiple and predicate dis-
patching. In OOPSLA 1999 Conference Proceedings, pages 238—
255. Association for Computing Machinery, November 1999.

D. Chatterton. Dynamic Dispatch in Existing Srongly Typed
Languages. PhD thesis, School of Computing, Monash Univer-
sity, Monash, Australia, 1998.

W. Chen. Efficient multiple dispatching based on automata. Mas-
ter'sthesis, GMD-ISPS|, Darmstadt, Germany, 1995.

W. Chen, V. Turau, and W. Klas. Efficient dynamic lookup strat-
egy for multi-methods. In ECOOP 1994 Conference Proceed-
ings, pages 408-431. Springer-Verlag, July 1994.

C. Clifton, G. T. Leavens, C. Chambers, and T. Milstein. Mul-
tiJava: Modular symmetric multiple dispatch and extensible
classes for Java. In OOPSLA 2000 Conference Proceedings,
pages 130-145. Association for Computing Machinery, October
2000.

E. Dujardin, E. Amiel, and E. Simon. Fast algorithms for com-
pressed multimethod dispatch table generation. ACM Transac-
tions on Programming Languages and Systems, 20(1):116-165,
January 1998.

C. Dutchyn. Multi-dispatch in the Java Virtual Machine: Design
and implementation. Master’s thesis, Department of Comput-
ing Science, University of Alberta, Edmonton, Alberta, Canada,
2001. In preparation.

A. Goldberg and D. Robson. Smalltalk-80 The Language and its
Implementation. Addison-Wedley, 1983.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification, 2nd Edition. Addison-Wesley, 2000.

W. Holst, D. Szafron, Y. Leontiev, and C. Pang. Multi-method
dispatch using single-receiver projections. Technical Report 98-
03, Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada, 1998.

W. M. Holst. The Tension between Expressive Power and
Method-Dispatch Efficiency. PhD thesis, Department of Com-
puting Science, University of Alberta, Edmonton, Alberta,
Canada, 2000.

G. T. Leavensand T. D. Millstein. Multiple dispatch as dispatch
on tuples. In OOPSLA 1998 Conference Proceedings, pages
244-258. Association for Computing Machinery, October 1994.

S. Liang and G. Bracha. Dynamic class loading in the Java vir-
tual machine. In OOPSLA 1998 Conference Proceedings, pages
36-44. Association for Computing Machinery, October 1998.

T. Lindholm and F. Yellin. The Java Virtual Machine Specifica-
tion, 2nd Edition. Addison-Wesley, 1999.

H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda,
and Y. Kimura. OpenJIT: An open-ended, reflective JI T compile
framework for Java. In ECOOP 2000 Conference Proceedings.
Springer-Verlag, 2000.

C. Pang, W. Holst, Y. Leontiev, and D. Szafron. Multiple method
dispatch using multiple row displacement. In ECOOP 1999
Conference Proceedings, pages 304-328. Springer-Verlag, June
1999.

G. L. Steele. Common Lisp. Digital Press, 1985.
B. Stroustrup. The C++ Programming Language: Third Edition.
Addison-Wesley, 1997.

J. Vitek and R. N. Horspool. Compact dispatch tables for dy-
namically typed programming languages. In Proceedings of the
International Conference on Compiler Construction, 1996.

K. Walrath and M. Campione. The JFC Swing Tutorial: A Guide
to Constructing GUIs. Addison-Wesley, 1999.



