
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Supermon: High-performance monitoring for Linux clusters�

Ronald G. Minnich, LANL Karen Reid, U. Toronto

September 24, 2001

Abstract

At the ACL we are building tools that monitor a cluster,
anticipate cluster node failure, and take action before the
node fails. Actions include migrating the processes away
from the failing node, deconfiguring the node, and initiat-
ing diagnostics on the node.

A key requirement for these tools is that they require
efficient, frequent data collection from the nodes. Current
tools for monitoring Linux systems do not provide enough
information, and what information they do provide comes
slowly and at a high cost in CPU resource consumption
and network bandwidth. The resource consumption is an
even more serious problem in a cluster, where consump-
tion of network bandwidth is multiplied by the number of
network nodes.

In this paper we describe Supermon, a new monitor-
ing system for Linux clusters. Supermon functions as a
server, and hence can supply data over many connections
to many clients simultaneously. Supermon also replaces
the SunRPC interface used by Linux status daemons with
a very simple text-based command and response format.
Supermon has proven to be very effective for many dif-
ferent types of clients, including Perl and Java programs.
Our new system allows programs to gather cluster per-
formance data at up to 1000 samples/second for all the
nodes in a 128-node cluster, with no measureable impact
on cluster node performance.

�Los Alamos National Laboratory, an affirmative action/equal op-
portunity employer, is operated by the University of California for the
United States Department of Energy, under contract W-7405-ENG-36.
LANL publication: LA-UR- 01-4673

Introduction

At the ACL, we have built clusters ranging in size from 64
to 512 nodes, in one case to a total of 6144 CPUs. An on-
going problem with these clusters has been the lack of ef-
ficient, high performance monitoring tools which provide
comprehensive information about the state of the cluster
nodes. The only tools available use the rstat daemon,
rstatd. The standard Linux rstatd daemon provides
limited information about cluster nodes and extracts the
information in such an inefficient way that even at very
low sample rates (10 hz) the daemon itself consumes at
least 10% of the node’s computing power.

There is no fundamental problem with the rstat protocol
itself. The problem is with the specific implementation of
the Linux rstatd and the way in which it extracts perfor-
mance information from the kernel. To improve rstatd we
have developed changes to the daemon and some addi-
tions to the sysctl capabilities in the kernel. The changes
are minor, but reduce the load the daemon imposes on the
system, with the result that users can measure system per-
formance without perturbing system. Our changes require
an addition to the sysctl tables in the Linux kernel, but the
modifications are minimal and do not impact other func-
tionality in the kernel. The changes make getting kernel
status much more efficient, since they use the sysctl sys-
tem call instead of opening, reading, and parsing files in
/proc.

We have also written a program, supermon, that acts as
a server for providing cluster performance data for multi-
ple remote programs. We developed Supermon to handle
the problems that crop up when many remote programs
need to gather performance data from a cluster. Consider
the case of 16 different users monitoring all the cluster
nodes. In the standard approach, all the users would query

all the nodes for performance information, resulting in
a greatly increased load on the cluster nodes. For high
enough sample rates, many of the queries would be re-
dundant, in that they would return the same data to the
different programs.

Supermon acts as a performance monitor server that
provides an intermediary for the cluster nodes, gather-
ing data used by remote programs but limiting the query
rates to the nodes. Remote programs connect to the server,
and as they make queries the Supermon server responds.
Queries that come in at the same time or within some
small time window (e.g. 100 microseconds) would re-
turn the same data for all the queries, and result in only
one request to the nodes. Supermon throttles the rate of
requests to the cluster nodes and keeps the rate at a man-
ageable level.

Many programmers have difficulty dealing with Sun-
RPC network conventions and data formats (known as
XDR), especially in languages such as Java and Perl.
Rather than force users to deal with the SunRPC and XDR
issues, Supermon uses a simple text-based command and
response format, making it easy for programmers to ac-
cess the data via programs. In practice, programmers have
written everything from Java-based GUI programs to Perl
programs which gather data over long periods. Occasion-
ally people connect directly to Supermon with telnet and
type commands to the server, just to get an idea of what is
going on with the cluster.

In this paper we will describe the performance issues
with rstatd, our changes to the kernel to resolve these is-
sues, our additions to rstatd to make the data more useful,
and the results. Finally we will describe Supermon and
how programs use it for gathering data. We will then dis-
cuss future directions for cluster performance monitoring,
which we believe will support clusters of 4096 nodes.

Rstatd

Rstatd is a venerable Unix daemon, dating back to the
1980s. It provides status information to remote hosts via
the Sun Remote Procedure Call protocol (SunRPC). Sun-
RPC encodes RPC services using a program number, ver-
sion number, and procedure number. Rstatd provides one
program number for the service, three version numbers,
and two procedures for each version (the standard NULL
procedure and the actual status procedure). Each version

V1 V2 V3

Cpu times (idle,sys,user, nice)
Disk transfers

Page in/out
Swap in/out

Interrupts (sum)
Net interface: packets (in/out) errors (in/out) collisions

Context Switch
Avenrun

Boot Time
Current Local Time

Table 1: Original RSTATD versions and content

provides similar statistics, as shown in Table 1.
Remote client programs (such as rsysinfo on Linux)

can query rstatd servers for the information shown in the
table.

Rstatd provides too little information

Rstatd does not provide enough information about remote
hosts. The performance information is not sufficient in
a cluster environment to figure out what is going on. For
example, it does not provide information about how much
memory a node has and how much is in use; it also does
not provide information about swap usage – it only shows
the rate of swap usage. Disk read and write statistics are
not available. CPU statistics are shown as aggregate num-
bers, not individual CPUs (although, due to a bug in rstatd
in Linux, not even these numbers are right).

In order to determine how parallel programs are im-
pacting nodes, we need to extract these other statistics.
Doing so requires changes to rstatd.

Rstatd on Linux is slow and inefficient

Rstatd on Linux is slow and inefficient. It takes too long
to get the information, and the process of getting the infor-
mation has so much overhead that it can slow the cluster
nodes down when taking as few as 10 samples/second.
Rstatd on Linux 2.2.10 on a 500 Mhz. PII takes on aver-
age 22 milliseconds for each RPC request. By compari-
son, rstatd on a 250 Mhz. R10000 running Irix 6.0 takes
1 millisecond for each RPC request. Linux rstatd is 22

Statistic /proc/... Time Overhead

Load Average loadavg .250 ms
CPU Status stat .740 ms

Network Status net/dev .500 ms
Numusers /var/run/utmp 4 ms

Uptime uptime 3 ms
Memory /Swap meminfo 9 ms

Table 2: Rstat values and the time to extract them

times slower, on a faster machine. The source of rstatd’s
slowness is that it opens and reads files in /proc to get ker-
nel statistics1. For example, every time rstatd needs to get
CPU status, it has to open /proc/stat, read the file in, close
the file, parse the data returned by the read, and use scanf
to convert the strings to numeric data2. In the table below
we enumerate some of the sources of overhead in rstatd.

The use of /proc to gather these statistics is inefficient
in many ways. Rstatd requires binary data. When rstatd
reads from these /proc files the kernel formats the data via
printf. Rstatd has to turn this data back into binary infor-
mation via scanf. The data conversion alone takes a sig-
nificant amount of time, considering a target acquisition
rate of 1,000 to 10,000 samples/second.

The use of /proc is problematic for other reasons. Pro-
grams which parse the output of files in /proc can get left
behind by changes in the kernel. For example, the ver-
sion of rstatd shipped with Redhat 6.0 provides incorrect
statistics for cpu usage on all SMP machines. The reason
is that when the Redhat 6.0 rstatd is reading the output
of /proc/stat, it searches for cpu usage by looking for the
string "cpu". On SMP machines this matching process
will succeed for the strings: "cpu", "cpu0", and "cpu1".
Each time the string is matched rstatd overwrites the cur-
rent data. As a result, on SMP machines, rstatd always
returns status information for cpu1, not the sum of cpu’s 0
and 1 as one might expect. The program also erroneously
returns the wrong disk information, for the same reason.
The problem is easily fixed, of course, by changing the
strings to "cpu " and "disk ", but it is illustrative of the

1The very first rstatd for Linux used the traditional interface still used
by SGI. It is interesting to note that converting rstatd to use /proc was
seen as an improvement, while in fact it made rstatd worse in every
possible way.

2Note that leaving the files open and simply re-reading them does not
work.

V3 V6

CPU Times (idle, sys, user, nice)
Disk Transfers

Page In/Out
Swap In/Out

Interrupts (Sum)
Net Interface

Context Switch
Avenrun

Boot Time
Current Time

Mem: total, used, free, shared, buffers, cached
Swap: total, used, free

Disk: read IO, write IO, read block, write block

Table 3: New rstat information

kind of errors that crop up when a program is scanning
printf output.

Fixing rstatd

Fixing rstatd requires changes in both the information it
provides and the way in which it gets that information.
We will first describe the new rstat protocol version and
then describe the new higher-performance information-
gathering code.

New rstat protocol version

In the table we show the TIME version of rstat (which
currently provides the most information) and the new ver-
sion.

Extensions to rstat to support these new statistics are
trivial. If we use the current technique of scanning
files in /proc then we also need to scan the output of
/proc/meminfo, and check for additional output from
/proc/stat, which is already open for other statistics. We
also extended the rsysinfo command to print the addi-
tional information. Adding the new version took less than
an hour.

typedef struct
{

unsigned long avenrun[3];f
int bdflush[9];
freepages_t freepages;
unsigned int jiffies;
struct kernel_stat kstat;
struct sysinfo sysinfo;
unsigned int page_cache_size;

} SYSCTL_STATS;

Figure 1: The supermon sysctl structure

Improving rstatd performance

The performance of rstatd is very poor. It takes too long
to get information from rstatd, 20 milliseconds at least.
For that period of time the CPU is consumed with han-
dling the request – 50 Hz. sampling would leave the CPU
with no cycles for real work. Ten hz. sampling consumes
at least 10% of the CPU3. Rstatd is not only slow and
inefficient, but it has a major impact on the system it is
measuring. Trying to gather samples at a high rate would
only result in the measurement of rstatd.

Following a discussion on the FreeBSD hacker’s list
and a conversation with Jes Sorenson we decided to look
into the use of sysctl for getting kernel statistics. Early
measurements were encouraging: it takes about 36 mi-
croseconds to move 16 KB of data out of the kernel via the
sysctl interface. This is almost 1000 times less overhead
for 100 times as much data, i.e. a five order-of-magnitude
reduction in overhead. We found that not all the statistics
we needed were supported from sysctl, and we also found
that multiple sysctl calls were required to get what we did
need. To support our needs more effectively we created
a sysctl entry that only requires one call to sysctl to pull
all the needed information from the kernel. The design of
the sysctl subsystem in Linux makes this extended sysctl
very easy. The new sysctl call returns the structure shown
below.

The structure includes the avenrun, bdflush, freepages,
jiffies, and page_cache_size; and also includes two other
structures, kstat and sysinfo. The kernel_status structure

3The exact load on the 2.2 kernel varies with the size of memory and
swap. Four nodes with 1 Gbyte memory and swap, the load is at least
10%.

(not shown) provides all the information used by the cur-
rent rstatd; the sysinfo structure (not shown) returns addi-
tional information memory, processes, swap, and load.

The total size of the returned data is about 1024 bytes.
Copying this much data out of the kernel only takes 5-10
microseconds depending on the machine we are using.

We built a new rstatd that used the sysctl interface. The
new rstatd was twice as fast and placed much less load
on the system. The performance improved substantially
but not as much as we had expected. The new limita-
tion turned out to be the way Linux manages memory and
swap statistics.

Performance limitations in the Linux kernel for mem-
ory info

We were curious as to why it took several milliseconds,
instead of the expected 10 microseconds, to get the data
we wanted from the kernel. Our search for a culprit
soon centered on the meminfo statistics. Measurements
showed that getting the memory and swap info was tak-
ing a full nine milliseconds. The first problem is in the
meminfo statistics as they are gathered for 2.2 kernels4.
This code scans the page structures for every page in the
system to see if it is reserved, and then to see if it has a
count > 1. If the page is reserved it is not counted. If the
page count is higher than 1 then it is counted as a shared
page.

Scanning all the page structures accounts for the high
overhead of memory info statistics. Our choices are lim-
ited to fixing the code or not collecting the data. Rather
than modify this part of the system we determined that
these statistics were not essential for our use, given the
cost of getting them. Performance improved by 6.5 mil-
liseconds, but was still slower than we wished. It still took
2.5 milliseconds to get the status out of the kernel.

We next checked out the swap status code and found the
same problem: information about swap blocks is scanned
for each call to the kernel si_swapinfo() function. In this
code the inner loop is over every block of swap. For our
machine there are 4096 such blocks. Once again a sim-
ple bit of bookkeeping for each swap device would result
in more efficient status information. We needed this in-

4Note that in many cluster installations 2.2 is still the OS of choice,
for driver and other compatibility reasons.

formation, so for now we are accepting the lower perfor-
mance.

As of 2.4, the memory code has been fixed, but the
swap info code has not.

Supermon, a tool for extracting data
from clusters

The improved rstatd resolves problems with getting the
data from the individual cluster nodes. There remains
the problem of gathering the aggregate performance data
from the nodes. Often many different users wish to see
how well the cluster is (mis)behaving. To get this infor-
mation, the users have to run programs that query all the
nodes for performance data. Having many different pro-
grams continually poll all the cluster nodes for data can
consume the network. We found we needed a tool that
made it easy for different types of programs to gather the
data and filter for only certain types of data. The tool also
needs to function as a server, so as to combine requests
from different client programs and thus reduce the rstad
load on the cluster nodes.

Supermon is the tool we have built that extracts
data from all the machines in a cluster simultane-
ously. Supermon uses vector RPC. A full discussion
of vector RPC is outside the scope of this paper, see
http://www.acl.lanl.gov/˜rminnich for more information.
Supermon has a very simple character-oriented command
set and response. The emphasis is on a command set that
any type of remote program (Java, Perl, etc.) can connect
to and use. The commands are a single character, and do
not require any transmission of newline or carriage-return
characters in order to work. Return messages are in the
form of newline-delimited lines, with two newlines indi-
cating end of message. Characters (such as newline and
carriage-return) not in the command set are ignored. The
commands are:

#. Describe the status information available. The in-
formation is presented as one line per item of informa-
tion, ending with two newlines. The format is: <Mask
#> <name> <U> for information that is unbounded, such
as uptime. For bounded information, such as memory us-
age, the format is <Mask #> <name> <lower-bound>
<upper-bound>. The mask number is used by applica-

tions to mask out data they don’t need to see. This mask-
ing saves work for the application and network band-
width.

S. Send the status. The status is sent as follows: <host
base> <host number> <name> <value>. The host base is
the base name of the host in the cluster, and the number is
which host it is. For our lbp cluster, output for memfree
looks like:
lbp 1 memfree 376119296
lbp 2 memfree 391376896
In this case, the the base is lbp, node numbers 1 and 2,

with memfree values as shown.
a-f,A-F. Hex numbers are used to build a mask. The

mask is delimited by any non-hex number, such as new-
line, space, or another command.

A sample session with supermon is show below. The
first two lines always show the cluster name and the num-
ber of nodes. Since these variables are not presented by
the S command the mask for them is zero. They are
bounded and zero-based. To date, all bounded variables
are based at zero but we do not want to assume that this is
a universal rule for monitored information.

A Perl client for Supermon

For one type of performance monitoring we built a Perl
client. We use the Perl client to collect traces of Super-
mon data. Collection is controlled by a user-specified pa-
rameter file, which describes the sampling rate and the
list of variables that are to be traced. The Perl client
makes a socket connection to Supermon, constructs the
mask that it sends to Supermon to tell it which variables to
send back, and then issues ’S’ requests to Supermon at the
specified sampling rate. Each sample is parsed and writ-
ten to the trace file. One sample contains one line for each
variable where a line has the current value of the variable
reported by each of the processors. Another Perl script
parses the output file into a format more useful for creat-
ing graphs and examining correlations between statistics
or processors.

To get an accurate interval between samples, we use
a high resolution version of usleep from the Perl module
Time::HighRes. There may be some variance in the inter-
vals if the Perl client is run on a heavily loaded machine.
Since communication with Supermon is through a socket,
the client does not need to run on the same machine as

Supermon. Therefore, data collection and trace process-
ing do not interfere with the system being monitored, and
the client adds no additional overhead to the system.

The figure below gives an example of how trace output
might be used. The graphs illustrate the start up process
of an MPI application. Each subgraph presents data from
one node of the cluster. The solid lines show the number
of interrupts measured each sample (left y axis), where a
sample is taken every half second. The dotted lines are the
cpu ticks attributed to system use each half second sample
(right y axis). We notice a strong correlation between in-
terrupts and system time (as we expect). We also clearly
see how long it takes to start up each node. The first peak
in the solid line occurs at 4 seconds in the bottom graph
and at 20 seconds in the top graph, which is when the fi-
nal node is initialized. Looking at kernel data gives us
information that we might not otherwise see. For exam-
ple, the bottom graph (node 1) shows that this node uses
half the amount of system cpu time of the other nodes.
The remaining cpu time turns out to be idle.

Performance

Performance of the new rstatd is very good. At 100 sam-
ples/second the impact of the new rstatd is not measur-
able, whereas the old /proc-based rstatd consumes at least
12% of the CPU. In other words, past a point the old rstatd
was measuring its own impact on the CPU, since it was
creating such a load on the system. The new rstatd has a
much lower impact.

Supermon performance is correspondingly good. Su-
permon can easily monitor 100 hosts at 100 sam-
ples/second. The filtering has proven useful for both
graphical front ends and perl scripts which gather data.

Next Steps

In an age when Java, Perl, and even Telnet users wish to
connect to daemons and send queries it no longer makes
sense to use SunRPC-based daemons for status monitor-
ing. It is too hard for remote programs to deal with the
complex encoding used by SunRPC for data, and it is
more efficient to simply encode binary data as printable
strings and send it over the wire. Also, the filtering that
supermon does should be done directly at the source. As

0 10 20 30 40 50

time (s)

0

1000

2000

3000

in

tr

0
20
40
60
80
100

sys cpu

0 10 20 30 40 50
0

1000

2000

3000

in

tr

0
20
40
60
80
100

sys cpu

0 10 20 30 40 50
0

1000

2000

3000

in

tr

0
20
40
60
80
100

sys cpu

0 10 20 30 40 50
0

1000

2000

3000

in

tr

0
20
40
60
80
100

sys cpu

0 10 20 30 40 50
0

1000

2000

3000

in

tr

0
20
40
60
80
100

sys cpu

0 10 20 30 40 50
0

1000

2000

3000

in

tr

0
20
40
60
80
100

sys cpu

0 10 20 30 40 50
0

1000

2000

3000

in

tr

0
20
40
60
80
100

sys cpu

0 10 20 30 40 50
0

1000

2000

3000

in

tr

0
20
40
60
80
100

sys cpu

Figure 2: Supermon statistics for starting 8 cluster nodes

it is now, rstatd gives us a lot of information, much of
which we simply throw away. Filtering should be done at
the source, not at an intermediate point. We are building
a new program, mon, which replaces rstatd. Mon will use
the same command set as supermon and provide the same
information. Supermon will be modified so that it gathers
statistics from many remote mon programs.

Conclusions

We have described changes to rstatd that make it 6 times
faster and far more efficient than the current /proc-based
rstatd that is in common use on Linux. The changes are
minimal (and available on our web page). We have also
described a new program, Supermon, which allows for
high-performance, low-overhead monitoring of hundreds
of cluster nodes. Supermon is being used at the ACL
to gather statistics from our clusters. All these tools are
available under the GNU GPL from the ACL web site.

