
USENIX Association

Proceedings of the
5th Smart Card Research and Advanced

Application Conference

San Jose, California, USA
November 21–22, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Provably Secure Chipcard Personalization

or

How To Fool Malicious Insiders

Helena Handschuh1, David Naccache1,
Pascal Paillier1, Christophe Tymen1;2

1 Gemplus Card International, Cryptography Group

34 rue Guynemer, 92447 Issy-les-Moulineaux, France

fhelena.handschuh, david.naccache, pascal.paillierg@gemplus.com
2 �Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 Paris, France

christophe.tymen@gemplus.com

http://www.gemplus.com/smart/

Abstract. We present 'malicious

insider attacks' on chip-card per-

sonalization processes and suggest

an improved way to securely gen-

erate secret-keys shared between

an issuer and the user's smart

card. Our procedure which re-

sults in a situation where even the

card manufacturer producing the

card cannot determine the value

of the secret-keys that he per-

sonalizes into the card, uses pub-

lic key techniques to provide in-

tegrity and privacy of the gen-

erated keys with respect to the

complete initialisation chain. Our

solution, which provides a non-

interactive alternative to authen-

ticated key agreement protocols,

achieves provable security in the

random oracle model under stan-

dard complexity assumptions. Our

mechanism also features a cer-

tain genericity and, when coupled

to a cryptosystem with fast en-

cryption like RSA, allows low-cost

intrusion-secure secret key genera-

tion.

1 Introduction

Tamper-resistant devices like smart-cards
are used to store and process secret and per-
sonal data. Examples of applications making
extensive use of smart cards include wireless
communication systems such as the Global
System for Mobile communications (GSM),

or banking systems using the EMV (Europay,
Mastercard and VISA) standard. These ap-
plications share the fact that they use secret
key identi�cation or authentication to achieve
security and enable access to services. Thus
some unique secret key KI (we will adopt the
notation KI to denote a card's secret key by
analogy with the widely known GSM termi-
nology) needs to be shared between the issuer
(the bank or the telecom operator) and the
smart card. Usually this secret key material is
downloaded into the card during the so-called
chip personalization phase, i.e. the initialisa-
tion phase during which identical cards are
con�gured in such a way that each and every
of them corresponds to one speci�c user.

Usually, the card personalization center ei-
ther writes secret keys into the cards accord-
ing to a list provided by the issuer, or gener-
ates the keys itself and downloads them into
the cards within it's own premises, and sub-
sequently transmits a list of (encrypted) keys
to the issuer. We refer to these scenarios as
typical personalization protocols. In the se-
quel, we consider precisely the second sce-
nario (key generation within the manufac-
turer's premises) and show that such a ba-
sic personalization procedure is vulnerable to
malicious insiders.

We �rst discuss the potential security aws
in such a process, and then proceed to present
a new personalization protocol in which the
manufacturer is able to provide evidence to
the issuer that no one except the issuer him-
self knows the secrets stored inside the cards.

Thus our new technique provides generally
trusted keys for secret key applications.

The rest of the paper is organized as fol-
lows. In Section 2, we give an overview of a
typical personalization protocol, and we point
out its vulnerability to insider attacks when
appropriate physical site protection measures
are not enforced. Section 3 proposes our new
personalization procedure. We provide a thor-
ough security analysis in section 4 and con-
clude by a giving practical implementations
of our technique in section 5.

2 Personalization Protocols

2.1 The current approach: typical
protocols

Card personalization involves three par-
ties: an issuer (telecommunications operator
or bank), a card manufacturer (who actually
personalizes smart cards for the issuer), and a
smart card. Beyond graphical personalization
{ which may consist in printing the issuer's
logo on the card for instance, the manufac-
turer has to electrically initiate the card and
among such tasks, initialize the �les meant to
contain the card's secret key materialKI . In a
typical scenario, each and every secret keyKI

is generated uniformly at random by a per-
sonalization computer (PC) connected to the
personalization system (such as a DataCard
9000 machine). Whenever a card enters the
system, a fresh random key KI is selected by
the PC and downloaded into the card's non-
volatile memory.

Simultaneously, the key gets encrypted on
the PC, together with the card identi�er
Id (which might be some publicly available
unique bitstring such as a serial number for
instance) using the issuer's secret key Ks.
Lists of encrypted (KI ; Id) pairs are then sent
over an insecure channel to the issuer who de-
crypts the received �les and recovers the pairs
(KI ; Id).

Another way to proceed consists in en-
crypting the generated keys with the issuer's

authenticated public key in an asymmetric
key setting. This way, the issuer is the only
entity able to decrypt the generated �les, and
the key Ks need not be known at the manu-
facturer's premises.

However, both solutions are vulnerable to
insider attacks where a malicious entity hav-
ing access to the manufacturer's premises
would get hold of the key. We may think of
a malicious insider as some malevolent em-
ployee willing to clone SIM cards or as a
hacker that discretely eavesdrops the com-
puter network from outside the personal-
ization center. This strongly motivates the
search for protocols featuring a guaranteed
level of security against this kind of threat.

2.2 Security Notions for Card Per-
sonalization

Let us examine the setting and determine
which security goals are desirable to reach
from the issuer's standpoint. When the per-
sonalization protocol takes place, parties are

{ a tamper-resistant secret-less chip-card
to be personalized with identi�er Id,

{ an issuer (supposedly remote),
{ a personalization system (PC +
DC9000) in which the issuer has no
reason to put trust.

Ultimately, the goals the personalization
protocol is meant to achieve are the follow-
ing. At the end of the process,

1. the card must contain some secret key
KI belonging to some �xed key space (we
call this property correctness),

2. the issuer must know the correct pair
(Id;KI) (we refer to this property as key
integrity),

3. the issuer should be con�dent that he is
the only entity who shares the knowledge
of the (Id;KI) pair with the card (this is
de�ned as key privacy).

Correctness is easily achieved. The question
is whether requirements 2 and 3 are actu-

ally achieved by current typical personaliza-
tion protocols, and the answer is obviously
no. The above protocols do not meet key in-
tegrity nor even key privacy. Indeed, the com-
puter, if handled by a malicious person, may
very well generate a given KI and transmit a
di�erent one to the issuer. This can be con-
sidered a denial of service attack, as the end-
user would get a non-functional card. Alter-
natively, the computer might respect the in-
tegrity property by providing the right pair
(Id;KI) to the issuer, but reveal this pair to
an intruder getting hold of the PC. In this
case, card cloning becomes possible. We call
such attacks 'malicious insider attacks'.

2.3 The Interlock protocol

One obvious attempt to address this prob-
lem consists in executing a key agreement
protocol such as Interlock [4] between the
card and the issuer.

Interlock is described as follows. Assum-
ing that two entities A and B, with public-
keys pkA and pkB , want to exchange a se-
cret through an insecure channel, A and B
proceed as follows. First, A and B exchange
their public keys through the channel. Then,
A (resp. B) chooses a random rA (resp. rB),
and encrypts it with pkB (resp. pkA) to ob-
tain a ciphertext cA (resp. cB). cA (resp. cB)
is a bitstring which can be cut into two equal
parts (c1A; c

2

A) (resp. (c
1

B ; c
2

B)). Thus, A sends
c1A to B, and sends the remaining part c2A only
after having received c1B . Finally, B sends c2B .
At the end of the sequence, A and B share
the pair (rA; rB).

Clearly, this protocol thwarts passive man-
in-the-middle attacks. However, it is interac-
tive, which represents an unacceptable hur-
dle in the context of a personalization pro-
cess. The only way to achieve an equiva-
lent non-interactive protocol would be to use
public-key certi�cates and signature veri�-
cation which calls for far too complex (and
heavy) public-key infrastructures.

Besides, security requirements explicitly
demand resistance against active attacks,
where the attacker may not only eavesdrop

exchanged pieces of information but also
modify them in some way, and may imper-
sonate parties as well. Because it does not
provide authentication, Interlock does not re-
sist active attacks.

The contribution of this paper consists in
providing a non-interactive alternative to the
Interlock protocol which, in our context, re-
sists active attacks and needs no certi�cates
or signatures whatsoever.

3 A Provably Secure Card Per-

sonalization Protocol

Let us go back to the typical scenario. Ob-
viously, the security breach resides in the
possibility to attack the PC. Thus each and
every secret should be generated inside the
card itself, which, by assumption, provides
the advantage of being tamper-resistant over
an open PC.

3.1 A First approach

Thus a �rst idea is to generate the secret
key KI inside the card, download the issuer's
public key into the card, encrypt the gener-
ated secret under the public key and output
the result. Next, the encrypted secrets are col-
lected along with the Id's in a �le and sent to
the issuer who decrypts the list with his pri-
vate key SK and recovers the associated pairs
in clear (alternatively the Id's could also be
encrypted together with the secret KI inside
the card). This protocol is shown in �gure 1.
The public key of the issuer is noted PK; typ-
ically, one could use stand-alone RSA public
key encryption [5] for instance. We suppose
the key pair (PK; SK) is generated once and
for all by the issuer himself, and then trans-
mitted to the personalization center which
uses it for a certain period of time.

Unfortunately, this solution is vulnerable
to the well-known man-in-the-middle attack.
Suppose the attacker controls the PC again.
She is then able to generate her own public

xxx
xxx
xxx
xxx
xxx

Manufacturer's side Issuer's side

Issuer's Public Key PK

Issuer's Public Key PK

KI encrypted under PK

KI encrypted under PK

List of all decrypted KI's

generate
random KI
and encrypt
with PK

Smart Card

Decrypt and store

Fig. 1. Secure personalization protocol : �rst approach

and private RSA key pair and to fool the card
by sending to it her own public key. She recov-
ers the encrypted KI values, decrypts them,
and re-encrypts them with the issuer's pub-
lic key. Thus key integrity is preserved, but
key privacy is violated. The attack is shown
in �gure 2 where the attacker's public key is
noted PK

0.

3.2 Proposed Protocol

Let us now proceed to describe our pro-
tocol. The security analysis will be discussed
in the next section. Basically, the personaliza-
tion process now includes the following steps :

1. the PC transmits the issuer's public key
PK to the card,

2. the card generates a random r, computes
KI = H(r;PK) where H is a hash func-
tion such as SHA-1 [7], and memorizes
KI in non volatile memory,

3. the card encrypts r as c = EPK(r) where
EPK denotes public key encryption under
PK, and outputs c,

4. the PC collects the pair (Id; c) and sends
it to the issuer who later decrypts c using
SK, recovers r = DSK(c) and computes
KI = H(r;PK).

This protocol is shown in �gure 3.

4 Security Analysis

4.1 Main Results

Although looking simple, our protocol
achieves a very satisfactory security property,
namely that

{ both key integrity and key privacy are
preserved under a passive attack,

{ if key privacy is not preserved under an
active attack then key integrity cannot
be preserved either.

The proof of that fact is given below. From a
practical viewpoint, this means that if an in-
truder simply eavesdrops what is transmitted
through the PC, our protocol fully reaches
the security goals of section 2.2, namely key
integrity and privacy. Additionally, if the in-
truder actively operates changes over trans-
mitted data, she is given no other choice than

{ either knowing the key KI generated by
the card; but then the issuer recovers

xxx
xxx
xxx
xxx
xxx

Manufacturer's side
Issuer's side

Issuer's Public Key PK

Attacker's Public Key PK'

KI encrypted under PK'

 KI encrypted under PK

List of decrypted KI's

generate
random KI
and encrypt
under PK'

Smart Card

Decrypt and re-encrypt
with issuer's public key

Man-in-the-Middle

Recover all KI's !!!

Decrypt and store

Fig. 2. Man-in-the-middle attack on key generation process

nothing else than a faulty key K 0

I 6= KI .
Subsequently, the card just cannot work
properly because user authentication will
be unsuccessful each time the end user
attempts to access the issuer's service.
The issuer may then recognize the card
as a fake or abnormal one and blacklist
it.

{ or letting the card generate KI properly
and later have normal access to the is-
suer's service; but then, no information
whatsoever can be obtained on KI .

In other words, our protocol prevents in-
siders from cloning normal cards since only
useless cards are exposed to key divulgation.
Trying to gain information on the card's key
simply forbids its future use in normal condi-
tions. We guarantee this under any type of at-
tacks, be they very sophisticated. The insider
is left only with malevolence i.e. the ability
to force the personalization of useless cards.
We argue that this scenario is not of inter-
est to an active adversary. We assess these
results without considering collusions in the
�rst place, and address these further in sec-
tion 4.5.

4.2 Security Proof Against Passive
Insiders

We state, in a somewhat more formal way:

Theorem 1 (Passive Attacks). Assume
that the encryption scheme EPK is determin-
istic and one-way under chosen plaintext at-
tacks (OW-CPA). Then no polynomial time
attacker given PK and c = EPK(r) can recover
KI = H(r;PK) with non-negligible probability
in the random oracle model.

Proof. We assume the existence of an at-
tacker A with success probability � and show
how to invert EPK with probability �0. We
build a reduction algorithm B as follows. B is
given an instance ec = EPK(er) and must returner with non-negligible probability. B randomly
selects fKI and runs A(PK;ec).
Now, each time A queries the random or-

acle H for an input (r; pk), B checks in the
history of queries if (r; pk) was queried by A
in the past, in which case the same answer
is returned to A. Otherwise, if pk = PK and
EPK(r) = ec, then B sets er = r and returns fKI .
If none of these cases occur, B selects h uni-
formly at random, returns h and updates the

xxx
xxx
xxx
xxx
xxx

Manufacturer's side Issuer's side

Issuer's Public Key PK

Issuer's Public Key PK

r encrypted under PK

r encrypted under PK

1. Decrypt r

1. generate
random r

Smart Card

2. compute
KI = H(PK,r)

3. encrypt r under
PK 2. Compute

KI = H(PK,r)

List of decrypted KI's

Fig. 3. Provably Secure Card Personalization Protocol

history of queries. Now when A has �nished,
B checks whether er was initialized during the
game, simply returns er if so or fails otherwise.
This completes the description of the reduc-
tion algorithm B.

Since the simulation of H is perfect, it is
clear that B is sound. We denote by Ask the
event that A submits er to the simulation of
H . Now if Ask never happens, fKI is a uni-
formly distributed random value unknown to
A, so

Pr
h
A = fKI j :Ask

i
�

1

]H
;

where]H denotes the number of elements in
the output space of H . By assumption,

� � Pr
h
A = fKI

i

� Pr
h
A = fKI j :Ask

i
+Pr [Ask]

�
1

]H
+Pr [Ask]

which yields

�0 = Pr [B = er]
= Pr [Ask]

� �� 1=]H

Therefore, if � is non negligible, �0 is non neg-
ligible either. ut

Interestingly, we also get a slightly dif-
ferent result for non deterministic encryp-
tion schemes, i.e. when the protocol relies
on a probabilistic encryption function r 7!
EPK(r;u). We include this result here for the
sake of completeness. We state:

Theorem 2 (Passive Attacks). Assume
that the probabilistic encryption scheme EPK
is semantically secure under chosen plain-
text attacks (IND-CPA). Then no polynomial
time attacker given PK and c = EPK(r) can
recover KI = H(r;PK) with non-negligible
probability in the random oracle model.

Proof. Here again, we assume the existence
of the same attacker A with non negligi-
ble success probability � and show how to
distinguish encryptions EPK with non negli-
gible advantage �0. The reduction algorithm
B = (B1;B2) is as follows. B1 (the �nd stage)
chooses two distinct messages (r0; r1) uni-
formly at random and outputs them. Then
B2 inputs cb = EPK(rb;u) for a certain bit b
and random tape u. B must guess b with non
negligible advantage.

To do this, B2 is designed as follows. B2
randomly selects fKI and runs A(PK; cb).
Each time A queries the random oracle H for
an input (r; pk), B2 checks in the history of
queries if (r; pk) was queried by A in the past,
in which case the same answer is returned to
A. Otherwise, if pk = PK and r = rb for
b 2 f0; 1g, then B2 stops and output b. If none
of these cases occur, B selects h uniformly
at random, returns h and updates the his-
tory of queries. If A �nishes, B stops, chooses
� 2 f0; 1g at random and returns �. This
completes the description of the reduction al-
gorithm B.

The simulation of H is almost perfect. We
denote by Good the event that A submits rb
to the simulation of H and by Bad the event
that A submits rb to the simulation of H .
Now if neither Good nor Bad ever happens,fKI is a uniformly distributed random value
unknown to A, so

Pr
h
A = fKI j :(Good _ Bad)

i
�

1

]H
:

By assumption,

� � Pr
h
A = fKI

i

� Pr
h
A = fKI j :(Good _ Bad)

i
+ Pr [Good _ Bad]

�
1

]H
+Pr [Good _ Bad] :

Since the choice of (r0; r1) is independent
from A's view, the probability that rb is sub-
mitted by A to the random oracle H is upper
bounded by 1=]r. Given that Good and Bad

exclude each other, we get

Pr [Good] = Pr [Good _ Bad]� Pr [Bad]

� Pr [Good _ Bad]�
1

]r
:

Therefore

1 + �0

2
= Pr [B = b]

= Pr [Good]

+ Pr [:(Good _ Bad) ^ � = b]

= Pr [Good] +
1

2
Pr [:(Good _ Bad)]

=
1

2
+ Pr [Good]�

1

2
Pr [Good _ Bad]

�
1

2
+

1

2
Pr [Good _ Bad]�

1

]r

�
1

2
+

1

2
(��

1

]H
)�

1

]r
;

and �nally �0 � �� 1=]H � 2=]r as wanted.
ut

4.3 Security Proof Against Active
Insiders

We now focus on security against active in-
siders. We have:

Theorem 3 (Active Attacks). Assume
the encryption scheme EPK is determinis-
tic and one-way or probabilistic and seman-
tically secure (under chosen ciphertext at-
tacks). Then obtaining information about KI

requires the attacker to corrupt the value of
PK. Then KI 6= H(r;PK) with overwhelming
probability.

Proof. Essentially, we follow the initial work
of [6]. Suppose indeed, that the attacker does
not alter the value of PK which is transmitted
to the card. Two situations may occur:

1. either the insider corrupts the value of
c = EPK(r) by changing it into c0, but
this of of no use whatsoever to her,

2. or she does not corrupt c; in this case,
the insider is passive and theorem 1 or
2 applies, depending on EPK. This means
that no information about KI can be ob-
tained.

On the other hand, if the insider controls
the PC and cheats on PK, she may recover

KI by submitting another public key PK
0

but the issuer then gets a di�erent value
H(r;PK) 6= H(r;PK0) with overwhelming
probability. Thus the card will not be func-
tional and no damage (other than denial of
service) will incur to the issuer. This provides
evidence that either the protocol is correct, or
the card will not function at all. ut

4.4 Can Denial of Service Be
Avoided?

What is desirable is that the protocol
would preserve both key integrity and pri-
vacy under any attack circumstances, as this
would thwart denial of service attacks dis-
cussed above. For theoretical reasons, how-
ever, no protocol can achieve such a better
security level without an authenticated com-
munication channel between the card and the
issuer. The only cheap way to achieve au-
thentication would consist in masking the is-
suer's public key PK into the read only mem-
ory (ROM) of the card. We would then reach
both key integrity and privacy in any case.
But we recall that denial of service does not
serve the attacker's interests anyway because
it precisely testi�es the presence of an active
attack during the personalization process.

4.5 Collusion attacks

An intuitive way to break the system would
be to envision the collusion between a mali-
cious insider and a malicious issuer. For ex-
ample, the insider might substitute the gen-
uine issuer's public key with the malicious is-
suer's public key. In this case, under the un-
usual assumption that both issuers use the
same operating system on the card, the per-
sonalized cards would work on the malicious
issuer's network whereas they would not work
on the genuine network. Although this sce-
nario theoretically exists, one cannot help
wondering what bene�t the malicious issuer
could possibly get out of this setting. First,
the cards are shipped to the initially intended
recipients or more generally speaking directly
to the user. Thus the malicious issuer will
never get hold of the cards. Second, this is-
suer would then have cards in the �eld that

can and will be used on his own network,
but he could not plausibly recover any fees
associated to this usage. So the users would
simply (say) use wireless communication net-
works without paying a dime to the malicious
operator.

Interestingly, we could also envision attacks
combining an active intrusion with a par-
tial or total access to the issuer's decryp-
tion server. This would allow the attacker to
query the server for r-values of her choice
given c, possibly excepting the ones that cor-
respond to already listed KI 's (as this could
cause some kind of collision detection by the
server). This is exactly a chosen-ciphertext
attack scenario and in this case, again, our
protocol remains fully secure in the same
sense, provided that the underlying encryp-
tion scheme EPK be OW-CCA or INC-CCA
(instead of OW-CPA or IND-CPA). This is
easily obtained as a natural extension of the-
orems 1 and 2. Then chosen-ciphertext se-
cure encryption schemes like RSA-OAEP [1]
or Cramer-Shoup [2] must be employed.

A denial of service attacker can always in-
teract with the chip-card in such a way that
in the end the card is invalid. But, as stressed
before, we assume that this scenario is not of
interest to an active adversary. We also stress
the fact that more elaborate attacks where
the complete set of employees of the manufac-
turer collude against the issuer are not con-
sidered in this paper. As an illustration, these
include situations where the card's operating
system itself is awed or corrupted and does
not fully respect the protocol.

In light of the above discussion, we believe
that no other protocol can further enhance
the one we propose in this setting, except if
additional key authentication is implemented
in some way or an other.

5 Practical Examples

5.1 An Example Using Low-
Exponent RSA

We recall the protocol steps in this con-
text, taking SHA-1 as an embodiment of H .
First, the issuer generates an RSA key pair
(PK; SK) where PK = (n; e) and SK = (n; d)
with n = pq for two large primes p and q,
e = 3 for instance and d = e�1 mod (p �
1)(q � 1) (RSA key generation imposes that
gcd((p� 1)(q� 1); e) = 1). The manufacturer
is given n and for each card to be personal-
ized, engages the PC in the following proto-
col:

1. the PC transmits n to the card with iden-
ti�er Id,

2. the card selects r uniformly at random
and computes KI = SHA-1(r; n),

3. the card computes c = r3 mod n and
outputs c,

4. the PC collects the pair (Id; c) and sends
it later to the issuer,

5. the issuer recovers r = cd mod n, com-
putes KI = SHA-1(r; n) and stores the
pair (Id;KI).

Note that this is extremely e�cient, as the
card only performs a couple of modular mul-
tiplications and a single call to SHA-1. More-
over, we have the following security state-
ment.

Corollary 1 (of theorems 1 and 3). As-
suming the random oracle model, under the
RSA assumption, malicious insiders cannot
retrieve the secret key KI of a functional card.

5.2 An Example Based on the
Di�e-Hellman Problem

It is possible to adapt the above protocol
in order to use the Decision Di�e-Hellman
(DDH) as the underlying intractability as-
sumption. This is done by choosing El-Gamal
encryption [3] to instantiate EPK instead of
RSA, as follows.

The issuer chooses an abelian group G, de-
noted multiplicatively, of large order q, in
which the discrete logarithm is intractable.
An elliptic curve de�ned over a �nite �eld, or
the group of integers modulo a large prime
p are examples of such a group. The issuer
then chooses a base g 2 G, a random inte-
ger 1 < x < q, stores SK = x and transmits
PK = (g; gx) := (g; h). The personalization
process now works as follows:

1. the PC transmits the issuer's public-key
(g; h) to the card with identi�er Id,

2. the card selects r uniformly at random
and computes the pair (gr; hr),

3. the card computes KI =
SHA-1(hr; g; h), memorizes KI in
non-volatile memory and outputs gr,

4. the PC sends the pair (Id; gr) to the is-
suer, who later recovers KI by comput-
ing KI = SHA-1((gr)x; g; h).

In this case, we get the following security re-
sult.

Corollary 2 (of theorems 2 and 3). As-
suming the random oracle model, under the
DDH assumption, malicious insiders cannot
retrieve the secret key KI of a functional card.

6 Conclusion

We have presented a simple provably secure
protocol which enables a smart-card manu-
facturer to act as a trusted personalization
center without knowing any secret data be-
longing to the issuer. The proposed solution
does not require a public-key infrastructure,
and avoids all the secret-key management
procedures usually required to guarantee the
security of the personalization process.

Acknowledgments

We thank Jacques Stern for his help on
the initial version of the security proofs and
anonymous reviewers for their comments and
suggested improvements of the paper.

References

1. M. Bellare and P. Rogaway. Optimal asym-

metric encryption. In A. De Santis, editor,

Advances in Cryptology { EUROCRYPT '94,

volume 950 of Lecture Notes in Computer Sci-

ence, pp. 92{111, Springer-Verlag, 1995.

2. R. Cramer and V. Shoup. A Practical Public-

Key Cryptosystem Provably Secure Against

Adaptive Chosen-Ciphertext Attacks. In Ad-

vances in Cryptology { CRYPT0 '98, volume

1462 of Lecture Notes in Computer Science,

pp. 13{25, Springer-Verlag, 1998.

3. T. El Gamal. A Public Key Cryptosystem

and a Signature Scheme Based on Discrete

Logarithms In IEEE Trans. Inform. Theory,

vol. 31, pp. 469{472, 1985.

4. R. Rivest and A.Shamir, How to expose an

Eavesdropper, Communication of the ACM,

v.27, n.4, Apr. 1984, pp. 393{395

5. R. Rivest, A. Shamir and L. Adleman, A

Method for Obtaining Digital Signatures and

Public-Key Cryptosystems. In Communica-

tions of the ACM, vol. 21, n 2, p.120{126,

February 1978.

6. J. Stern, Analysis of a Secure Chip-

card Personalization Protocol. Unpublished

Manuscript, January 2001.

7. US Department of Commerce, N.I.S.T. Secure

Hash Algorithm. In FIPS 180-1, 1995.

