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Abstract

Mainstream object-oriented languages, such as C++
and Java1, provide only a restricted form of polymor-
phic methods, namely uni-receiver dispatch. In com-
mon programming situations, developers must work
around this limitation. We describe how to extend the
Java Virtual Machine to support multi-dispatch and ex-
amine the complications that Java imposes on multi-
dispatch in practice. Our technique avoids changes to
the Java programming language itself, maintains source
code and library compatibility, and isolates the perfor-
mance penalty and semantic changes of multi-method
dispatch to the program sections which use it. We have
micro-benchmark and application-level performance re-
sults for a dynamicMost Specific Applicable (MSA)
dispatcher, a framework-basedSingle Receiver Projec-
tions (SRP) dispatcher, and a tuned SRP dispatcher. Our
general-purpose technique provides smaller dispatch la-
tency than programmer-written double-dispatch code
with equivalent functionality.

1 Introduction

Object-oriented (OO) languages provide powerful tools
for expressing computations. One key abstraction is the
concept of atype hierarchy which describes the relation-
ships among types. Objects represent instances of these
different types. Most existing object-oriented languages
require each object variable to have a programmer-
assignedstatic type. The compiler uses this information
to recognize some coding errors. Theprinciple of sub-
stitutability mandates that in any location where typeT
is expected, any sub-type ofT is acceptable. But, substi-
tutability allows that object variable to have a different
(but related)dynamic type at runtime.

Another key facility found in OO languages is method
1Java is a trademark of Sun Microsystems, Inc.

selection based upon the types of the arguments. This
method selection process is known asdispatch. It can
occur at compile-time or at execution-time. In the for-
mer case, where only the static type information is
available, we havestatic dispatch (method overload-
ing). The latter case is known asdynamic dispatch
(dynamic method overriding or virtual functions) and
object-oriented languages leverage it to provide poly-
morphism — the execution of type-specific program
code.

We can divide OO languages into two broad categories
based upon how many arguments are considered dur-
ing dispatch. Uni-dispatch languages select a method
based upon the type of one distinguished argument;
multi-dispatch languages consider more than one, and
potentially all, of the arguments at dispatch time. For
example, Smalltalk [14] is a uni-dispatch language.
CLOS [23] and Cecil [6] are multi-dispatch languages.
Other terms, like multiple dispatch, are used in the liter-
ature. However, the term multiple dispatch is confusing
since it can mean either successive uni-dispatches or a
single multi-dispatch. In fact, in this paper, we compare
multi-dispatch to double dispatch, which uses two uni-
dispatches.

C++ [24] and Java [15] are dynamic uni-dispatch lan-
guages. However, for both languages, the compiler
considers the static types of all arguments when com-
piling method invocations. Therefore, we canregard
these languages as supporting static multi-dispatch. Fig-
ure 1 depicts both dynamic uni-dispatch and static multi-
dispatch in Java.

Uni-dispatch limits the method selection process to con-
sider only a single argument, usually the receiver. This
is a substantial limitation and standard programming id-
ioms exist to overcome this restriction. As a motivation
for multi-dispatch, we describe one programming idiom
that demonstrates the need for multi-dispatch, describe



class Point f
int x, y;
void draw(Canvas c) f // Point-specific code g
void translate(int t) fx+=t; y+=t;g
void translate(int tX,int tY) fx+=tX; y+=tY;g
g

class ColorPoint extends Point f
Color c;
void draw(Canvas C) f // ColorPoint code g
g

// same static type, different dynamic types
Point Pp = new Point();
Point Pc = new ColorPoint();

// static multi-dispatch
Pp.translate(5); // one int version
Pp.translate(1,2); // two int version

// dynamic uni-dispatch
Pp.draw(aCanvas); // Point::draw()
Pc.draw(aCanvas); // ColorPoint::draw()

Figure 1: Dispatch Techniques in Java

how it can be replaced by multi-dispatch, list the ad-
vantages of using multi-dispatch to replace the idiomatic
code, and measure the cost of using multi-dispatch with
one of our current multi-dispatch algorithms.

1.1 Double Dispatch

Double dispatch occurs when a method explicitly checks
an argument type and executes different code as a re-
sult of this check. Double dispatch is illustrated in Fig-
ure 2(a) (from Sun’s AWT classes) where theprocess-

Event(AWTEvent) method must process events in dif-
ferent ways, since event objects are instances of differ-
ent classes. Since all of the events are placed in a queue
whose static element type isAWTEvent, the compiler
loses the more specific dynamic type information. When
an element is removed from the queue for processing, its
dynamic type must be explicitly checked to pick the ap-
propriate action. This is an example of the well-known
container problem [5].

Double dispatch suffers from a number of disadvan-
tages. First, double dispatch has the overhead of in-
voking a second method. Second, the double-dispatch
program is longer and more complex; this provides
more opportunity for coding errors. Third, the double-
dispatch program is more difficult to maintain since
adding a new event type requires not only the code to
handle the new event, but another cascadedelse if

statement.

The need for double dispatch develops naturally in sev-
eral common situations. Consider binary operations [4],
such as thecompareTo(Object) method defined in in-
terfaceComparable. The programmer must ascertain

the type of theObject argument before continuing to
perform a type-specific comparison. Another common
use for double dispatch is in drag-and-drop applications,
where the result of a user action depends on both the data
object dragged and on the target object. A generic drag-
and-drop schema forces the programmer to test data
types and re-dispatch to a more specific method. A third
example is in event-driven programming. As we saw
in Figure 2, applications are written using base classes
such asComponent andEvent, but we need to take ac-
tion based upon the specific types of bothComponent
andEvent. Indeed, the need for multi-dispatch is ubiq-
uitous enough that two of the original design patterns,
Visitor andStrategy, are work-arounds to supply multi-
dispatch functionality within uni-dispatch languages.

Consider how the AWT example could be re-written if
dynamic multi-dispatch was available in Java. An equiv-
alent program, partially using multi-dispatch, would re-
semble Figure 2(b). For clarity, we have not completely
converted the code to use multi-dispatch; we maintain
the case statement and double dispatch to select among
MouseEvent categories. A more complete factoring
of MouseEvent into MouseButtonEvent andMouse-
MotionEvent would eliminate the remaining double
dispatch, resulting in aFull Multi-Dispatch version of
the code. The dynamic multi-dispatcher will select the
correct method at runtime based upon thedispatchable
arguments in addition to thereceiver argument (the in-
stance ofComponent). Individual component types can
still override the methods that accept specific event types
(e.g. KeyEvent, FocusEvent) and will do so without
invoking the double-dispatch code.

The multi-dispatch version is shorter and clearer.
However, it requires the Java Virtual Machine
(JVM) [20] to directly dispatch anEvent to the
correct processEvent(AWTEvent) method. Our
modified JVM provides this facility and correctly
executes the multi-dispatch code discussed above.
Furthermore, Table 1, a subset of Table 4, shows that
multi-dispatch is substantially faster than interpreted
double dispatch and even faster than JIT-ed double
dispatch. Note that the numbers in Table 1 are based on
single-threaded code.

Our experience with the Swing GUI classes [26] rein-
forces our belief that double dispatch in AWT is a sig-
nificant factor in Swing applications. First, Swing does
not operate without AWT; instead eachAWTEvent is
accepted by a SwingJComponent. Therefore, every
mouse-click and key-press is double dispatched through
AWT into Swing. Next, Swing type-checks the event
and double dispatches again. Internally, Swing avoids
further double dispatch by coding theAWTEvent type



package java.awt;

class Component f

// double dispatch events to subComponent
void processEvent(AWTEvent e) f
if (e instanceof FocusEvent) f
processFocusEvent((FocusEvent)e);

g else if (e instanceof MouseEvent) f
switch (e.getID()) f
case MouseEvent.MOUSE PRESSED:
...

case MouseEvent.MOUSE EXITED:
processMouseEvent((MouseEvent)e);
break;

case MouseEvent.MOUSE MOVED:
case MouseEvent.MOUSE DRAGGED:
processMouseMotionEvent((MouseEvent)e);
break;

g
g else if (e instanceof KeyEvent) f
processKeyEvent((KeyEvent)e);

g else if (e instanceof ComponentEvent) f
processComponentEvent((ComponentEvent)e);

g else if (e instanceof InputMethodEvent) f
processInputMethodEvent((InputMethodEvent)e);

g
// other events ignored by Component

g

void processFocusEvent(FocusEvent e) f...g

void processMouseEvent(MouseEvent e) f...g

void processMouseMotionEvent(MouseEvent e) f...g

void processKeyEvent(KeyEvent e) f...g

void processComponentEvent(ComponentEvent e) f...g

void processInputMethodEvent(InputMethodEvent e) f...g
g

(a) Double Dispatch in Java

package java.awt;

class Component f

void processEvent(AWTEvent e) f...g

void processEvent(MouseEvent e) f
switch (e.getID()) f
case MouseEvent.MOUSE PRESSED:
...

case MouseEvent.MOUSE EXITED:
processMouseEvent((MouseEvent)e);
break;

case MouseEvent.MOUSE MOVED:
case MouseEvent.MOUSE DRAGGED:
processMouseMotionEvent((MouseEvent)e);
break;

g
g

void processEvent(FocusEvent e) f...g

void processMouseEvent(MouseEvent e) f...g

void processMouseMotionEvent(MouseEvent e) f...g

void processEvent(KeyEvent e) f...g

void processEvent(ComponentEvent e) f...g

void processEvent(InputMethodEvent e) f...g
g

(b) Equivalent Code in Multi-Dispatch Java

Figure 2: Double vs. Multi-Dispatch in Java

into the selector (e.g.fireInternalEvent()). De-
spite the limitations this imposes on the programmer, it
is clear that double dispatch is still the standard tech-
nique in Swing as well.

Also, a multi-dispatch JVM could benefit other lan-
guages. For example, Standard ML, Scheme, and Eiffel
have implementations which generate JVM-compatible
binary files. Extending these languages to include multi-
dispatch semantics becomes straightforward. Unlike
techniques based on source code translation, our multi-
dispatch JVM can be directly used by other languages.

The research contributions of this paper are:

1. The design and implementation of an extended Java
Virtual Machine that supports arbitrary-arity multi-
dispatch with the properties:

(a) The Java syntax is not modified.

(b) The Java compiler is not modified.

(c) The programmer can select which classes
should use multi-dispatch.

(d) The performance and semantics of uni-
dispatch methods are not affected.

(e) The existing class libraries are not affected.

(f) The existing reflection API is preserved.

2. The introduction of a dynamic version of Java’s
static multi-dispatch algorithm.

3. The first performance results for table-based multi-
dispatch techniques in a mainstream language.

We begin by reviewing some important details about the
uni-dispatch JVM. Next, we sketch our JVM modifica-
tions to enable multi-dispatch. Then, we present experi-
mental results for implementations of our multi-dispatch
techniques. This is followed by a discussion of several
complex issues that a practical multi-dispatch Java must
address and a description of some of the details of our
implementation. Finally, we close with a description of
future work and a review of related approaches to multi-
dispatch.

2 Background

The Java Programming Language [15] is a static
multi-dispatch, dynamic uni-dispatch, dynamic loading



Dispatch Interpreter OpenJIT
Type Time in�s (�) Normalized Time in�s (�) Normalized

Double 0.91 (0.00) 1.00 0.48 (0.01) 1.00
Multi- 0.34 (0.00) 0.37 0.32 (0.01) 0.67
Full Multi- 0.32 (0.00) 0.35 0.32 (0.00) 0.67

Table 1: AWT Event Dispatch Comparison
(Call-site Dispatch Time in microseconds, Subset of Table 4)

object-oriented language. Our primary design goal is
to extend the dynamic method selection to optionally
and efficiently consider all arguments, without affecting
the syntax of the language or any other semantics. Our
secondary goals are to retain the dynamic and reflective
properties of Java.

In order to meet these goals, we chose to modify the
JVM [20] implementation, rather than modifying the
programming language itself. Java programs are com-
piled by javac (or other compiler) into sequences of
bytecodes — primitive operations of a simple stack-
based computer. These bytecodes are interpreted by a
JVM written for each hardware platform. We began
with the classic VM (now known as theResearch Vir-
tual Machine2) written in C and distributed by Sun Mi-
crosystems, Inc. Other JVM implementations exist and
many includejust-in-time (JIT) compiler technology to
enhance the interpretation speed at runtime by replacing
the bytecodes with equivalent native machine instruc-
tions. At present, our modified JVM is compatible with
the OpenJIT 1.1.15 [21] compiler.

Before we look at how to implement multi-dispatch in
the virtual machine, we first need to understand the bi-
nary representation that the virtual machine executes,
how method invocations are translated into the virtual
machine code, and how the JVM actually dispatches the
call-sites.

2.1 Java Classfile format

The JVM reads the bytecodes, along with some neces-
sary symbolic information from a binary representation,
known as a.class file. Each.class file contains a
symbol table for one class, a description of its super-
classes, and a series of method descriptions containing
the actual bytecodes to interpret. We leverage the sym-
bolic information, called theconstant pool, to imple-
ment multi-dispatch.

Figure 3 shows the layout of the constant pool for the
ColorPoint class shown in Figure 1.

2The Research Virtual machine was initially released as theclassic
reference VM. Sun later renamed it theExact VM. With the advent
of theHotSpot VM, the classic VM was renamed again, becoming the
Research VM.

Conceptually, the constant pool consists of an array con-
taining text strings and tagged references to text strings.
In Figure 3, classPoint is represented by a tag entry at
location 1 that indicates that it is aCLASStag and that we
should look at constant pool location 2 for the name text.
Then, the constant pool contains the text string “Point”
at location 2. Therefore, a class symbol requires two
constant pool entries. Method references are similar, ex-
cept they require five constant pool entries.

CLASS

CLASS
TEXT

METHOD

METHOD
NAME&TYPE

NAME&TYPE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#7
#1

#4

#2

#1
#11 #12

#10
"()V"
"<init>"

#8
#6

"(LCanvas;)V"

"Point"

"ColorPoint

"draw"

Point::draw:(LCanvas;)V

NAME&TYPE #14 #15
"c"
"Color"

Point::<init>:()V

used for our field

ColorPoint

 and for our method

 and for our initializer

TEXT

TEXT
TEXT

TEXT
TEXT

TEXT
TEXT

Point

Figure 3: A Simple Constant Pool

In our example, constant pool location 9 contains the tag
declaring that it contains aMETHOD. It references the
CLASS tag at location 1, to define the static type of the
class containing the method to be invoked. In this case,
the class happens to bePoint itself, but, more often,
this is not the case. TheMETHOD entry also references
theNAME-AND-TYPE entry at location 10. ThisNAME-
AND-TYPE entry contains pointers to text entries at lo-
cations 11 and 12. The first location, 11, contains the
method name, “draw”. The second location, 12, con-
tains an encoded signature “(LCanvas;)V” describing
the number of arguments to the method, their types, and
the return type from the method. In our example, we see
one class argument with name “Canvas” and that the
return type isvoid.

2.2 Static Multi-Dispatch in Javac

The Java compiler converts source code into a binary
representation. When it encounters a method invoca-
tion, javac must emit a constant pool entry that de-
scribes the method to be invoked. It must provide an



exact description, so that, for instance, the twotrans-

late(...) methods inPoint can be distinguished at
runtime. Therefore, it must examine the types of the
arguments at a call-site and select between them. This
selection process, which considers the static types of all
arguments, can be viewed as a static multi-dispatch.

The Java Language Specification, 2nd Edition
(JLS) [15] provides an explicit algorithm for static
multi-dispatch calledMost Specific Applicable (MSA).
At a call-site, the compilerbegins with a list of all
methods implemented and inherited by the (static)
receiver type. Through a series of culling operations,
the compiler reduces the set of methods down to a single
most specific method. The first operation removes
methods with the wrong name, methods that accept
an incorrect number ofarguments, and methods that
are not accessible from the call-site. This latter group
includes private methods called from another class and
protected methods called from outside of the package.

Next, any methods which are not compatible with the
static type of thearguments are also removed. This
test relies upon testingwidening conversions, where one
typeTsub can be widened to anotherTsuper if and only
if Tsub is the same type asTsuper or a subtype ofTsuper.
For example, aFocusEvent can be widened to anAWT-
Event because the latter is a super-type of the for-
mer3. The opposite is not valid: anAWTEvent cannot
be widened to aFocusEvent; indeed a type-cast from
AWTEvent to FocusEvent would need to be a type-
checkednarrowing conversion.

Finally,javac attempts to locate the singlemost specific
method among the remaining subset ofstatically appli-
cable methods. One methodM(T1;1; : : : ; T1;n) is con-
sidered more specific thanM(T2;1; : : : ; T2;n) if and only
if each argument typeT1;i can be widened toT2;i for
each(i = 1; : : : ; n), and for somej, T2;j cannot be
widened toT1;j . In effect, this means that any set of
arguments acceptable toM(T2;1; : : : ; T2;n) is also accept-
able toM(T1;1; : : : ; T1;n), but not vice versa.

Given the subset of applicable methods,javac selects
oneMt as its tentatively most specific. It then checks
each other candidate methodMc by testing whether its
arguments can be widened to the corresponding argu-
ment inMt. If this is successful, thenMc is at least
as specific asMt; the compiler adoptsMc as the new
tentatively most specific method — the methodMt is
culled from the candidate list. If the first test, whether
Mc be widened toMt, is unsuccessful, then the com-
piler checks the other direction: canMt be widened to

3The JLS separately recognizes identity conversions (aFocus-

Event can be converted into aFocusEvent). Javac does not dis-
tinguish them, so we do the same for our exposition.

Mc. If so, then the compiler dropsMc from the candi-
date list.

Unfortunately, both tests can fail. To illustrate this, con-
sider the first two methods in Figure 4. The first argu-
ment of the first method (ColorPoint) can be widened
to the type of the first argument of the second method
(Point). But the opposite is true for the second ar-
gument of each method. If we invokecolorBox with
twoColorPoint arguments, both methods apply. If the
third method was not present, we would have anambigu-
ous method error. The third method, taking twoColor-
Points, removes the ambiguity because it is more spe-
cific than both of the other methods. It allows both of the
others to be culled, giving a single most specific method.

colorBox(ColorPoint p1, Point p2) f...g
colorBox(Point p1, ColorPoint p2) f...g

// conflict method removes ambiguity
colorBox(ColorPoint p1, ColorPoint p2) f...g

Figure 4: Ambiguous and Conflict Methods

Primitive types4, when used as arguments, are tested at
compilation time in the same way as other types. Primi-
tive widening conversions are defined which effectively
impose a standard type hierarchy on the primitive types.
The compiler inserts widening casts as needed.

2.3 Dynamic Uni-Dispatch in the JVM

Now we turn our attention to dispatching polymorphic
call-sites at runtime. Methods are stored in the.class

file as sequences of virtual machine instructions. Within
a stream of bytecodes, method invocations are repre-
sented byinvoke bytecodes that occupy three bytes5.
The first byte contains the opcode (0xb6 for invoke-
virtual). The remaining two bytes form an index
into the constant pool. The constant pool must con-
tain a METHOD entry at the given index. Thisentry
contains the static type of the receiver argument (as
the CLASS linked entry), and the method name and
signature (through theNAME& TYPE entry). Figure 5
shows the pseudo-bytecode6 for invoking the method
Component.processEvent(AWTEvent) twice.

From the opcode,invokevirtual, the JVM knows
that the next two bytes contain the constant pool index
of a METHOD descriptor. From that descriptor, the JVM
can locate the method name and signature. The JVM
parses the signature to discover that the method to be
invoked requires a receiverargument and one other ar-
gument. Therefore, the JVM peeks into the operand

4Java provides non-object typesbyte, char, short, int, long,
float, anddouble. These are called primitive types.

5Theinvokeinterface bytecodes occupy 5 bytes.
6Rather than show constant pool indices, we show their values di-

rectly.



aComponent.processEvent(aFocusEvent);

FocusEvent aFocusEvent = new  FocusEvent(...);

aComponent.processEvent(anEvent);

Component aComponent = new SubComponent(...);

AWTEvent anEvent = new  FocusEvent(...);

apush

aComponent

anEvent

invokevirtual

apush aComponent

apush aFocusEvent

invokevirtual

...

...

apush

Component::processEvent:(LAWTEvent;)V

Component::processEvent:(LAWTEvent;)V

(a) Polymorphic Call−sites in Source.

(b) Polymorphic Call−sites in Bytecodes.

Figure 5: Polymorphic Call-sites — two views

stack and locates the receiver argument. At this point,
the JVM has the information it needs to begin searching
for the method to invoke. The JVM has the name, the
signature, and the receiver of the message.

The JVM Specification (section 5.4.3.3) provides a re-
cursive algorithm for resolving a method reference and
locating the correct method: Beginning with the meth-
ods defined for the precise receiver argument type, scan
for an exact match for the name and signature. If one
is not found, search the superclass7 of the receiver argu-
ment, continuing up the superclass chain until Object,
the root of the type hierarchy, is searched. If an exact
match is not found, throw an AbstractMethodError.
This look-up process applies to each of the invoke
bytecodes.

This look-up process is a time-intensive operation. To
reduce the overhead of method look-up, the resolved
method is cached in the constant pool alongside the orig-
inal method reference. The next time this method refer-
ence is applied by another invoke bytecode, the cached
method is used directly.

Once a method is resolved, a method-specific invoker is
executed to begin the interpretation of the new method.
This invoker performs method-specific operations, such
as acquiring a lock in the case of synchronized meth-
ods, constructing a JVM activation record in the case of
bytecode methods, or preparing a machine-level activa-
tion record for native methods.

The Research JVM recognizes a special case in invoking
methods: any private methods, final methods, or con-
structors can be handled in a non-virtual mode. Each of
these situations do not require dynamic dispatch. But,

7Java provides only single inheritance of program code.

multi-dispatch will need to handle these special cases.

3 Design

We now have sufficient information to describe the gen-
eral design for extending the JVM to support multi-
dispatch. In short, we mark classes which are to use
multi-dispatch and replace their method invokers with
one that selects a more specific method based on the ac-
tual arguments. Hence, existing uni-dispatch method in-
vocations are unchanged in any way.

Marking the .class files without changing the lan-
guage syntax is straightforward. We created an empty
interface MultiDispatchable and any class which
will provide multi-dispatch methods must implement
that interface. The .class file retains that interface
name and the virtual machine can easily check for this at
class loading time. Our implementation does not change
the syntax of the Java programming language or the bi-
nary .class file format in any way.

Our interface-based technique allows us to retain com-
patibility with existing programs, compilers, and li-
braries. Any class that implements our marker interface
has different semantics for dispatch. But, the semantics
of existing uni-dispatch programs and libraries are not
changed since they do not implement the interface. The
programmer retains complete control and responsibility
for designating multi-dispatchable classes. This allows
the developer to consciously target the multi-dispatch
technique to known programming situations, such as
double dispatch.

At dispatch time, our multi-invoker executes instead of
the original JVM invoker. Our invoker locates a more-
precise method based on the dynamic types of the invo-
cation arguments and executes it in place of the original
method.

The non-virtual mode invocations need to be handled
specially. Constructors are never multi-dispatched. We
found that constructor chaining within a class could
cause infinite loops. Private and final multi-methods are
still multi-dispatched.

We implemented two different dispatch algorithms.
First, MSA implements a dynamic version of the
Java Most Specific Applicable algorithm used by the
javac compiler. Second, Single Receiver Projections
(SRP) [17] is a high performance table-based technique
developed at the University of Alberta. We examine both
a framework-based SRP and a tuned SRP implementa-
tion. Section 6 provides implementation details, but we
first present the results of our experiments.



4 Experimental Results

So far, we have used four different micro-benchmarks
and a new implementation of Swing/AWT to test our
multi-dispatcher.

The first micro-benchmark uses the javac compiler
to recompile itself while running on the multi-dispatch
VM. The javac compiler has not been modified, there-
fore the experiment demonstrates the backward compat-
ibility of the modified VM for uni-dispatch applications.
The measured overheads of uni-dispatch javac running
on the multi-dispatch VM are minimal. The other three
micro-benchmarks demonstrate multi-dispatch correct-
ness, multi-dispatch performance as compared to dou-
ble dispatch, and multi-dispatch performance as arity
increases. All of the micro-benchmarks are single-
threaded.

For our application-level tests, we modified Swing, the
second-generation GUI library bundled with Java 2, to
use multi-dispatch. As expected, Swing is a double-
dispatch-intensive library. We also converted AWT be-
cause Swing depends heavily on AWT to dispatch the
events into top-level Swing components.

All experiments were executed on a dedicated Intel-
architecture PC equipped with two 550MHz Celeron
processors, a 100MHz front-side bus, and 256 MB of
memory. The operating system is Linux 2.2.16 with
glibc version 2.1. The Sun Linux JDK 1.2.2 code was
compiled using GNU C version 2.95.2, with optimiza-
tion flags as supplied by Sun’s makefiles8. The table-
based multi-dispatch code [22] was compiled using GNU

G++ version 2.95.29. The Sun JDK only supports the
green threading model, which is implemented using
pthreads under Linux. We report average and standard
deviations for 10 runs of each benchmark.

We tested three different virtual machines. First, we
have jdk, the standard JDK 1.2.2 Linux runtime, run-
ning in interpreter mode. This JVM serves as a baseline
for comparing the remaining four multi-dispatch sys-
tems. Second, we have a non-JIT multi-dispatch JVM
with three different multi-dispatch techniques, jdk-MSA,
and two implementations (jdk-fSRP, and jdk-tSRP) of
the same algorithm. Third, we have customized OpenJIT
1.1.15 to be compatible with our multi-dispatch JVM.

For the first and second micro-benchmarks, (Tables 2
and 3) we report user+system time in seconds, along
with normalized values against the jdk runtime. For the
third and fourth experiments (Table 4 and Figure 7), we
describe individual dispatch times in microseconds, ig-

8Typical flags are -O2
9with options -ansi -fno-implicit-templates -fkeep-

inline-functions -O2.

noring other costs. In the final benchmark, Swing, we re-
port execution times for a synthetic application that cre-
ates a number of components and inserts 200,000 events
into the event queue.

4.1 Javac — Compatibility Test

The first experiment requires the runtime to load and
execute the javac compiler to translate the entire
sun.tools hierarchy of Java source files into .class

files. This hierarchy includes 234 source files encom-
passing 49,798 lines of code (excluding comments).
Each compilation was verified by comparing the error
messages10 and by checksumming the generated bina-
ries. Each virtual machine passed the test; the timing
results are shown in Table 2. These times come from the
Unix time user command and are averages, with stan-
dard deviation, of 10 runs.

JVM Time in sec. (�) Norm.

jdk 65.41 + 0.25 (0.39) 1.00
jdk-MSA 67.38 + 0.31 (0.14) 1.03
jdk-fSRP 68.22 + 0.45 (0.25) 1.05
jdk-tSRP 67.13 + 0.51 (0.35) 1.03

Table 2: Compatibility Testing and Performance
(User+System Time to Recompile sun.tools, in seconds)

The negligible differences between the uni-dispatch
and multi-dispatch execution times demonstrate that
the overhead of running uni-dispatch code on a multi-
dispatch VM is essentially zero. Note that in our im-
plementation, table-based JVMs do not construct a dis-
patch table until the first multi-dispatchable method is
inserted.

4.2 Simple Multi-Dispatch

In this micro-benchmark, we show that multi-dispatch
is correct and measure its overhead. The testing code
is short and is shown in Figure 6. Note that class MD-
JDriver implements the marker interface MultiDis-

patchable. The compiler uses static multi-dispatch to
code all four calls to MDJDriver.m(X,X) to execute
the method for two arguments of type A, because that is
the static type of both anA and aB. Multi-dispatch ac-
tually selects among the four methods based upon the
dynamic types of the arguments. Therefore, correct out-
put consists of 100,000 repetitions of four consecutive
lines: AA, AB, BA, and BB. For timing purposes, all out-
put was redirected to /dev/null to reduce the impact
of input/output. Our results are summarized in Table 3.

The table-based techniques, jdk-fSRP and jdk-tSRP, suf-
fer from a substantial startup time, whereas jdk-MSA

10There is one warning noting that 8 files used deprecated APIs.



class A f g

class B extends A f g

class MDJDriver implements MultiDispatchable f
String m(A a1, A a2) f return "AA"; g
String m(A a1, B b2) f return "AB"; g
String m(B b1, A a2) f return "BA"; g
String m(B b1, B b2) f return "BB"; g

static public void main(String args[]) f
final int LOOPSIZE = 100000;
A anA = new A();
A aB = new B();
MDJDriver d = new MDJDriver();
for( int i=0; i<LOOPSIZE; i++) f
System.out.println(d.m(anA, anA));
System.out.println(d.m(anA, aB));
System.out.println(d.m(aB, anA));
System.out.println(d.m(aB, aB));
g
g
g

Figure 6: Simple Multi-Dispatch Testing Code

primarily uses existing data structures found in the JVM
interpreter and lazily computes any additional values.
This reduces the cost of program startup.

JVM Time in sec. (�) Norm. Correct

jdk 26.40 + 0.68 (0.07) 1.00 No
jdk-MSA 28.88 + 0.83 (0.22) 1.10 Yes
jdk-fSRP 31.53 + 0.91 (0.11) 1.20 Yes
jdk-tSRP 29.48 + 0.84 (0.17) 1.12 Yes

Table 3: Simple Multi-Dispatch
(User+System Execution Time in seconds)

4.3 Double Dispatch of Events

Our third experiment involves computing the perfor-
mance differences between double dispatch and the two
multi-dispatch implementations of the example given in
Figure 2. We constructed a synthetic type hierarchy of
AWTEvent classes, to match those in Figure 2. The dis-
cussion of Swing follows in Section 4.5. We also con-
structed three different component types:

Double Dispatch (DD) implements double dispatch
via type-cases and programmer-coded type num-
bering as shown in Figure 2(a).11

Multi-Dispatch (MD) implements multi-dispatch as
shown in Figure 2(b), where the type-cases from
DD have been replaced with multi-dispatch.

11Type-cases are not the most effective double-dispatch technique,
but this code matches Sun’s AWT implementation. For a comparison
with other double-dispatch techniques, see [8, 13].

Full Multi-Dispatch (FMD) eliminates the type-cases
and the programmer-coded type-numbering from
DD. It divides MouseEvent into two different
classes and eliminates the switch statement.

To avoid inlining effects, we added code for updating
an instance variable to the body of each process-

Event(AWTEvent). This experiment consists of dis-
patching a total of one million events through process-
Event(AWTEvent). Each event type appears equally
often, as we iterate over an array containing equal num-
bers of each event. We compute the loop overhead, sub-
tract the overhead amount, and then divide the remaining
time by the number of events dispatched. The timing re-
sults are shown in Table 4.

Also, we give an additional timing value for our cus-
tom SRP implementation, where we disabled mutual ex-
clusion in the dispatcher. Currently our implementation
uses a costly monitor to ensure that no other thread is up-
dating the dispatch tables during a multi-dispatch. High-
performance concurrent-read exclusive-write protocols
can eliminate this overhead; the nolock value represents
this highest-performance case.

As DD does not declare itself multi-dispatchable, the
similarity of the results in column 2 of Table 4 again
shows that our multi-dispatchable virtual machines do
not significantly penalize uni-dispatch code. Further,
we see that the cost of interpreting numerous expen-
sive JVM bytecodes, such as instanceof, followed by
another invokevirtual (which is DD’s strategy), is
more costly than our multi-dispatch techniques. The full
multi-dispatch implementation (FMD) is faster than the
partial multi-dispatch (MD). This is reasonable because
MD ends up double-dispatching two of every six events.

Again, we see that the framework-based SRP technique
suffers from considerable initial overhead. We hypothe-
size that it is a result of the object-oriented nature of our
implementation of the table-based techniques. In each
dispatch, several C++ objects are created and destroyed
on the heap. Our tuned SRP implementation, jdk-tSRP,
removes this overhead and provides faster dispatch per-
formance than programmer-coded double dispatch.

OpenJIT compilation gains only minor improvements
for the multi-dispatch system. This matches our ex-
pectations since OpenJIT calls the same selectMulti-
Method() routine that the interpreter uses, there is only
a slight benefit from avoiding some interpreter frame
manipulations.

4.4 Arity Effects

Our final micro-benchmark explores the time penalties
as the number of dispatchable arguments and applicable



Interpreter OpenJIT
Dispatch DD MD FMD DD MD FMD
JVM Time (�) Time (�) Time (�) Time (�) Time (�) Time (�)

jdk 0.91 (0.00) — — 0.48 (0.00) — —
jdk-MSA 0.95 (0.00) 2.63 (0.01) 2.49 (0.02) 0.95 (0.00) 2.55 (0.04) 2.43 (0.03)
jdk-fSRP 0.96 (0.01) 3.12 (0.08) 2.52 (0.05) 0.96 (0.01) 2.90 (0.05) 2.47 (0.05)
jdk-tSRP 0.94 (0.00) 0.75 (0.03) 0.72 (0.02) 0.95 (0.00) 0.74 (0.02) 0.71 (0.01)
nolock 0.95 (0.00) 0.34 (0.00) 0.32 (0.00) 0.95 (0.00) 0.32 (0.01) 0.32 (0.00)

Table 4: Event Dispatch Comparison
(Call-site Dispatch Times in microseconds)

methods grow. To do this, we built a simple hierarchy
of five classes (one root class A, with three subclasses
B, C, and D, and finally class E as a subclass of C) and
constructed methods of different arities against that hi-
erarchy. We defined the following methods:

� classes A, B, C, D, and E contain unary methods
R.m() (where R represents the receiver argument
class).

� classes A, B, C, D, and E also implement five binary
methods, R.m(X) where X can be any of A, B, C, D,
or E.

� classes A, B, C, D, and E implement 25 ternary meth-
ods, R.m(X,Y) where X and Y can be any of A, B,
C, D, or E.

� classes A, B, C, D, and E implement 125 quaternary
methods, R.m(X,Y,Z) where X, Y, and Z can be
any of A, B, C, D, or E.

MSA looks at one fewer dispatchable arguments than
the table-based techniques because the receiver argu-
ment has already been dispatched by the JVM. For in-
stance, given a unary method, MSA makes no widen-
ing conversions for dispatchable arguments. A binary
method requires MSA to check only one widening con-
version. The table-based techniques dispatch on all ar-
guments and gain no benefit from the dispatch done by
the JVM.

We invoke one million methods for each arity. This
means that each of the unary methods is executed
200,000 times. However each of the quaternary methods
is executed only 1,600 times. After computing the loop
overhead via an empty loop, we determine the elapsed
time to millisecond accuracy and determine the time
taken for each dispatch. Our results are shown in Fig-
ure 7.

We can evaluate the arity effects in the uni-dispatch case
by coding a third level of double dispatch. Already the
overhead of constructing a third activation record ex-
ceeds the dispatch time of our tuned SRP implementa-

tion. Also, our SRP implementations suffer only lin-
ear growth in time-penalties as arity increases, whereas
MSA suffers quadratic effects.
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Figure 7: Impact of Arity on Dispatch Latency

4.5 Swing and AWT

Our final test is to apply multi-dispatch to AWT and
Swing applications. To do this, we needed to rewrite
AWT and Swing to take advantage of multi-dispatch.

We modified 11% (92 out of 846) of the classes in the
AWT and Swing hierarchies. We eliminated 171 deci-
sion points, but needed to insert 123 new methods to
replace existing double-dispatch code sections. Within
the modified classes, we removed 5% of the condition-
als and reduced the average number of choice points per
method from 3.8 to 2.0 per method. This reduction illus-
trates the value of multi-dispatch in reducing code com-
plexity.

In all, 57 classes were added, all of them new event types
to replace those previously recognized only by a special
type id (as in the AWT examples described previously).
Our multi-dispatch libraries are a drop-in replacement
that executes a total of 7.7% fewer method invocations
and gives virtually identical performance with applica-
tions such as SwingSet. In our sample application,
we found that the number of multi-dispatches executed
almost exactly equaled the total reduction in method in-



Uni-Swing Multi-Swing
Stage Methods Uni-Methods Multi-methods

warm-up 901,938 901,795 160 (0.02%)
event loop 32,543,684 27,807,327 2,350,172 (7.7%)

Table 5: Swing Application Method Invocations

vocations. This suggests that every multi-dispatch re-
placed a double dispatch in the original Swing and AWT
libraries.

We verified the operation of the entire unmodified
SwingSet application with our replacement libraries.
Finally to measure performance, we timed a simple
Swing application that handles 200,000 AWTEvents of
different types. The timing results are given in Table 6.

Dispatch Uni-Swing Multi-Swing
JVM Time (�) Time (�)

jdk 28.03 (0.35) —
jdk-MSA 28.69 (0.31) 70.09 (0.15)
jdk-tSRP 29.33 (0.42) 28.30 (0.36)

Table 6: Swing Application Execution Time
(Event loop times in seconds)

The Swing and AWT conversion also demonstrates the
robustness of our approach. We needed to support multi-
dispatch on instance and static methods. Nolock values
are not given because Swing breaks our simplification
that dispatch tables are not updated concurrently, and
jdk-fSRP values are not given because the framework-
based system does not support static methods. Swing
and AWT expect to dispatch differently on Object and
array types. In modifying the libraries, we found numer-
ous opportunities to apply multi-dispatch to private, pro-
tected, and super method invocations. In addition, sev-
eral multi-methods required the JVM to accept covariant
return types from multi-methods. All of these features
are required for a mainstream programming language.

5 Multi-Dispatch Issues

Besides performance and correctness, multi-dispatch
must contend with a number of serious difficulties which
the javac compiler cannot recognize. They are: am-
biguous method invocations caused by inheritance con-
flicts, incompatible return type changes, masking of
methods by primitive widening operations, and null ar-
guments. Each of these is illustrated in Figure 8. We
have developed a tool called MDLint that can identify
these problems and warn the programmer.

The first difficulty is that multi-dispatch, even in a
single-inheritance language, can suffer from ambiguous
methods. The two examples using the m1 methods illus-
trate this. For the first method invocation, the compiler

knows that A.m1(B) and B.m1(A) are candidates. Nei-
ther one is more specific than the other, so the compiler
aborts with an error. We can fix that by statically typing
the receiver argument to A, but multi-dispatch sees ex-
actly the same conflict at runtime. Our MDLint program
warns about the problem. If the programmer disregards
the warning, our JVM detects the error and throws an
AmbiguousMethodException.

Throwing a runtime exception may seem neither elegant
nor acceptable, but one of the key attributes of the JVM
is to maintain security. A malicious programmer can
separately compile each class so that errors are not evi-
dent until execution. The JVM must protect itself from
these possibilities, and throwing an exception is the only
option. As we noted, our MDLint tool can recognize
and report potential ambiguities, exception inconsisten-
cies and return-type conflicts at compile time.

The second difficulty centers around the fact that javac
considers methods with different argument types as dis-
tinct. This means that they can have different return
types. Multi-dispatch forges additional connections be-
tween classes based on the additional dispatchable argu-
ments. This means that methods which javac consid-
ered distinct are now overriding each other. In the exam-
ple, we see that the two m2(...) methods override each
other for multi-dispatch. Our multi-dispatch implemen-
tations throw an IllegalReturnTypeChange excep-
tion, unless the more specific method returns a subtype
of the original returned value.

Another ramification of the fact that uni-dispatch Java
considers different argument combinations as distinct
methods is that javac does not ensure that the throws
clauses are compatible. As with any overriding
method, we would want a more specific multi-method to
covariantly-specialize the set of exceptions. Our type-
checker validates this, but, in compliance with the VM
specification, our virtual machine neither checks nor re-
ports this inconsistency.

The third difficulty involves the use of literal null as an
argument. If null is typed, as in the first invocation of
m3(), then javac performs static multi-dispatch with
that type. This restricts the set of applicable methods
javac will consider. In our example, an ordinary JVM
can avoid loading class C. The multi-dispatch JVM rec-
ognizes that m3(C) might apply (since a is dynamically



class A f
void m1(B b1) f...g
void m4(int i) f...gg

class B extends A f
void m1(A a1) f...g
void m4(byte b) f...gg

class C extends B f...g

class MDJIssues f
int m2(A a1, A a2) f...g
String m2(B b1, B b2) f...g
void m3(A a1) f...g
void m3(B b1) f...g
void m3(C c1) f...g

public static void main(String args[]) f
A Ab = new B(); // static: A, dynamic: B
B Bb = new B(); // static: B, dynamic: B

// multi-dispatch difficulties
Bb.m1(Bb); // javac: ambiguous method
Ab.m1(Bb); // javac: OK, MDJ: ambiguous

// incompatible return type change
int i = m2(Bb, Bb); // javac: bad return type
int j = m2(Ab, Ab); // javac: OK, MDJ: exception

// null arguments are more consistent
A a = null;
m3(a); // regular Java: executes m3(A)

// MDJ: loads C, executes m3(C)
m3(null); // both execute m3(C)

// stronger referential integrity
m3(Ab); // regular Java: executes m3(A)

// MDJ: executes m3(B)
m3(new B()); //both execute m3(B)

// primitive widening hides correct method
byte b = 7;
Ab.m4(b); // javac: widens, calls A.m4(int)

// MDJ: ignores B.m4(byte), calls A.m4(int)
Ab.m4(int(b)); // programmer widening

g
g

Figure 8: Examples of Multi-Dispatch Issues

of null type and null is subtype of class C). Therefore,
multi-dispatch Java loads class C in order to determine
its place in the type hierarchy, and decides that m3(C) is
the most-specific method. Literal nulls, as shown in the
second invocation of m3(), illustrate the inconsistency
of standard Java; it now agrees with the multi-dispatch
JVM that m3(C) should be invoked. The ordinary JVM
can still avoid loading class C, because javac has al-
ready static multi-dispatched to m3(C)12. Presumably,
the argument is used in m3(C), so the ordinary JVM will
end up loading class C, just like the multi-dispatch JVM.

The null argument problem is an example of a more gen-
eral referential transparency problem in Java. Inconsis-
tent invocations can occur when expressions are substi-
tuted in place of variables. This is because javac might
apply more precise type information from the substituted
expression. As an example, compare the execution of
the third and fourth invocations of m3(...). By replac-

12There is a subtlety here because javac selects the most-specific
method from the method dictionary of the static type of the receiver.
Therefore, dynamic uni-dispatch still may not select the most-specific
method of the receiver’s dynamic class.

ing Ab with its value, we have altered the execution of a
program.

The last difficulty is more complex and, at this time,
unsolved. The compiler selects a method based upon
widening operations and may change the type of primi-
tive arguments. In the example, the compiler inserts in-
structions to convert b from a byte to an int. At run-
time, we have lost all traces that b was originally spec-
ified as a byte. Indeed, the programmer might have
wanted to force that exact conversion; the bytecodes
would be identical to compiler-generated conversions.

6 Implementation

In this section, we describe how the JVM is extended to
support dynamic multi-dispatch. We begin by examin-
ing how to indicate to the JVM which classes are multi-
dispatchable. We then examine where multi-dispatch
must occur and, finally, we review three different multi-
dispatch implementations.

6.1 Marking Multi-Dispatch Classes

We tell the JVM that multi-dispatch is required on a
class-by-class basis by implementing the empty inter-
face MultiDispatchable in each class that is multi-
dispatchable. The Java programming language has al-
ready leveraged this idea for marking class capabilities
with the Cloneable interface. We use the Multi-

Dispatchable interface to denote that any method sent
to a multi-dispatch receiver should be handled by the
multi-dispatcher. For efficiency, we add a flag to the
internal class representation to indicate that a class is
multi-dispatchable, rather than searching its list of inter-
faces at each method invocation. The value of this flag
is set once, at class load time.

Our selection of MultiDispatchable as the marker
requires us to recognize multi-dispatch on a class-by-
class basis, not on a method-by-method or argument-
by-argument basis. That is, every method invocation
where the uni-dispatch receiver is a member of a multi-
dispatchable class goes through our multi-dispatcher.
Furthermore, because interfaces are inherited, this ap-
proach requires any subclass of a multi-dispatchable
class to also be multi-dispatchable. Most importantly,
any method invocation where the receiver argument
is not marked for multi-dispatch continues unchanged
through the uni-dispatcher. The benefit of this is that the
syntax of Java programs is unchanged, and the perfor-
mance and semantics of uni-dispatch remains intact.

The techniques used to mark code as multi-dispatchable
and to implement multi-dispatch method invocations
are independent. MultiDispatchable marks entire



classes without language extensions, but our JVM ac-
tually supports multi-dispatch on a method-by-method
basis. An alternate tagging mechanism, that marked in-
dividual methods as multi-dispatchable, may be possible
if we permitted language extensions.

6.2 Adding Multi-Dispatch

As part of the uni-dispatch of an invoke bytecode, the
JVM finds a method pointer from the array of methods
in the receiver argument class. At this point, the in-
terpreter loop is about to build a new frame to execute
the found method. The interpreter loop (and classic VM
JIT compilers) proceed to call a special function, called
the invoker that handles the details of building the
new frame and starting the new method. The Research
JVM uses different invokers for native, bytecode, syn-
chronized, JIT-compiled, and other method types. Sim-
ilar to the OpenJIT system [21], we replace this invoker
function with a custom multi-invoker that computes the
correct multi-dispatch method. Once the more precise
method is known, we simply invoke it directly.

The multi-invoker is installed at class-load time. The
interpreter loop and invoker for uni-dispatch are un-
changed. This supports our claim that uni-dispatch pro-
grams and libraries suffer no execution time penalties.

OpenJIT is supported in exactly the same way. Ev-
ery method contains a compiledCode function pointer
onto which OpenJIT installs its compiled method body.
Once the compilation is complete, OpenJIT saves the
compiled method body of any multi-method to a new
field oldCompiledCode and installs a pointer to a rou-
tine DispatchMulti(). This replacement invoker sim-
ply calls the same method specializer selectMulti-
Method() that the interpreter uses. If the more precise
method-body is already compiled, then OpenJIT jumps
into the oldCompiledCode, executing the more spe-
cific compiled method. Alternately, if the more precise
method is not already JIT-ed, then DispatchMulti()

sets it to be compiled and invokes the interpreter on the
bytecode version.

Unfortunately, we must disable much of the inlining
facility of OpenJIT when using multi-dispatch. The
uni-dispatch OpenJIT compiler can inline private,
static, and final methods because they can never
change. With multi-dispatch, this is no longer true — at
a given call-site, the selected multi-method may change
depending on the arguments to the current invocation.
The JIT compiler and VM must work together to en-
sure that every method invocation is checked for multi-
dispatch and correctly specialized.

The core component of our system is the select-

MultiMethod() routine, which locates a more-specific
method applicable to a set of arguments. We have exper-
imented with three different multi-dispatch techniques;
they are examined in the following sections. For each
technique, we also describe our solution for the imple-
mentation issues described in section 5.

6.3 Reference Implementation:MSA

Our reference implementation is an extension of the
Most Specific Applicable algorithm described in section
15.11 of The Java Language Specification and in sec-
tion 2.2 of this paper. In particular, we re-examine the
steps described in section 2.2 in light of the dynamic ar-
gument types being used.

When the multi-invoker is called, it has access to the
methodblock that has already been found by the uni-
dispatch resolution mechanism. We also have the top of
the operand stack, so we can peek at each of the argu-
ments. Last, we have the actual receiver, which can pro-
vide the list of methods (including inherited ones) that it
implements.

Every method is represented by a methodblock con-
taining many useful pieces of information. First, it holds
the name of the method. Second, it contains a handle
to the class that contains this method13. Third, it con-
tains the signature which we can parse to get the arity
and types of the dispatchable arguments. For perfor-
mance, we parse the signature only once. We add two
fields to the methodblock: int arity to cache the
arity and ClassClass **argClass to hold the class
handles for the dispatchable arguments.

With these three pieces of information, we implement a
dynamic version of the MSA algorithm directly. Wher-
ever the original algorithm would use the static type
of an argument, we apply the known dynamic type in-
stead. In step 2(b) from section 2.2, the compiler would
compare the static type of each argument with the cor-
responding declared type for the candidate method. In
the dynamic case, we have the arguments on the stack,
so we can find their dynamic types. We compare each
argument’s dynamic type against the declared type of
the corresponding argument of the method. We dis-
card any method that is not applicable due to access
rights (private methods) or whose declared types do
not match the arguments on the stack. The remaining
methods are dynamically applicable.

The issue of null-valued arguments becomes significant
at this point. JLS chapter 4 recognizes the need for a
null type to represent (untyped) null values. It further

13Recall that methods might be inherited; this class handle is the
original implementing class.



declares in section 4.1 that the null type can be coerced
to any non-primitive type. Also, section 5.1.4 allows null
types to be widened to any object, array or interface type.
Statically, this means that an (untyped) null argument
can be widened to any class. In the dynamic case, we
want to do the same. Therefore, whenever we encounter
a null argument we accept the conversion of that null to
a method argument of type class, array, or interface.

Unfortunately, if we have a null argument, we may retain
a method which accepts arguments of classes that are not
yet loaded. We need to force these classes to be loaded
to ensure that the next step operates correctly.

Given the list of applicable methods, step 2(d) finds the
unique most specific method. Again the operation is
identical to the process that the javac compiler fol-
lows. One applicable method is tentatively selected as
the most specific. Each other applicable method is tested
by comparing argument by argument (including the re-
ceiver argument) against the tentatively most specific.
At each step, we discard any methods that are less spe-
cific. We continue this process until only one candi-
date method remains, or two or more equally specific
methods remain. In the latter case, we have an ambigu-
ous method invocation and we throw an Ambiguous-

MethodException to advertise this fact.

Next, we verify that the return type for our more spe-
cific method is compatible with the compiler-selected
method. This check relaxes JLS 8.4.6.3, where we must
reject any invocation that has a different return type,
yet ensures type-safety. If the return type is different,
we throw an IllegalReturnTypeChange exception at
runtime.

6.4 Table-based Dispatch

Our SRP framework-based techniques is taken from the
Dispatch Table Framework (DTF) [22]. This is a toolkit
of many different uni-dispatch and multi-dispatch tech-
niques. In order to call the DTF to dispatch a call-site,
we need to inform the DTF of the various classes and
methods present in our Java program. Our interface con-
sists of a number of straight-forward routines to perform
this registration.

The JVM maintains in-memory structures for each
loaded .class file. We have extended that Class-
Class structure to contain a DTF Type field. It contains
a pointer to the C++ object generated by the DTF. Once
a class is dynamically loaded by the JVM, we check
to see if we must register it with the dispatcher. If the
dispatcher has already been instantiated, we register the
class via javaAddClass(...) and store away the re-
turned DTF Type pointer.

If a dispatcher has not been instantiated, and the just-
loaded class is uni-dispatch only, we defer the regis-
tration in order to reduce the overhead to uni-dispatch
programs. If the just-loaded class is marked for multi-
dispatch and the dispatcher has not been instantiated, the
process is more complex. First, we instantiate a new dis-
patcher. Then, we register each class that has already
been loaded, ensuring that its superclasses and superin-
terfaces are registered first.

Finally, as the last part of registering a class with the
dispatcher, we need to see whether any methods from
other classes were held in abeyance until this class was
loaded. This can occur if the methods from other classes
expect dispatchable arguments of the class we are just
now loading. As we shall see below, we deferred regis-
tering these methods until the class was loaded.

Java’s facility for dynamically reloading classes forces
us to ensure that two classes with the same name are
assigned different DTF Types. Java ensures that two
classes with the same name are treated as distinct by
insisting that each one is loaded by a different class-
loader [19]. We apply the same technique by supply-
ing the DTF framework with a name consisting of the
classloader name, followed by “::” and followed by the
class name. They system classloader is given the empty
name “ ” .

For a class marked for multi-dispatch, we need to reg-
ister its methods along with their types, via java-

AddMethod(...). If this class implements Multi-

Dispatchable directly, then we register all of its meth-
ods, including inherited ones. Alternately, if Multi-
Dispatchable is an inherited interface for this class,
then we know that its superclass has already registered
its methods. Therefore, we do not need to register them;
we only need to register the methods that we directly
implement.

This method registration process is complicated by our
desire to load classes lazily. If a method accepts an argu-
ment with a class not yet seen by the JVM, we know that
we could never dispatch to it until that class is loaded14.
We set that method aside for future registration.

If all of the argument types for the method are al-
ready registered with the DTF, then we proceed to reg-
ister the method. We provide a methodblock pointer
that we want the framework to return if this method
is the dispatched target. We bundle up the DTF Type

values found in the ClassClass structures for each
argument class (including the receiver argument) and
pass them to the framework. The framework returns a

14As mentioned above, our DTF-based systems do not permit null
as a dispatchable argument. Therefore, this guarantee holds.



DTF Behavior pointer that we store in the method-

block.

Dispatch becomes a very simple operation. We build
an array of the DTF Type pointers from the arguments
on the Java stack. If we encounter a null argument,
we throw a NullPointerException. The DTF Type

array, along with the DTF Behavior pointer from the
compiler-selected method allow the framework to locate
the methodblock pointer that we had previously regis-
tered.

We expect that the returned methodblock pointer is
the method for multi-dispatch. We validate it against
the compiler-selected method. If the return type has
changed, we abort the dispatch and throw an Illegal-

ReturnTypeChange exception. Otherwise, we call the
found method’s original invoker and return its value as
the result of the interpreter’s call to a method invoker.

Single ReceiverProjections Single Receiver Projec-
tions (SRP) [16] is a technique that considers a multi-
dispatch as a request for the joint most specific method
available on each argument. For a given argument posi-
tion and type, an ordered (most-specific to least-specific)
vector of potential methods is maintained. The vectors
for all the argument positions are intersected to provide
an ordered vector of all applicable methods. Because of
the ordering, this vector can be quickly searched for the
most applicable method.

SRP uses a uni-dispatch technique to maintain the
vector of potential methods for each individual argu-
ment. These vectors are typically compressed to con-
serve space. Many different compression techniques are
known: row displacement, selector coloring [2], and
compressed selector table indexing [25]. Our imple-
mentation uses selector coloring, because timing exper-
iments [17] indicates that technique provides the fastest
dispatch times.

7 Future Work

Our MSA and tuned SRP dispatchers are the most com-
plete. They support null as a dispatchable argument,
multi-dispatch on other invoke bytecodes15, widening
of primitive dispatchable arguments, and multi-threaded
dispatch. Our table-framework-based dispatchers do not
currently support all of these facilities. Adding them
would provide additional flexibility and allow them to
fully support the Java programming language semantics.
In particular, we have a two-table design that will allow
one thread to dispatch through an existing table, while
we register additional methods and/or classes to a new

15Signaled by implementing the empty interfaces StaticMulti-

Dispatchable and SpecialMultiDispatchable.

one.

Our custom SRP code implements multi-dispatch as a
critical section, protected by a mutual-exclusion lock.
We have devised, but not as yet implemented, a tech-
nique which would eliminate the lock overhead (approx-
imately 0.38 �s for every multi-dispatch) and allow con-
current multi-dispatch. The trade-off is that every thread
would need to halt while the multi-dispatch tables are
being updated.

The OpenJIT support for multi-dispatch is still primi-
tive; in particular, we eliminate all inlining actions. This
is a conservative approach and one can identify situa-
tions where inlining in multi-dispatch Java would pro-
vide correct results. Identifying these opportunities will
yield higher overall performance.

Other multi-dispatch techniques exist, including com-
pressed n-dimensional tables [1, 12], look-up au-
tomata [9, 10], and efficient multiple and predicate dis-
patch [7]. A comprehensive exploration of these tech-
niques using Java is incomplete at this time.

Another significant improvement for multi-dispatch is to
incorporate our code testing tool into the javac com-
piler. At this time, MDLint exists as a separate ex-
ecutable which will recognize and warn the program-
mer about common ambiguities and difficulties. It ana-
lyzes a complete application and identifies the code sec-
tions where the programmer could invoke an ambiguous
method, or have a conflicting return type.

Our reference implementation, MSA, supports multi-
dispatch on all method types (instance, static, in-
terface, private, etc.), except constructors. Because
the same bytecode is used to invoke a constructor in the
superclass and a constructor with different arguments,
we cannot distinguish the two possibilities. This issue
is a specific instance of the need to apply a super to
an argument other than the receiver. Fortunately, in our
experience, this requirement does not arise in common
programming practice (except for constructors).

Our tuned SRP implementation allows our dispatch
tables to identify only those types that are multi-
dispatched. This lazy type numbering is reversible, al-
lowing the tables to shrink as classes are unloaded.
In turn, multi-methods can revert to lower arity multi-
dispatch (or even uni-dispatch). We see great promise in
this technique for long-lived Java server applications.

The DTF framework contains another dispatcher, Mul-
tiple Row Displacement [22] (MRD) that operates 15%
faster than SRP. Therefore, we expect that dispatch could
be enhanced to provide even lower latency by applying
this technique. Unfortunately, MRD currently does not



support incremental dispatch table updates in the same
way that SRP does. In a dynamic environment such as
Java, incremental updating of dispatch tables is desir-
able. Enhancing MRD to support incremental updates is
another research priority.

Last, our marker interface MultiDispatchable de-
notes that each method in a given class is to be multi-
dispatched. Our JVM relies on this tag only to inform
it about which methods are eligible for multi-dispatch.
Therefore, without changing our multi-dispatch imple-
mentation, alternate Java syntax would allow us to se-
lectively mark individual methods (and their overriding
multi-methods) as multi-dispatchable, rather than entire
classes. We would like to explore the space of conserva-
tive language extensions to expose this feature.

8 Related Work

Others have attempted to add multi-dispatch to
Java through language preprocessors. Boyland and
Castagna [3] provide an additional keyword parasite to
mark methods which should have multi-dispatch proper-
ties. They effectively translate these methods into equiv-
alent double-dispatch Java code. By translating directly
into compiled code, they apply a textual priority to avoid
the thorny issue of ambiguous methods. Unfortunately,
the parasitic method selection process is a sequence of
several dispatches to search over a potentially exponen-
tial tree of overriding methods.

The language extension and preprocessor approach has
other limitations. First, existing tools do not support
the extensions; for example, debuggers do not elide the
automatically generated double-dispatch routines. Sec-
ond, instance methods appear to only take arguments
that are objects, which is too limiting. Our experience
with Swing shows that existing programs often dou-
ble dispatch on literal null and array arguments and
pass primitive types as arguments; multi-methods need
to support these non-object types. Third, preprocessors
limit code reuse and extensibility; adding multi-methods
to an existing behaviour requires either access to the
original source code or additional double-dispatch lay-
ers.

Chatterton [8] examines two different multi-dispatch
techniques in mainstream languages: C++ and Java.
First, he considers providing a specialized dispatcher
class. Each class that participates as a method receiver
must register itself with the dispatcher. To relieve the
programmer of this repetitive coding process, he pro-
vides a preprocessor that rewrites the Java source to in-
clude the appropriate calls. Each method, marked with
the keyword multi, is also expanded by the preprocessor
into many individual methods, one for each combina-

tion of classes (and superclasses). A method invocation
is replaced by a call to the dispatcher which searches via
reflection for an exact match. That method is then in-
voked. This system suffers from exponential blowup of
methods.

Chatterton’s second approach examines the performance
of various double dispatch enhancements. He pro-
vides a modified C++ preprocessor which analyses the
entire Java program. It can build a number of dif-
ferent double-dispatch structures, including cascaded
and nested if. . .else-if. . .else statements, inline
switch statements, and simple two-dimensional tables.
Again, he expands every possible argument-type com-
bination in order to apply fast equality tests rather than
slow subtype checks. A significant restriction is that full-
program analysis is required. This defeats the ability
to use existing libraries and diminishes Java’s dynamic
class loading benefits.

One interesting language for multi-dispatch is Leavens
and Millstein’s Tuple [18]. They describe a language
“similar in spirit to C++ and Java” that permits the pro-
grammer to specify at each call-site the individual argu-
ments that will be considered for multi-dispatch. This
paper does not describe an implementation; it appears to
be a model of potential syntax and semantics only. A
future project might be to implement his syntax specif-
ically into the Java environment. In particular, a sim-
ple syntax extension would allow super method invo-
cations on arbitrary multi-dispatch arguments.

Another recent development is MultiJava [11]. There,
the authors extend the Java language with additional
syntax to support open classes and multi-dispatch.
The MultiJava compiler emits double-dispatch type-case
bytecodes for invocations of the open-class methods and
multi-methods. The emitted bytecode is accepted by
standard JVMs, but suffers a substantial overhead from
interpreting slow subtype-testing bytecodes. Unfortu-
nately, multi-dispatch can only apply to methods defined
using the open-class syntax and only within the program
text that imports the open-class definitions. If subclasses
wish to further specialize the multi-methods, additional
open-class definitions are required. Compilation of these
further open-subclasses may result in multiple layers of
type-case double-dispatch. Internally, MultiJava inlines
the multi-method bodies into a static method in a sep-
arate anchor class – this means that the multi-methods
disappear from the binary code and become invisible to
the reflective subsystem in Java. Finally, MultiJava is a
paper design at this time16, so performance comparisons
are not possible.

16Personal communication at OOPSLA 2000.



9 Concluding Remarks

We have presented the design and implementation of
an extended Java Virtual Machine that supports multi-
dispatch. This is the first published description of how
to implement arbitrary-arity multi-dispatch in Java. In
contrast to the more verbose and error-prone double-
dispatch technique, currently found in the AWT (Fig-
ure 2), multi-dispatch typically reduces the amount of
programmer-written code and generally improves the
readability and level of abstraction of the code.

Our approach preserves both the performance and se-
mantics of the existing dynamic uni-dispatch in Java
while allowing the programmer to select dynamic multi-
dispatch on a class-by-class basis without any language
or compiler extensions. The changes to the JVM it-
self are small and highly-localized. Existing Java com-
pilers, libraries, and programs are not affected by our
JVM modifications and the programs can achieve per-
formance comparable to the original JVM (Table 2).

In a series of micro-benchmarks, we showed that our
prototype implementation adds no performance over-
head to dispatch if only uni-dispatch is used (Table 2)
and the overhead of multi-dispatch can be competitive
with explicit double dispatch (Table 4).

We have also introduced and implemented an extension
of the Java Most Specific Applicable (MSA) static multi-
dispatch algorithm for dynamic multi-dispatch. In ad-
dition, we have performed the first head-to-head com-
parison of table-based multi-dispatch techniques imple-
mented in a mainstream language. In particular, we im-
plemented Single Receiver Projections (SRP). Overall,
our tuned SRP implementation performs as well (or bet-
ter) than programmer-targeted multi-dispatch. With per-
formance improvements in concurrency, we expect our
tuned system to out-perform type-case double dispatch.
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