
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Study in Malloc: A Case of Excessive Minor Faults

Phillip Ezolt
Compaq Computer Corporation

Abstract

GNU libc's default setting for malloc can cause a significant performance penalty for applications that use it
extensively, such as Compaq's high performance extended math library, CXML. The default malloc tuning can
cause a significant number of minor page faults, and result in application performance of only half of the true
potential. This paper describes how to remove the performance penalty using environmental variables and the
method used to discover the cause of the malloc performance penalty.

1. Why?

When a performance problem is discovered the first
question asked is usually "How can it be fixed?".
Although the solution to the performance problem is
valuable, the method used to diagnose and fix the
problem is also valuable. An explanation can teach the
inexperienced engineer the thought process of the
experience engineer, and give the inexperienced
engineer a method for finding and fixing future
performance problems.

This paper describes how the performance problem of
GNU libc's malloc was diagnosed and how a solution
was discovered. The performance hunt is documented
to demonstrate the methods used to find and fix a
performance problem.

2. What?

A customer running a chemistry benchmark on an
Alpha system reported a radically different application
run time between Tru64 UNIX and Linux/Alpha on the
same hardware. Since the hardware of the two test
systems was identical, the runtime difference had to be
caused by software. Fortunately, the customer used the
Compaq Fortran compiler, the Compaq Portable Math
Library (CPML), and the Compaq Extended Math
Library (CXML) on Tru64 UNIX and Linux/Alpha.
This meant that the compiler subsystem was also the
same. The main difference was the operating system.

The program was run on both systems, and the "time"
command showed the runtime of both. The customer
reported that the user time was roughly the same on
both operating systems, but system time on
Linux/Alpha was much greater than on Tru64 UNIX.

 User System Elapsed CPU

Linux 256.284u 209.641s 7:46.35 99.9%

Tru64
UNIX

257.027u 3.176s 4:29.85 96.4%

This difference pointed to a possible performance
problem in the Linux operating system. To determine
where in Linux the time was spent, DCPI1 (an alpha
profiling system) and was used to extract the following
data2:

This profile showed that a large amount of the non idle
kernel cycles was spent in the 'do_anonymous_page'
kernel function. It also showed that a large number of
dtbmisses occurred in xvcc, the customer’s chemistry
code.

The function of ‘do_anonymous_page’ was not
immediately clear, but further investigation revealed
that it was part of the Linux kernel's memory
management routines (in
/usr/src/linux/mm/memory.c), and that all calls to it
ultimately began with the page fault handler

cycles3 dtbmiss Image
8116120 1062 System Total
6979695 0 /vmlinux
6044706 0 cpu_idle
386675 0 do_anonymous_page
87264 0 __free_page
79269 0 __get_free_pages
60127 0 __copy_user
45412 0 EntMM
36035 0 do_page_fault

1110642 1052 Xvcc
226983 183 Dgemm_nt
213498 86 Dgemm_nn
187057 47 Icopy_
92613 153 Dgemm_tt

‘handle_pte_fault’. Therefore, if
‘do_anonymous_page’ was called a large number of
times, the page fault handler was also being called a
large number of times.

In addition to DCPI, the "time" command was also
used to measure where time was spent. As a side effect,
it revealed that a large amount of minor page faults
occurred.

..
(168major+23099385minor)pagefaults
..

It was unclear at this point what a minor page fault
was, and whether a high number of them could cause a
performance problem. However, if Linux displayed a
high number of minor faults, and Tru64 UNIX did not,
it could have been an indication of the problem.

It was known that a minor fault was a type of
pagefault, and when a pagefault occurred a dtbmiss4 or
itbmiss must also have occurred. The high number of
page faults that the "time" command reported
corresponded nicely with DCPI's report of a high
number of dtbmisses.

To determine if the number of minor faults was
different on the two Alpha operating systems, the
customer ran the following script on both Linux/Alpha
and Tru64 UNIX:

(findfault.sh)
#!/bin/sh

COMMAND=$1
#Print command with headers.

ps -a -o vsize,rss,minflt,majflt,cmd
| grep -e $COMMAND -e CMD | grep -v
grep | grep -v $0

while (true)
do
 sleep 1
 #Print command without headers.
 ps -a -o vsize, rss, minflt, \
 majflt, cmd | grep -e $COMMAND |\
 grep -v grep |grep -v $0
done

This script showed the size of the virtual and resident
set as well as the number of major and minor page
faults for a specified process.

The customer reported a significant number of minor
faults on Linux/Alpha, but nearly none on Tru64

UNIX.
The result of the test is reported in graphical form
below.

(Notice the difference in the scale of the minor faults)

Linux/Alpha had an ever-increasing number of minor
faults, while Tru64 UNIX's fault count stayed nearly
constant. Linux/Alpha's virtual set size fluctuated,
while Tru64 UNIX's stayed nearly constant.

3. Faults are at fault

The high minor fault count on Linux/Alpha pointed to
a significant difference between Tru64 UNIX and
Linux/Alpha. This was the first piece of the puzzle.
However, to understand what a high minor fault count
meant, it was necessary to understand what a minor
fault was.

A google5 search of "minor fault" and "linux", revealed

the following information about the different types of
page faults.

In Linux and Unix, page faults are either minor or
major. A major fault requires an I/O operation to
complete such as a page swap from disk. Minor faults
can be handled without an I/O such as a Copy on Write
(COW) request or a request for a zeroed page.

A linux kernel website6gave the following definitions:

Major fault
A major page fault occurs when an
attempt to access a page not currently
present in physical memory was
made. The page must be swapped in
to physical memory by the fault fix-
up code.

Minor fault

A minor page fault occurs when an
attempt to access a page present in
physical memory, but without the
correct permissions. An example is
the first write to a second reference to
a shared page, when the kernel must
perform the copy-on-write and allow
the task to update the copied page.

On Compaq’s OpenVMS7, a high number of minor
faults usually indicated that a process's working set was
larger than its allowed working set. Every attempt to
use a new page would result in an old one being kicked
out of its working set, and the program would spend a
significant amount of time faulting in new pages.

It was assumed that this was what was happening on
Linux.

The resident set of the customer's program hovered
around 131 megabytes of memory, which seemed
suspiciously close to a 128 megabytes limit. The Linux
kernel code was searched for such a hard coded limit,
but unfortunately, it was a dead end.

By running the following program, it was determined
that a program could allocate 256 megabytes of
memory, and touch every page without taking a minor
fault:

#include <unistd.h>
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{
 int num_byte;
 char *buffer, *p;

 num_byte = atoi(argv[1])*1024*1024;
 buffer = malloc(num_byte);

 while (1){
 for (p = buffer;
 p < (buffer+num_byte);
 p += getpagesize())
 {*p= 0;}
 }
}

This lack of faults did not match the behavior of the
customer's program.

4. Mmap Maker, Make Me a Map

The author of this paper would have been puzzled had
he not remembered that a member of the Compaq
Math library team reported a similar problem months
ago. The problem of the Math Library team member
and that of the customer appeared to be very similar. A
message to the Math library team member revealed
that he had found more information about the problem,
but had not found a solution.

His message stated that:

"The problem involving minor page faults in
DGEMM on Linux/Alpha is caused by the
way Linux does heap management (i.e.,
malloc and free). Allocation of large buffers is
done via mmap, and when they are freed, they
are unmapped via munmap. The buffer
allocated by DGEMM falls into this category.
Thus, for each call to DGEMM, address space
for the buffer is created, buffer pages are
faulted into the resident set and then the
buffer, and the address space, is deleted. "

This changed the focus of the search, and also allowed
for the creation of a smaller test program which
showed similar behavior to the original chemistry
code: an ever increasing number of minor page faults
on Linux, and a small number of page faults on Tru64
UNIX.

For those not fortunate enough to have a colleague who
experienced a similar problem, the kernel's minor page
fault handler could have been instrumented to print the
address of instructions that cause more than 1000
minor page faults. Using this to find the guilty
instruction, one could then use 'nm' and 'gdb' to

determine which function or line of code caused the
minor faults. Although this would not be a general-
purpose solution, the availability and modifiability of
Linux kernel source makes this instrumentation
possible.

5. Minor Fault in Allocation

Since it appeared that memory allocation was the cause
of the problem, it could be tested independently of the
customer's chemistry program. This was fortunate
because the customer's chemistry program had many
modules and a long compile time.

The following simple program could reproduce the
high number of minor faults; it allocates a piece of
memory, and then immediately frees it.

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int number_of_meg, num_byte;
 char *buffer;

 num_byte = atoi(argv[1])*1024*1024;

 while (1){
 buffer = malloc(num_byte);
 free(buffer);
 }
}

5.1 Linux/Alpha

An strace8 of the test on Linux/Alpha confirms what
the math library engineer had said. ‘mmap’ is used
when mallocing large amounts of memory.
Linux/Alpha had an ever-increasing amount of minor
faults.

strace ./malloc_test 1
....
mmap(0, 1056768, PROT_NONE,
 0 /* MAP_??? */, 0, 0) =
0x20000456000
munmap(0x20000456000, 1056768) = 0
mmap(0, 1056768, PROT_NONE,
 0 /* MAP_??? */, 0, 0) =
0x20000456000
munmap(0x20000456000, 1056768) = 0
mmap(0, 1056768, PROT_NONE,
 0 /* MAP_??? */, 0, 0) =
0x20000456000
munmap(0x20000456000, 1056768) = 0
mmap(0, 1056768, PROT_NONE,

 0 /* MAP_??? */, 0, 0) =
0x20000456000
munmap(0x20000456000, 1056768) = 0
....

5.2 Tru64 UNIX

Tracing the same program on Tru64 UNIX yielded two
interesting facts:

Few minor page faults occurred on Tru64 UNIX,

and
Tru64 UNIX used obreak() (a system call which
increases the processes heap size) instead of mmap() (a
system call which allocates system wide resources to a
program) to malloc memory.

...
obreak (0x140108000) = 0
obreak (0x14020a000) = 0
obreak (0x140108000) = 0
obreak (0x14020a000) = 0
....

5.3 Intel/Linux

An Intel/Linux system behaved the same as an
Linux/Alpha system, with a fluctuating mmap() value
and an increasing number of faults.

strace ./malloc_test_i386 1
....
old_mmap(NULL, 1052672,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x4024f000
munmap(0x4024f000, 1052672) = 0
old_mmap(NULL, 1052672,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x4024f000
munmap(0x4024f000, 1052672) = 0
old_mmap(NULL, 1052672,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x4024f000
munmap(0x4024f000, 1052672) = 0
.....

5.4 FreeBSD

To test this malloc issue on another operating system,
FreeBSD was installed on VMware9, a very fast i386
virtual machine.

FreeBSD did not display the increasing number of page
faults. FreeBSD used break() to set memory limits,
much like Tru64 UNIX.

 ...
2814 pagefault CALL break(0x4000)
2814 pagefault RET break 0
2814 pagefault CALL break(0x104000)
2814 pagefault RET break 0
2814 pagefault CALL break(0x14000)
2814 pagefault RET break 0
2814 pagefault CALL break(0x114000)
2814 pagefault RET break 0

2814 pagefault CALL break(0x14000)
2814 pagefault RET break 0
2814 pagefault CALL break(0x114000)
2814 pagefault RET break 0
2814 pagefault CALL break(0x14000)
2814 pagefault RET break 0
....

 Linux Tru64

UNIX
Linux FreeBSD

Architecture Alpha Alpha Intel Intel

Allocation mmap obreak mmap Break

Changing
Allocation
Amount

Yes Yes Yes Yes

Large # of
Minor Faults

Yes No Yes No

It appeared as if this problem was unique to Linux, and
possibly mmap.

6. Memory Management in Linux/Unix

To understand why different system calls were used
(mmap() & break()) when the same lib memory
allocation routine (malloc()) was called, it is necessary
to understand how memory management in
Linux/Unix works.

A Linux/Unix process can have three types of memory
allocated on its behalf: stack, heap and mmaped
memory.

Stack memory is managed by the operating system, and

is not generally managed by individual processes.
Stack memory (or "the stack") usually contains local
variables, and information saved during a function call.

Stack memory is automatically allocated by the
operating system, when a process needs more. Stack
memory is a temporary storage space, which is not
guaranteed to remain allocated for the life of a process.
Heap and mmaped memory are more permanent areas
of memory and remain allocated for the life of a
process. Normally, heap and mmapped memory are
managed through malloc, but they can also be
managed independently. (A process can call the
memory allocation system calls directly to bypass
malloc.)

Heap memory (or "the heap") is managed by the brk()
system call. The brk() system call takes one argument
which sets the "end of heap" for a process. If brk() is
passed a value greater than the process's current brk()
value, the size of a process's heap grows to the new
value, and the operating system reserves more memory
for the process. If the value passed to brk() is less than
the current brk() value, the size of a process's heap
shrinks to the new value, and the operating system will
free memory from the process. (break(), brk() and
obrk() are different names for the same system call
‘brk()’)

Mmaped memory is managed by the mmap() and
munmap() system calls. When a piece of mmapped
memory is to be allocated, mmap() is called the with
size of the requested memory. A pointer to the memory
is returned, which is used by the process. When the
memory is to be deallocated, the pointer is passed to
the munmap() system call, and the operating system
deallocates the memory.

Use of mmap()/munmap() is more flexible than brk(),
but it has more size restrictions and a higher overhead
per allocation. If a piece of memory allocated with
brk() is not at the end of the heap when it is freed, it
can not be released back to the system as free memory,
because the brk() interface only allows the end of heap
memory to be specified. mmap() & munmap do not
suffer this problem.

Some mallocs, GNU libc's in particular, use both heap
memory and stack memory to fulfill allocation. Which
type of memory is used depends on the size of the
allocation request.

7. Focusing on the Linux problem

It was reasoned that at some point below one megabyte
allocations, malloc would start to behave more like a
traditional malloc(), using brk() instead of mmap(). As
a result, a test program was rewritten to allow kilobytes
to be specified as an allocation amount instead of
megabytes.

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv[]){
 char *buffer;
 int num_byte;

 num_byte = atoi(argv[1])*1024;

 while(1)
 {buffer=malloc(num_byte);
 free(buffer);}
}

After further investigation under linux, it appeared that
128k was an important malloc threshold. Three
memory allocations close to 128k in size (126k, 127k
and 128k) yielded very different results.

7.1 126k allocation

When malloc was called with an allocation request of
126k, brk() was used to allocate the memory. free() did
not release the memory; once the end of the heap was
set to "0x8069000", it did not change. Minor page
faults did not occur.

strace ./pagefault 126
....
brk(0) = 0x804965c
brk(0x8068e74) = 0x8068e74
brk(0x8069000) = 0x8069000
(Nothing further)

7.2 127k allocation

When malloc was called with an allocation request of
127k, brk() was used to allocate the memory. free()
released the memory; the end of the heap fluctuated
between 0x806a000 and 0x804a000. A large number of
minor page faults occurred.

strace ./pagefault 127
....
brk(0) = 0x804965c
brk(0x8069274) = 0x8069274
brk(0x806a000) = 0x806a000
brk(0x804a000) = 0x804a000
brk(0x806a000) = 0x806a000
brk(0x804a000) = 0x804a000
...

7.3 128k allocation

When malloc was called with an allocation request of
128k, mmap was used to allocate the memory. free()

released the memory, as the repeated calls to mmap
showed. A large number of minor page faults occurred.

strace ./pagefault 128
old_mmap(NULL, 135168,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x40116000
munmap(0x40116000, 135168) = 0
old_mmap(NULL, 135168,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x40116000
munmap(0x40116000, 135168) = 0
old_mmap(NULL, 135168,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x40116000
munmap(0x40116000, 135168) = 0
old_mmap(NULL, 135168,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x40116000
munmap(0x40116000, 135168) = 0

Allocation Size 126k 127k 128k

Linux Allocation Method brk brk mmap

Changing Allocation
Amount

No Yes Yes

Large # of Minor Faults No Yes Yes

It appeared that mmap() was only part of the story, and
that malloc and free worked differently depending on
the amount of memory requested and freed.

8. Memory in slow motion

It was unclear at this point whether the malloc()
function or the free() function was to blame for the
high number of minor faults. To test why the faults
were occurring, the author slowed down the loop by
placing five second delays before both malloc and free.
Fortunately, this would also put a five second break
between image initialization (where faults legitimately
occur) and the first malloc.

The following program was used:

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]){
 char *buffer;
 int num_byte;
 num_byte = atoi(argv[1])*1024;
 while(1)
 { sleep(5);
 buffer=malloc(num_byte);
 sleep(5);
 free(buffer); }
}
While running the program with both a 127k and 128k
call to malloc (brk & mmap() version), minor faults
occurred only when the memory footprint of the image
increased. This happened whenever a malloc occurred.
Therefore malloc() was the cause of the page faults.
It is interesting to note that a single call to malloc
caused a single page fault. The high minor fault count
above was the result of malloc being called many,
many times.

The number of minor faults increased when the
process's virtual size increased. Memory allocation
appears to cause the fault.

Similar results are seen for a 128k call to malloc.
(when mmap is being used instead of brk())

Mallocing memory appeared to be the cause of the
page faults. It was unclear whether any use of the brk()
system call caused the single minor fault, or this was
an oddity of GNU libc's malloc.

To determine where the blame lay, a simple program
was written which used the brk() system call to change
the amount of allocated heap in much the same way
that malloc would call brk().

The following program is basically the same as the
"malloc/free" program above, only it does its own
memory management.

#include <stdlib.h>
#include <stdio.h>

#define PAGE_SHIFT 12
#define PAGE_SIZE (1UL << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1))
#define PAGE_ALIGN(addr)
(((addr)+PAGE_SIZE-1)&PAGE_MASK)

int main(int argc, char *argv[]){
 char *buffer;

 /* Page-aligned start of heap */
 void *heap=PAGE_ALIGN(sbrk(0));

 int num_byte;
 num_byte = atoi(argv[1])*1024;

 while(1)
 { sleep(5);
 /* Increase the start address.*/
 brk(heap+num_byte);
 sleep(5);

 /* Reset the start address. */
 brk(heap);}
}

When run, each brk() statement did not produce a
minor fault. The linux kernel was not causing the
minor faults.

It appeared that GNU libc's malloc was the cause of the
faults. This would explain why Tru64 UNIX and
FreeBSD did not exhibit the problem. Neither used
GNU libc.

9. Malloc: How Can It Be Tuned?

The next step was to download the GNU libc, and
investigate the malloc source.

Exploration of the malloc.c file revealed a function
"mallopt" which could be used to tune the way that
GNU libc's malloc performs. 10

Two options looked interesting:

M_TRIM_THRESHOLD
This is the minimum size (in bytes) of the top-most,
releasable chunk that will cause sbrk to be called with
a negative argument in order to return memory to the
system. 11

M_MMAP_THRESHOLD
All chunks larger than this value are allocated outside
the normal heap, using the mmap system call. This
way it is guaranteed that the memory for these chunks
can be returned to the system on free.

The page fault program was modified as shown below

to turn off malloc trimming.

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

int main(int argc, char *argv[]){
 char *buffer;
 int num_byte;
 num_byte = atoi(argv[1])*1024;

 mallopt(M_TRIM_THRESHOLD,-1);

 while(1)
 { sleep(5);
 buffer=malloc(num_byte);
 sleep(5);
 free(buffer); }
}

When malloc trimming was turned off and malloc was
using brk(), free() did not return memory to the system.

 strace ./pagefault3 127
....
brk(0) = 0x8049690
brk(0x80692a8) = 0x80692a8
brk(0x806a000) = 0x806a000

The minor page faults for the malloc of 127k (when malloc used
brk()) with malloc trimming turned off.

However, when malloc trimming was turned off and
malloc was using mmap, free() did return memory to
system.

strace ./pagefault3 128
...
old_mmap(NULL, 135168,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x4014e000

munmap(0x4014e000, 135168) = 0
old_mmap(NULL, 135168,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS,
 -1, 0) = 0x4014e000
munmap(0x4014e000, 135168) = 0

Disabling malloc trimming did NOT remove the minor
page faults for the malloc of 128k (when malloc used
mmap())
Disabling Trimming was half of the solution to the
puzzle. Minor faults stopped occurring when using
brk() version of malloc, but not the mmap() version.
Thankfully, GNU malloc allows us to turn off malloc's
use of mmap() by setting "M_MMAP_MAX" option to
0, as shown in the following program.

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

int main(int argc, char *argv[]){
 char *buffer;
 int num_byte;
 num_byte = atoi(argv[1])*1024;

 /* Turn off malloc trimming. */
 mallopt(M_TRIM_THRESHOLD,-1);
 /* Turn off mmap usage. */
 mallopt(M_MMAP_MAX, 0);

 while(1)
 { buffer=malloc(num_byte);
 free(buffer);}
}

All mallocs used brk(), no memory was returned to the
system and no page faults occurred. Success!

./pagefault 4 128
...
brk(0) = 0x804974c
brk(0x8069764) = 0x8069764

brk(0x806a000) = 0x806a000

Allocation Size 127k 127k 128k 128k

Linux Allocation
Method

brk brk mmap brk

Malloc Trimming No Yes Yes Yes

Increasing # of page
faults

Yes No Yes No

To stop the increasing number of page faults, it was
necessary to turn off both malloc trimming, and the use
of memory mapping. As a result, once allocated,
memory was never returned to the system.

10. Fine Tuning

Although calling mallopt allowed a program to
perform better, recompiling and changing source code
to tune for a particular version of malloc was not a
clean solution to the performance problem.

Fortunately, GNU libc's malloc could also be tuned
through environmental variables, which were nearly
identical to mallopt options. By setting the
environmental variables MALLOC_MMAP_MAX_ to "0"
and MALLOC_TRIM_THRESHOLD_ to "-1", malloc
behaved as if mallopt(M_MMAP_MAX,0) and
mallopt(M_TRIM_THRESHOLD,-1) were called.

Setting these variables showed dramatic speedup in the
user's chemistry code, and a significant reduction in
the amount of time spent in the system. (This is
without a change of a single line of code!)

Malloc
User
(sec)

System
(sec)

Elapsed Major
Faults

Minor
Faults

Normal 216.0 166.7 6:29.20 170 23099385

Tuned 196.7 14.3 3:41.71 168 16820

(Notice the difference in the scale of the minor faults)

It is interesting to note that the tuned Linux/Alpha
code now behaved much like the high performing
Tru64 UNIX code.

11. Why memory map at all?

If the performance of malloc when using mmap() was
worse than using brk(), why did GNU libc designers
decided to use it at all?

The info pages of GNU libc give a explanation12:

"Very large blocks (much larger than a page) are
allocated with mmap (anonymous or via /dev/zero) by
this implementation. This has the great advantage that
these chunks are returned to the system immediately
when they are freed. Therefore, it cannot happen that a
large chunk becomes "locked" in between smaller ones
and even after calling free wastes memory. The size
threshold for mmap to be used can be adjusted with
mallopt. The use of mmap can also be disabled
completely."

It appears that GNU libc is tuned for system wide
efficiency in memory usage, instead of raw
performance. Using brk() instead of mmap() could
cause memory that has been freed to be locked in place,
becoming unused. This fits with the preceding
experiments. Notice that the tuned Linux/Alpha code
has a virtual set size that is about 10% bigger than the
non-tuned code.

MicroQuill, makers of SmartHeap, describe13 the
differences between brk and mmap as follows:
"mmap_vs._sbrk"

"The sbrk() approach grows the heap and the
process address space in page increments as
the sum of allocations and unallocated,
fragmented heap space increases. Most tasks
eventually reach some typical maximum heap
footprint, which remains constant with time.
This technique is most efficient and is the
default.

The mmap() approach grows the heap and the
process address space as required to contain
all of the current allocations. Large
unallocated blocks of the heap are returned to
the OS for use elsewhere in the system. Of
course, some of the heap will remain
unallocated and fragmented. This technique is
less efficient, but is well suited to a few
situations in which the sbrk() technique runs
out of heap space prematurely. Our
recommendation is to adopt the sbrk()
approach for maximum flexibility and
performance. If a problem is observed in your
environment with excessive process address
space, then you should consider trying the
mmap() build to see if it helps.
....
be aware that mmap is significantly slower
than sbrk."

12. Summary

When allocating and deallocating large (>128k)
amounts of memory on Linux, the default memory
management tunings have a high performance penalty.
By using the brk() with no malloc trimming to allocate
memory instead of malloc trimming and mmap(), the
number of minor page faults decreases, and the
performance of malloc increases.

Before running the performance sensitive program, to
improve malloc performance, turn off mmap usage and
malloc trimming, by either:

1) Adding the following code to a program before

heavily using malloc:

mallopt(M_MAP_MAX,0);
mallopt(M_TRIM_THRESHOLD,-1)

2) Setting the following environmental variables:

(Note the trailing underscores)

For sh compatible shells:

 export MALLOC_MMAP_MAX_=0
 export MALLOC_TRIM_THRESHOLD_=-1

 For csh compatible shells:
 setenv MALLOC_MMAP_MAX_ 0
 setenv MALLOC_TRIM_THRESHOLD_ -1

13. Thank You

Bill Carr, for his help thinking through a piece of the
puzzle, and for his review of the paper.

Jeff Arnold, for providing a clue to the problem, which
changed the plan of attack.

John Henning, for his review of the paper, and many
suggestions for improvements.

T. Daniel Crawford, for his patience, meticulous
problem reports, quick turn around, and his many test
runs.

Sarah Ezolt (Wifezilla), for her last minute editing,
help and understanding.

14. Copyright Information

VMware is a trademark of VMware, Inc. Compaq,
Tru64 UNIX and Alpha are trademarks of Compaq
Computer Corporation. Linux is a registered

trademark of Linux Torvalds. FreeBSD is a registered
trademark of FreeBSD Inc. and Walnut Creek
CDROM. SmartHeap is a trademark of MicroQuill
Software Publishing, Inc.

1 http://www.tru64.unix.compaq.com/dcpi
2 DCPI counts were sampled at the frequency of
126976, and are therefore approximately equal to
1/126976 the number of events that actually occurred.
3 Cycles are roughly equivalent to the number of cycles
spent in an image or function. Cycles can be used to
approximate the amount of time spent in a function or
image.
4 Dtbmiss is caused by instructions that require a
virtual to physical page mapping which is not found in
the data translation buffer. An itbmiss is similar, but
the miss occurs in the instruction translation buffer.
5 http://www.google.com/
6 http://www.kernelnewbies.org/glossary/
7 http://www.openvms.compaq.com/
8 strace is a linux tool that displays all calls,
parameters and return values for kernel system calls
9 http://www.vmware.com/
10 http://www.gnu.org/manual/glibc-
2.0.6/html_node/libc_29.html#SEC29
11 sbrk() called with a negative argument is the same
operation as a brk() being called with a value less than
the current value.
12 info:/libc/Efficiency and Malloc
13 http://www.microquill.com/kb/faq_ans.htm

