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Abstract

The access control exercised by the Java Card
firewall can be bypassed by the use of shareable
objects. To help detecting unwanted access to
objects, we propose a static analysis that calcu-
lates a safe approximation of the possible flow
of objects between Java Card applets. The anal-
ysis deals with a subset of the Java Card byte-
code focusing on aspects of the Java Card fire-
wall, method invocation, field access, variable ac-
cess, shareable objects and contexts. The techni-
cal vehicle for achieving this task is a new kind
of constraints: quantified conditional constraints,
that permits us to model precisely the effects of
the Java Card firewall by only producing a con-
straint if the corresponding operation is autho-
rized by the firewall.

1 Introduction

The Java Card language is a subset of Java,
tailored to the limited resources available on to-
day’s smart cards. Java Card keeps the essence of
Java, like inheritance, virtual methods, overload-
ing, but leaves out features such as large prim-
itive data types (long , double and float ),
characters and strings, multidimensional arrays,
garbage collection, object cloning, security man-
agers [1, 10]. Given the security-critical ap-
plication areas of Java Card, the language has
been endowed with an elaborate security archi-
tecture.A priori, applets are separated by afire-
wall which prevents one applet from accessing
objects owned by another applet. Thus, even if
a foreign applet obtains a reference to an object
with confidential information this does not imply
that the information is leaked. In order to pro-

vide a means of communication between sepa-
rated applets, objects can be marked asshareable.
This allows to grant access to (a subset of) the
methods of the objects through the firewall. The
problem is that marking an object as shareable
means that its shared methods can be accessed by
all applets that manage to get a reference to the
object. To counter this problem, Java Card of-
fers a limited form of stack inspection, allowing
a “server” applet to know the identity of a “client”
object which invoked a particular method. This,
however, must be programmed explicitly by the
application programmer. These mechanisms (de-
scribed in detail in section 2) allow the design of
secure applications but do not themselves guar-
antee security. Further code analysis must be em-
ployed to establish that the checks programmed
in the server applet guarantee that confidential
data is not leaked via shared objects. To sum-
marize:

The Java Card firewall can be bypassed
by using shareable objects. Data flow
analysis permits to calculate a safe ap-
proximation to the access control actu-
ally implemented by a set of applets,
and thus to verify that a given access
policy is respected.

This paper presents a flow analysis for Java
Card programs. The analysis isconstraint-based
in that for each instruction of the program it gen-
erates a set of constraints describing the data flow
of the instruction. The resolution of this system
permits to find the possible values of the vari-
ables used in the program and the called method.
The analysis relies on a novel technical device,
quantified conditional constraints(QCCs), that
allows to generate the set of constraints of a
programon demand. This way of generating
constraints is useful and natural when analyzing



object-oriented languages where the control flow
and the data flow are inter-dependent. It general-
izes the conditional constraints proposed by Pals-
berg and Schwartzbach [20] for object-oriented
type analysis.

The paper is organized as follows. Sec-
tion 2 introduces the central features of the Java
Card 2.1.1 firewall and provides a detailed ex-
ample. Section 3 defines our representation of
the Java Card bytecode. The abstract domains
used in the analysis are given in Section 4 and
Section 5 defines the set of quantified conditional
constraints generated for each type of instruction.
Section 6 shows how theseQCCs can be solved
iteratively and Section 7 shows how the analysis
performs on the example from Section 2. Sec-
tion 8 and Section 9 discuss related works and
directions for extending this work.

2 The Java Card firewall

The Java Card platform is a multi-application
environment in which an applet’s sensitive data
must be protected against malicious access. In
Java, this protection is achieved using class load-
ers and security managers to create private name
spaces for applets. In Java Card, class loaders and
security managers have been replaced with the
Java Card firewall. The separation enforced by
the firewall is based on the Java Card’s package
structure (the same as Java’s) and the notion of
contexts(in Java Card, this notion is calledgroup
context).

When an applet is created, theJava Card Run-
time Environment(JCRE) assigns it a unique ap-
plet identifier (AID). If two applets are instances
of classes coming from the same Java Card pack-
age, they are said to belong to the same context,
identified by the package name. In addition to the
contexts defined by the applets executed on the
card, there is a special “system” context, called
theJCREcontext. Applets belonging to this con-
text can access objects from any other context on
the card. Thus, the set of Java Card contexts is
defined by:

Java Card contexts =
{ JCRE} ] { pckg: a package name}
Every object is assigned a uniqueowner con-

text viz., the context of the applet which created
the object. A method of an object is said to ex-

ecute in the context of its owner1. It is with this
context that theJCREdetermines whether an ac-
cess to another object will succeed. The firewall
isolates the contexts in the sense that a method
executing in one context cannot access any fields
or methods of objects belonging to another con-
text.

There are two ways for the firewall to be by-
passed: viaJCREentry points and via shareable
objects.JCREentry points are objects owned by
the JCRE that have been specifically designated
as objects accessible from any context. The most
prominent example is theApplication Protocol
Data Unit (APDU) buffer in which commands
sent to the card are stored. This object is man-
aged by theJCRE, and in order to allow applets
to access this object, it is designated as an entry
point. Other entry points can be the elements of
the table containing the AIDs of the applets in-
stalled on the card. Entry points can be marked as
temporary. References to temporary entry points
cannot be stored in objects (this is enforced by
the firewall).

Two applets in different contexts may want to
share some information. Java Card offers a shar-
ing mechanism, calledshareable objects, that
gives limited access to objects across contexts.
An applet can allow another applet to access an
object’s methods from outside its context. The
mechanism is restricted to methods and cannot
be applied to fields. It uses a shareable inter-
face, that is an interface which extendsjava-
card.framework.Shareable . In this in-
terface, the applet gives the list of the method’s
signatures it wants to share. The class of the ob-
ject to share must implement this interface. The
“server” applet defines a method,getShare-
ableInterfaceObject , called when an ap-
plet is asked to provide a shared object. The
method receives the AID of the “client” applet
which requested the shared object. Based on this
information, the server decides what to return to
the client, thus it is possible to share different ob-
jects with different client applets.

2.1 An example using shareable objects

Figure 1 contains an example illustrating the
sharing mechanisms of the firewall. We have 3
applets: Alice, Bob and Charlie. Alice imple-

——————————————
1In the case of a static call, the execution is in the caller’s

context.



ments a shareable interfaceMSI (we assume an
interfaceMSI that extendShareable in which
the signature of the methodfoo is given) and is
prepared to share an objectMSIO(an instance of
the class that implements the interfaceMSI) with
Bob. When Alice receives a request for sharing
(via a call to her methodgetSIO 2) by theJCRE,
she verifies that the caller is Bob. If it is Bob, she
returnsMSIOelse she returnsNull.

Bob can ask for a shareable object from Al-
ice using theJCREmethodgetASIO 3. Assume
now that Bob (inadvertently) leaks a reference
to MSIO to the third applet Charlie. Since the
firewall only checks that the object is shared be-
fore granting access, Charlie can invoke the same
methods of theMSIOobject as Bob. Alice knows
this so she decides to verify, at each access to one
of her shared methods, the identity of the caller.
Java Card offers a method for obtaining the AID
of the context in operation before the last con-
text switch, here calledgetPrevCxt 4. Using
this information Alice can discover when applets
from contexts other than Bob’s attempt to access
theMSIOobject.

2.2 Limitations of the firewall

The Java Card firewall has several shortcom-
ings, as analysed in detail by Montgomery and
Krishna [18]. One potential difficulty with the
Java Card firewall is that shareable objects can be
accessed by any applet and not only by the applet
to which the reference was given, as illustrated
by the example above. Since references can be
passed from one applet to another, this opens up
the possibility for methods in shared objects to
be invoked by applets other than those for which
they were intended. To protect applets against un-
wanted access, Java Card offers a limited form
of the stack inspection mechanism that under-
lies the Java 2 security architecture. The sys-
tem methodgetPrevCxt can be called to get
access to the last context switch that took place.
When a method is called from another applet, this
context switch indicates the identity of the caller.
This information can then be used to decide what

——————————————
2In reality, this method is calledgetShareableIn-

terfaceObject and is invoked by theJCREthat mediates
all requests for shared objects.

3In reality, the method JCSystem.getApplet-
ShareableInterfaceObject.

4In reality, this method is called JCSys-
tem.getPreviousContextAID.

value the method should return to the caller. It is,
however, up to the programmer to implement this
correctly. If the security mechanisms provided
by the language are not used properly, unwanted
information flow can arise as a result of objects
flowing from one applet to another. In order to
verify the access control actually implemented by
a set of Java Card applets we have developed a
static analysis that calculates, for each variable in
a program, an approximation of the set of values
that will be stored in this variable. This static ap-
proximation allows

• to signal potential data flow between applets
that violates a given access control policy,

• or, if no such flow is detected, to provide a
proof that all data flow respects the policy.

The analysis is based on a constraint-based type
analysis for Java-like languages, but is modified
to keep an accurate account of the Java Card
specificities (like context and firewall). Indeed,
since the security of an applet to a large extent
relies on the use of thegetPrevCxt method,
the analysis must be able to model calls to this
method precisely.

3 A representation of Java Card
bytecode

To simplify the presentation, we work with a
“three-address” representation of Java Card byte-
code where arguments and results of an instruc-
tion are fetched and stored in local variables in-
stead of being popped and pushed from a stack.
This format is similar to the intermediate lan-
guageJimpleused in the Java toolSoot[23] and
the transformation of code into this format is
straightforward. We furthermore assume that the
constant pool has been expandedi.e. that indices
into the constant pool have been replaced by the
corresponding constant. For example, the byte-
code instructioninvokevirtual takes as pa-
rameter the signature of the method called, rather
than an index into the constant pool. The for-
mal representation of Java Card bytecode can be
found in [17].



public interface MSI extends Shareable {
Secret foo (); }

public class Alice extends Applet implements MSI {
private Secret ObjectSecret;
public Shareable getSIO (AID Client) {

if (Client.equals (BobAID))
return (this);

return null; }
public Secret foo () {

AID Client;
Secret Response;
Client = getPrevCxt();
if (Client.equals (BobAID))

Response = ObjectSecret;
return Response; } }

public class Bob extends Applet {
public static MSI AliceObj;
public void bar () {

AliceObj = (MSI) getASIO
(AliceAID); } }

public class Charlie extends Applet {
private static MSI AliceObj;
private static Secret AliceSecret;
public void bar () {

AliceObj = Bob.AliceObj;
AliceSecret = AliceObj.foo (); } }

Figure 1: Example of shareable objects

3.1 Notations

The termP(X) denotes the power set ofX:
P(X) ≡ {S | S ⊆ X}. A product typeX =
A × B × C is sometimes treated as a labeled
record: with an elementx of typeX, we can ac-
cess its fields with the names of its constituent
types (x.A, x.B or x.C). A list is defined by
enumeration of its elements:x1 :: · · · :: xn. List
elements can be directly accessed giving their po-
sition (v(i) for theith element). Lists can be con-
catened:(x1 :: · · · :: xn) ::: (xm :: · · · :: xp) =
x1 :: · · · :: xn :: xm :: · · · :: xp. X∗ denotes the
type of finite lists, whose elements are of typeX.
The symbol→ is used to form the type of partial
functions: X → Y. The v̄ ∈ Ē notation denotes
the formulav1 ∈ E1 ∧ · · · ∧ vn ∈ En.

3.2 Abstract syntax

Our program representation is a modified ver-
sion of that of Bertelsen [5, 6]. We useIdp, Idci,
Idf andIdm to denote the set of qualified name of
a package, of a class or an interface, of a field and
of a method, respectively5. Idv is the set of (un-
qualified) names of variables. To extract name
information from an identifier, we use the nota-
tion dIdex, whereId is a qualified name andx the
type of the projection6. We assume a setAID

——————————————
5The qualified name of an entity is the complete name. For

a class, it isp.cwherep is the name of the package andc the
(unqualified) name of the class. For a method (c.m) or a field
(c.f), it is the qualified name of the class and the (unqualified)
name of the method or field.

6To extract a (unqualified name), we usep for a package,
c for a class or an interface,m for a method andf for a field.
To extract a qualified name, we combine the symbols so, for
example,dIdep.c will extract a qualified name of a class (or
interface) from the qualified nameId.

which contains the possible applet identifiers of
the applets installed on a card. This set contains
a special AID, writtenJCRE, for the Java Card
Runtime Environment.

Classes and Interfaces A class or an interface
descriptor consists of a set of the access modifiers
(P(Modci)), the name of the class or interface
(Idci), the name of the direct superclass or the
names of direct super-interfaces (Ext), the name
of the interfaces that the class implements (Imp),
the name of its package (Idp), field declarations
(Fld), method declarations and implementations
(Mtd). A class must have one superclass, the de-
fault beingjava.lang.Object , but an inter-
face can have zero or more super-interfaces. Only
a class can implement an interface, so for an in-
terface this set is empty. The fields are described
by a map from field names (Idf ) to a pair consist-
ing of a set of access modifiers (P(Modf )) and a
type descriptor (Type). The type of a field is ei-
ther a primitive type (boolean , short , byte ,
int ) or the name of a class or an interface. All of
this information are stored in the class hierarchy
(Eci).

Methods The methods are described by a map
that to a method signature (Sig) associates a
method descriptor (Descm). This structure con-
sists of a set of access modifiers (P(Modm)), the
code of the method (Code), a description of the
formal parameters (Param), optionally a descrip-
tion of the variable used to return a value (Res)
and the local variables of the method (Varl). A
signature is the name of the method (Idm) and the
list of type descriptors for its parameters (Type∗).
Code is a list whose elements consist of a pro-



gram counter value (Pc7) and the instruction at
this address (Bytecode). The set of local vari-
ables is the list of all variable names (Idv) with
their type descriptor (Type).

Bytecode Due to space limitations, in this pa-
per, we only consider a subset of Java Card byte
code. The subset is nevertheless sufficient to il-
lustrate the different features of our analysis; see
[16] for a treatment of the full language. In the
following, Ti range over local variables andSi is
used to give the list of the type of the parame-
ters for a call (which can be found in the constant
pool).

The main departure from standard bytecode
is the introduction of the constructifAID T ∈
S BCinst. This specialized if-instruction takes
as argument a variableT that contains an AID,
a setS ∈ P(AID ) and executes the instruction
BCinst if the AID belongs to the setS. We have
introduced this instruction to make explicit how
the analysis takes information about AIDs into
account. Ordinary bytecode can be transformed
to use theifAID instruction by identifying those
conditional instructions that make test of the
form Aid∈ S. Most of such tests are syntactically
explicit in Java Card source programs or can
be identified by simple intra-procedural flow
analysis.

Bytecode =ifAID T ∈ S BCinst| BCinst

The Java Card bytecode is transformed into a
“three-address” like language. We will not de-
scribe this program transformation any further.

BCinst =
T := getstatic f

| T0 := invokeinterface m T1

T2 · · · Tn S2:: · · ·Sn::Sn+1

| T := invokestatic getPrevCtx
| T1 := load T2

| T := new Idc

| putstatic f T
| T1 := store T2

T:=getstatic f loads the value contained in
the static fieldf of the classdfep.c and stores it in
T. T0:= invokevinterface m T1 T2 · · · Tn

S2:: · · ·::Sn::Sn+1 invokes the interface method
m with the signatureS2:: · · ·::Sn+1 on the ob-

——————————————
7We assume furthermore a setPc of program counters.

A program counter identifies an instruction within the whole
class hierarchy and not just a method.

ject contained inT1 with parametersT2 · · · Tn

and the result is stored in the variableT0 with
typeSn+1. T:= invokestatic getPrevCtxre-
trieves the AID of the last active context before
the last context switch and stores it inT. T1 :=
load T2 loads the value contained inT2 and
stores it inT1. T:=new C stores a reference to the
object created at this program point inT. put-
static f T loads the value contained in the vari-
ableT and stores it in the static fieldf of the class
dfep.c. T1 := store T2 loads the value contained
in T2 and stores it inT1.

3.3 Auxiliary functions on the class hier-
archy

We define three predicates to determine if a
class member (the second parameter) is visible
from a given instruction (the first parameter).
We have CI Visibility? for a class or an in-
terface, MethodVisibility? for a method and
Field Visibility? for a field. We must keep this
test in the constraint because in some cases, like
for the modifierprotect , we need information
about its dynamic values.

CI Visibility?:
Idc × Idci × Eci → Boolean

MethodVisibility?:
Idc × Idc × Descm × Eci → Boolean

Field Visibility?:
Idc × Idf × Eci → Boolean

The function Lookup models the dynamic
search of methods underlying the virtual method
calls. It takes as arguments the signature of a
method, the class in which the method is de-
clared, the class in which the invocation are made
and the class hierarchy. It returns a set of fully
qualified method names of the implementations
of the method designated by the signature.

Lookup: Sig× Idci × Idci × Eci → P(Idm)

A full description of the Java visibility rules
and method resolution would be quite lengthy
due to the non-trivial semantics of these two lan-
guage features. We refer instead to the litera-
ture [12, 15, 14].



4 Abstract domains

Owners and contexts An object is owned by
an applet (or theJCRE) thus an owner is uniquely
identified by an AID. Since an AID does not di-
rectly specify the package to which the applet be-
longs, we add this information for convenience.
Thus, the set of object owners is defined by:

Owner = Idp × AID

We define an abstract context to be an abstrac-
tion of the call stack in which a method is exe-
cuted (these contexts should not be confused with
the Java Card notion of context). Our abstract
contexts are designed to provide exactly the in-
formation that can be obtained by a call to the
stack-inspecting methodgetPrevCxt (cf. Sec-
tion 2). More precisely, the abstract context in
which a methodm is analyzed consists of a pair
(Prev,App)where the first componentPrev is the
last active Java Card context before the last con-
text switch and the second componentApp is the
Java Card context of thecaller (i.e., the active
context that invokedm). Formally we define:

Context = Owner× Owner

Values We are primarily interested in modeling
the object structure and ownership so we abstract
primitive values such as booleans and integers to
their type. To model the heap of objects, we adopt
a common approach (going back to at least [13])
in which all objects created by the samenew in-
struction are identified by one object. We refine
this by keeping the owner as part of the abstract
object. More precisely, a reference (Ref) to an
object (Obj) is abstracted into the instruction that
created the object and the owner of the object. We
suppose we have a specialNull reference.

Ref = (Pc× Owner)] { Null }
We have three kinds of abstract values: ref-

erences, applet identifiers and primitive values
which as mentioned above are abstracted by their
type.

Value = Ref] AID ]
{boolean , short , byte , int }
Concerning the concrete value in memory, we

can have a class instance (Obj) which contains
the name of the class (Idci), the owner of this in-
stance (Owner), boolean flags indicating whether
or not it is aJCRE entry point or a temporary
JCRE entry point (cf. Section 2) and the set of

fields (Fldv), a function which maps a field name
to a set of values.

Obj =
Idci × Owner× JCREep× tJCREep× Fldv

Fldv =
Idf → P(Value)

Firewall checks The checks made by the fire-
wall are formalized through a collection of pred-
icates. Covering all bytecode instructions would
require eight different predicates ([16]); in this
paper, we only use two of these predicates:

• The predicateAccessInterface?validates the
access to methods of an object.

AccessInterface?:
Ref× Ref× Idi × Eci → boolean

The first reference represents the current
context, the second represents the object on
which the call is made andIdi is the name
of the interface which declared the method
called. The access is authorized if and only
if the context represented by the first refer-
ence is the context of theJCREor if the con-
texts of the two references are the same or
if the second reference represents aJCRE
entry point or if the class of the object repre-
sented by the second reference implements a
shareable interface andIdi extends a share-
able interface.

• The predicateAccessPutstatic?checks the
validity of the access to a static field of a
class.

AccessPutstatic?:
Ref× Value→ boolean

The reference represents the current context
that wants to store the value in the static
field. The access is only authorized if the
Java Card context represented by the refer-
ence is the context of theJCRE or if the
value is neither a global object nor a tem-
poraryJCREentry point.

5 Flow analysis

In this section we describe a data flow analysis
to approximate the part of a program’s behaviour
relevant to security verifications. The main infor-
mation calculated by our analysis is an approxi-



mation of the objects stored in the variables of the
program. More precisely, we calculate the fol-
lowing information:

• V Jvar,m,ctxK ∈ P(Value): the set of values
stored in the variablevar of methodmwhen
this method is called in contextctx.

• SF JIdciK : Idf → P(Value): the possible
values of the static fields of a given class.

• mem : Ref → Obj : an approximation
of the memory in which an abstract refer-
ence of form(pc, owner ) is mapped to an
abstract object that safely approximates all
those concrete objects allocated by instruc-
tion at addresspc and owned byowner .

• C Jm,ctxK ∈ P(Ref): the set of objects on
which a call to methodm in contextctx is
made.

It is important to analyze methods for each
calling context since this is the information avail-
able to the firewall at run-time. An analysis that
does not exactly model this information would
have poor precision. This information serves two
purposes: it permits constructing a control flow
graph (by resolving which method is called at a
given virtual method call) and it makes explicit if
an object owned by an applet is stored in a vari-
able accessible by another applet.

An intra-procedural analysis is required in or-
der to approximate the behaviour of each server
applet when it receives a request for a shared ob-
ject. This analysis is orthogonal to the analysis
presented in this paper and will not be described
here. We shall assume the function:

ReturnSIO:AID × AID → P(Ref)

It takes the AID of a server and the AID of a client
and returns a safe approximation of the set of ob-
jects that the server accept to share with the client
(the set that it returns is equal to or bigger than the
set returned during the execution).

5.1 Quantified conditional constraints

The analysis will be specified in constraint-
based style. We introduce a new type of con-
straints, thequantified conditional constraints
(QCCs) that can be considered as a constraint
scheme from which actual constraints can be gen-
erated.

The first kind of constraints used in static anal-
ysis is the simple constraint (SC). It is used to
model the flow and the modification of informa-
tion. A simple constraint has the form:

Expression⊆ Variable

An extension of this kind of constraint was used
by Palsberg and Schwartzbach [20] for type anal-
ysis. They take a simple constraint and add a con-
dition under which the constraint is valid. Such a
conditionalconstraint has the form:

Class∈ Variable1 → Expression⊆ Variable2

The Variable2 have Expression as possible value
if and only if Class is a possible value for
Variable1. The simple constraint models an in-
struction of a method and the condition model the
fact that this method can effectively be called.

This kind of constraints solves the problem that
the constraints to be generated depend on the ac-
tual data flow of the program. The solution has
the drawback that it has to generate all possible
constraints from the outset and then test for each
iteration and for each constraint whether it should
be taken into consideration. In the following, we
propose to generate the constraints set in an incre-
mental fashion where constraints are only added
once the data flow analysis has actually estab-
lished that the constraints will be activated.

We propose to extend this kind of constraints
in the following two ways:

• allow more conditions, to model, for exam-
ple, the activities of the environment like the
firewall checks or the visibility rules,

• produce dynamically the system based on
the current value of each variable (instead of
generating constraints for all possible values
of the domain of the variable).

This new kind of constraints is calledquantified
conditional constraintsand has the form:

∀ v1, · · · , vn ∈ S1, · · · , Sn :
cond(v1, · · · , vn) →

cstr(v1, · · · , vn)

Here,cstr is a set of simple constraints param-
eterized onv1, · · · , vn and cond are conditions
on the valuesv1, · · · , vn. Evaluation of such a
QCCresults in a set of constraints for each value
v1, · · · , vn ∈ S1, · · · , Sn satisfying the condition



cond. In our analysis, theQCCs have a particular
structure, as shown below.

• The setS, used in the quantification, can
be the set of possible values of a variable
(V Jx,m,ctxK), the set of objects on which
a call is made (C Jm,ctxK), the result of the
Lookupor a constant set.

• The conditioncondis a conjunction of con-
ditions. It can be a test on the visibility, a
firewall check or a test for membership of a
constant set.

• A constraintconst is a set of simple con-
straintSC. SChave a form:Exp⊆ Var. Exp
can be a variable, a constant set, a derefer-
encing of the memory, the set of the values
of a static field or the call toReturnSIO.
Var can be a variable, a dereferencing of the
memory or the set of the values of a static
field.

QCC: ∀ value ∈ S :
cond(value) →
cstr(value)

S: V Jx,m,ctxK | C Jm,ctxK | Const Set|
Lookup (Sig, Idci, Idci, Eci)

cond: H1 ∧ · · · ∧ Hn

Condition (H):
CI Visibility? (Idc,Idci) |
MethodVisibility? (Idc,Idc,Descm) |
Field Visibility? (Idc,Idf ) |
AccessInterface? (Ref,Ref,Idi) |
AccessPutstatic? (Ref,Value)|
value∈ Const Set

cstr: P(SC)
Constraint (SC): Exp⊆ Var
Exp: Const Set| V Jx,m,ctxK | SF JIdciK(Idf ) |

C Jm,ctxK | mem(Ref).Fldv(Idf) |
ReturnSIO (AID ,AID )

Var: V Jx,m,ctxK | SF JIdciK(Idf ) | C Jm,ctxK |
mem(Ref).Fldv(Idf)

5.2 Analysis

The analysis generates, for each method and
for an execution contextctx, a set ofQCCs that
describes the data flow of the method in this con-
text. The set of constraints for a method is the
union of the set of constraints for each instruc-
tion. The function to analyze an instruction is:

AInst : Inst× Idm × Context→ P(QCC)

This function takes three parameters: the in-
struction to analyze, the current method, and the
context in which the method is analyzed. An in-
struction is just a program counter and the byte-
code instruction at this address. In the following
we define this function for each bytecode instruc-
tion.

getstatic Thegetstatic instruction loads a
value stored in a static field of a class or interface
and stores it into a local variable. The value in
the fieldC.f is stored in the local variableT if and
only if the field exists and the field is visible at
instructionInst (figure 2).

invokeinterface Theinvokeinterface in-
struction makes a call to an interface method. We
calculate the set of methods to which the method
signaturesig can be resolved

Lookup (sig,mem(o).Type,dpep.c,Eci)
together with the context in which the meth-
ods called will be analyzed(Prev,App). If the
call is accepted by the firewall (AccessInterface?
(r,o,dpep.c,Eci)), we add constraints to simulate
this call. We create constraints to simulate the
transfer of the actual parameters to the formal pa-
rameters:

V JTi,m,ctxK ⊆ V JPi,q,(Prev,App)K,
and add a constraint to retrieve the value returned
by the method called

V JT0,m,ctxK ⊇ V JR,q,(Prev,App)K.
Finally, we add the objecto in C Jq,(Prev,App)K
to indicate that the methodq was invoked on this
object (figure 3).

load The load instruction loads value con-
tained in a variable and stores it in an other vari-
able. The values contained by the variableT2 are
transfered into the variableT1 (figure 4).

new Thenew instruction simulates the creation
of a new class instance and stores a reference to
it into a variable. If the class is visible by the
instruction, we store inV JT,m,ctxK the reference
to the created object (figure 5).

putstatic Theputstatic instruction stores a
value in a static field. The value contained in vari-
able T is stored in the static fieldf of the class
dfep.c if the field is visible by the instruction and
if the firewall accepts this access (figure 6).



AInst ((pc,T := getstatic f ), m, ctx)= 8 (r)2 C Jm, ctxK : Field Visibility?(mem(r).Idci , f ,Eci)
!

�
V JT, m, ctxK ⊇ SF Jdfep.cK(f)

	
Figure 2: Getstatic

AInst ((pc,T0 := invokeinterface p T1 T2 · · · Tn S2 :: · · · :: Sn :: Sn+1), m, ctx)=
8 (r, o, q)2 C Jm, ctxK× V JT1, m, ctxK× Lookup(sig,mem(o).T ype, dpep.c,Eci)

: AccessInterface?(r , o, dpep.c, Eci)

!

8>>>>>><
>>>>>>:

V JT1, m, ctxK ⊆ V JP1, q, ctx
′K,

· · ·
V JTn, m, ctxK ⊆ V JPn, q, ctx′K,
Init Var(Eci(dqep.c).Mtd((dqem, S2 :: · · · :: Sn+1)).V arl, q, ctx′)
C Jq, ctx′K ⊇ {o}
V JT0, m, ctxK ⊇ V JR, q, ctx′K

9>>>>>>=
>>>>>>;

where we have used the following abbreviations:
sig = (dpem, S2 :: · · · :: Sn)

P1 :: · · · :: Pn = (Eci(dqep.c).Mtd)((q, S2 :: · · · :: Sn)).Param
ctx′ = (Prev,App)
App = (mem(r).Owner.Idp ,mem(r).Owner)

Prev =

�
ctx.Prev if ctx.App.Idp = App.Idp

ctx.App otherwise
R = (Eci(dqep.c).Mtd)((q, S2 :: · · · :: Sn)).Res.Idv

Figure 3: Invokeinterface

AInst ((pc,T1 := load T2), m, ctx)= !
�
V JT1, m, ctxK ⊇ V JT2, m, ctxK

	
Figure 4: Load

AInst ((pc,T := new c), m, ctx)=
8 (r)2 C Jm, ctxK: CI Visibility?(mem(r).Idci , c,Eci)
!

�
V JT, m, ctxK ⊇ {(pc, r.Owner)}	

Figure 5: New

AInst ((pc,putstatic f T ), m, ctx)=
8 (r, v)2 C Jm, ctxK× V JT, m, ctxK

: Field Visibility?(mem(r).Idci , f,Eci) ∧ AccessPutstatic?(r, v)
!

�
SF Jdfep.cK(f) ⊇ {v}	

Figure 6: Putstatic

AInst ((pc,T1 := store T2), m, ctx)= !
�
V JT1, m, ctxK ⊇ V JT2, m, ctxK

	
Figure 7: Store

AInst ((pc,T := invokestatic getPrevCtx ), m, ctx)=8>>>><
>>>>:

8 (r)2 C Jm, ctxK : ctx.App.Idp = mem(r).Owner.Idp

!
�
V JT, m, ctxK ⊇ ctx.Prev.AID

	

8 (r)2 C Jm, ctxK : ctx.App.Idp 6= mem(r).Owner.Idp

!
�
V JT, m, ctxK ⊇ ctx.App.AID

	

9>>>>=
>>>>;

Figure 8: getPrevCtx

Let AInst ((pc,BCinst), m, ctx)= ∀ v̄ ∈ Ē : cond → {C}. Then
AInst ((pc,ifAID T ∈ S BCinst ), m, ctx)=

8 (v̄, a)2 Ē × V JT, m, ctxK : cond ∧ a ∈ S !
�

C
	

Figure 9: ifAID

Figure 10: Examples ofQCCs



store The store instruction stores the value
contained in variableT2 in variableT1. This data
flow is modeled by a simple set inclusion: values
contained in variableT2 may also be contained in
variableT1 (figure 7).

getPrevCtx The instructioninvokestatic
getPrevCtxmakes a call on the static methodJC-
System.getPreviousContextAID. The methodget-
PrecCtxserves to find the AID of the active ap-
plet before the last context switch. The first con-
straint is activated when the active context is the
context of the caller, in which case they have the
same previous context. The second one is ac-
tivated when the active context differs from the
context of the caller. In that case the previous
context is the context of the caller (figure 8).

ifAID The QCC used in this construct is the
one analyzed for theBCinst instruction. A con-
dition is added such that the constraints are only
generated if the condition in the test is true (fig-
ure 9).

6 Resolution

The resolution of quantified conditional con-
straints can be done iteratively as an ordinary fix
point computation. The main difference with a
“classic” system is that the set of constraints and
the values of variables in the constraints evolve
together. Hence, the iteration sequence consists
of triples(qcc,sc,val)whereqcc is the current set
of quantified conditional constraints instantiated
for particular contexts,scis the current set of sim-
ple constraints andval is a valuation that to each
variable associates its current value.

Suppose that we have a programP consisting
of a set of applets (Aplt) and a set of methods
(Meth). LetQ be the set of (uninstantiated)QCCs
obtained by analyzingP (with functionsAClass

for a class or an interface,AMeth for a method
andAInst for an instruction). During the resolu-
tion of Q, we compute the new set of instantiated
QCCs, P(QCC), with the functionEvalQCC , the
new set of simple constraintsSC, P(SC), with the
functionEvalSC and the new valuationVal with
the functionEvalVal , as defined below.

EvalSC EvalValEvalQCC

SC Valinstantiated
QCCs

Values Propagations

The functionEvalQCC uses the current val-
uation to instantiate theQCCs in the setQ and
adds the corresponding constraints to the current
set of constraints. This is where the resolution
becomes context-sensitive: if a method is not
called in a particular context, no constraints for
this method will be generated in that particular
context.

EvalQCC :
P(QCC)× Val→ P(QCC)

EvalQCC (qcc,val) =
qcc∪

⋃
m∈ Meth
ctx∈ Context

{ ctr |
o∈ C Jm,ctxK
∧ ctx′ = CalcCtx (o,ctx,val)
∧ ctr ∈ AMeth (m,ctx′)

}

where the function for calculating the context of
the call is given by

CalcCtx:
Ref× Context× Val→ Context

CalcCtx (r,c,v) = (Prev, App)
where

App = (v(mem))(r).Owner

Prev =

{
c.Previf c.App.Idp= App.Idp

c.Appotherwise

The functionEvalSC uses the current valua-
tion to verify the condition for each constraint in
the set of instantiatedQCCs and adds the corre-
sponding simple constraints to the current set of
constraints. This evaluation permits to restrict the
production of the simple constraints that model
the effect of an instruction that “executed”. We
use the notationJExpKV to denote the evaluation
of the expressionExp with the values contained
by the valuationV.

EvalSC :
P(QCC)× P(SC)× Val→ P(SC)

EvalSC (qcc,sc,val) =
sc∪

{ ctr[v/x] |
∀ x ∈ X : cond→ ctr ∈ qcc
∧ v ∈ JXKval

∧ cond[v/x]
}

The functionEvalVal is the standard evaluation
function associated to a constraint set. For ev-
ery constraintexp⊆ var in the current constraint



setcswe evaluate the expression with the current
valuation and add the new value inval(var).

EvalVal :
P(SC)× Val→ Val

EvalVal (sc,val) =
val[var 7→ val(var)t JexpKval]

with
exp⊆ var∈ sc

ALGORITHM

Q :=
⋃

A∈Aplt AClass (A) ;
qcc′ := AClass (JCRE)(JCRE,JCRE) ;
sc, sc′, qcc :=∅ ;
val :=⊥ ;
val′ := val08 ;
while qcc 6= qcc′ or sc 6= sc′ or val 6= val′ do

qcc := qcc′ ; sc := sc′ ; val := val′ ;
qcc′ := EvalQCC (qcc,val);
sc′ := EvalSC (qcc,sc,val);
val′ := EvalVal (sc,val);

endwhile
END

Proposition 6.1 This algorithm terminates with
a correct solution to Q.

The proof of Proposition 6.1 is an extension
of the standard argument based on Tarski’s the-
orem [24, 11]. The specificity of the proof is
to take into account that the system evolves (in
a monotonic fashion!) during the computation.
The formal proof (termination and correctness)
can be found in [16].

Establishing a start state for the iteration re-
quires special attention in Java Card because
there is nomain to initialize the analysis. The
sequence of operations is given by theJCREand
the user. We model this interaction with the card
by adding an artificialJCRE applet that is ana-
lyzed like the others. For theJCREwe know its
context (it is (JCRE,JCRE)) which permits the
algorithm to produce the initial set of instantiated
QCCs. The initial valuationval0 links each ele-
ment with its default value. For eachV Jx,m,ctxK
and C Jm,ctxK the default value is∅. For each
SF JIdciK the default value is the function which
links each static field ofIdci with its default value
(∅ for a reference and{P} for a primitiveP). Fi-
nally, we initialize the abstract memory (mem)
with the undefined abstract objects for each ab-
stract reference.

——————————————
8The definition of the initial valueval0 comes after the

algorithm.

7 An example analysis

In figure 11, we present a variation of the ex-
ample given in section 2.1, in which the firewall
and Alice can not prevent the flow of the Alice
secret to Charlie. Here, Bob implements a share-
able object and passes a reference to it to Charlie.
In this case, the invoke atAlice.foois valid at run-
time, because for Alice the caller is always Bob.
Here, we only present the transformation of this
example in our language in the figure 12. The
constraints are neither generated nor solved auto-
matically yet, but we work on an implementation
of the previously presented algorithm. During the
resolution, each “variable” received the possible
values that it can contain. In this example, the im-
portant value is the secret of Alice (represented
by the reference (p, AliceAID)) and the impor-
tant variable is the static fieldAliceSecret of
Charlie. The resolution gives, as a part of the
global solution, the following possible value for
the static field of Charlie:

(p,AliceAID) ∈
SF JCharlieK(Charlie.AliceSecret)

This result proves that there is an illegal object
flow with the secret of Alice.

8 Related works

The formalization of the Java Card firewall has
been the object of several works. Motr´e [19] has
formalized the firewall with the B method. She
defines a machine for the firewall and an opera-
tion for each check of the firewall. This modeling
provides a formal description of the firewall that
is used to ensure that the firewall verifications are
sufficient to fulfill the security policy. In addition,
successive refinements lead to a reference imple-
mentation of the firewall. More traditional opera-
tional semantics for modeling the firewall checks
have been given býEluardet al. [17]. Siveroniet
al. [22] show how to integrate this into an opera-
tional semantics for Java Card. For the modeling
of theJCREit is necessary to be able to “execute”
the differents applets. We choose to follow the
approach used by Attaliet al. [3, 4] and model
the JCREby an applet. With this approach, we
can adapt theJCRE to obtain either exactly the
execution we want or all possible executions.

The problems related to the Java Card fire-



public class Bob extends Applet
implements MSI2 {

private static MSI AliceObj;
private void bar () {

AliceObj=(MSI) getSIO (AliceAID); }
public Secret foo2 () {

return AliceObj.foo (); } }

public class Charlie extends Applet {
private static MSI2 BobObj;
private static Secret AliceSecret;

private void bar () {
BobObj=(MSI2) getSIO (BobAID); }

private void foo3 () {
AliceSecret=BobObj.foo2 (); } }

Figure 11: An example of illegal object flow

public class Alice extends Applet implements MSI {
private Secret ObjectSecret;
public Secret foo () {

AID Client;
Secret Response;
1:T 1 :=invokestatic getPrevCxt
2:Client:=store T 1
3:ifAID Client ∈ {BobAID} T2 :=getstatic Alice.ObjectSecret
4:Response:=store T 2
5:Alice.foo Ret:=load Response
return Alice.foo Ret } }

public class Bob extends Applet
implements MSI2 {

private static MSI AliceObj;
public Secret foo2 () {

6:T 3 :=getstatic Bob.AliceObj
7:T 4 :=invokeinterface MSI.foo T 3
8:Bob.foo2 Ret:=store T 4
return Bob.foo2 Ret } }

public class Charlie extends Applet {
private static MSI2 BobObj;
private static Secret AliceSecret;

private void foo3 () {
9:T 5 :=getstatic Charlie.BobObj
10:T 6 :=invokeinterface MSI2.foo2 T 5
11:putstatic Charlie.AliceSecret T 6} }

Figure 12: The translation of the three methods of the example in our language

wall have been observed by others, notably Mont-
gomery and Krishna [18], who propose another
approach to secure object sharing based on dele-
gates. A server implements a delegate object that
mediates access to those methods that the server
wants to share with others. The delegate object
performs the checks that it deems necessary to
grant access. This approach is more flexible than
the existing firewall but has the drawback that it
requires (minor) changes to the JCVM. This tech-
nique permits to use more sophisticated authenti-
cation mechanisms than the one based only on
AID comparison. In the paper it is shown how
to use a protocol based on challenge/response
phrases to avoid the problem of AID spoofing.
However, no technique is presented for proving
that delegates indeed do respect a given security
policy. In contrast, our approach works for the
standard JCVM and relies on static analysis to
check that no unwanted access takes place.

Two works on the verification of applet sharing
on Java Card are closely related to ours. Bieberet
al. [8, 7], as part of the Pacap project [2], have de-
fined an analysis of Java Card applets which can
detect illegal information flow. Their approach is
based on three elements: an abstraction of values
of variables into alevel that describes the sharing
of the value, an invariant that is a sufficient con-
dition the security property to hold and a model
checker to verify the invariant. A lattice of lev-
els is used to represent the sharing of objects. If
an appletA is allowed to share some information
with an appletB, the levelA+B is entered into the

lattice specifying the security policy. Each applet
is represented by a call graph and each call graph
is transformed into an SMV model. To work with
a shareable object, an applet must call an inter-
face method so only call graphs which include an
interface method are taken into account. The in-
variant together with the control flow graphs are
given to the SMV model checker for verification.
The work presented here complements their work
by providing a precise description of how these
control and data flow graphs can be calculated,
taking into account the firewall and the different
calling contexts.

The analysis proposed by Caromel, Henrio and
Serpette [9] has as aim to signal whether a secu-
rity exception might (or will definitely) be raised
by the firewall at execution of a set of applets.
The analysis thus shares objectives with ours and
calculates the same type of information. The dif-
ferences between the analyses lie in the precision.
Caromelet al. have opted for a simple, flow-
insensitive analysis whereas we can obtain some
flow sensitivity through the choice of local vari-
ables in our three-address byte code. Instead of
modeling the memory state explicitly, they use
an alias analysis to track side effects of assign-
ments. The control flow analysis in their analysis
is a simple class hierarchy analysis, in contrast to
our context-sensitive flow analysis. Indeed, their
analysis does not analyze methods separately for
each calling context and hence would not be able
to deal with the call stack inspection as well as
our analysis. Thus, the two analyses can be seen



as two extremes of the design space for flow anal-
ysis for Java Card.

The quantified conditional constraints (QCCs)
introduced in Section 5.1 are an extension of
the conditional constraints (originally due to
Reynolds [21]) that are used in the object-
oriented type analysis defined by Palsberg and
Schwartzbach [20]. In this analysis, conditions
of the formC ∈ V(X) are used to guard the con-
straints generated from classC such that these
are only evaluated when classC is actually used.
However, it is still necessary to generate the con-
straints for every class in the hierarchy which
leads to scalability problems. TheQCCs, on
the other hand, generate these constraintson de-
mand: only when the analysis discovers that a
certain class or method is used, the corresponding
constraints are generated and added to the current
set of constraints.

9 Conclusions and future work

The access control exercised by the Java Card
firewall is bypassed when invoking methods on
shareable objects. In order to determine the ac-
cess control that is implemented by a given set of
Java Card applets we have presented a static anal-
ysis that calculates a safe approximation of the
flow of objects between applets of a Java Card
application. The static analysis is an extension
of the constraint-based program analysis frame-
work that allows to generate and solve data flow
constraints in a demand-driven fashion.

The information calculated by our analysis has
other applications than verifying access control.
The data flow information allows to construct a
precisecontrol flow graphon which other safety-
style properties of the application can be verified.
Examples of these include verifying that all Java
Card transactions are well-formed and that ex-
ceptions are properly caught and treated by the
application. A verification technique based on
model checking using finite automata is detailed
in [16].

The present analysis does not deal with the
problem of (indirect) information flowbetween
applets. In particular, we do not model the flow
of primitive values between applets so we can-
not detect if applet B transfers data to applet C
that contains information obtained from applet
A. Analyses for detecting such information flow

have been proposed elsewhere (seee.g. [25]) in
the setting of a simple imperative language. The
control and object flow information calculated by
our analysis can be used to adapt such analyses to
the Java Card language because it allows to elimi-
nate the higher-order and object-oriented features
of an application, essentially translating it into an
imperative language. This requires an improve-
ment to the abstract domains such that owner in-
formation can be attached to primitive values and
primitive operations must be adjusted to calculate
the possible owners depending on the values used
in the operation as well as the applet which does
the operation.

Finally, for the moment the analysis does not
take into account exceptions other than security
exceptions. With the current abstraction of the
primitive values it is clear that exceptions related
to e.g., array access (index-out-of-bound excep-
tions) can only be dealt with in a very approxi-
mate fashion. Exceptions form an integral part of
the control-flow of an application so progress in
this direction is desirable.
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