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A Study in Malloc: A Case of Excessive Minor Faults 
 

Phillip Ezolt 
Compaq Computer Corporation  

 
Abstract 

 
GNU libc's default setting for malloc can cause a significant performance penalty for applications that use it 
extensively, such as Compaq's high performance extended math library, CXML.  The default malloc tuning can 
cause a significant number of minor page faults, and result in application performance of only half of the true 
potential. This paper describes how to remove the performance penalty using environmental variables and the 
method used to discover the cause of the malloc performance penalty. 
 

1. Why? 
 
When a performance problem is discovered the first 
question asked is usually "How can it be fixed?". 
Although the solution to the performance problem is 
valuable, the method used to diagnose and fix the 
problem is also valuable. An explanation can teach the 
inexperienced engineer the thought process of the 
experience engineer, and give the inexperienced 
engineer a method for finding and fixing future 
performance problems.  
 
This paper describes how the performance problem of 
GNU libc's malloc was diagnosed and how a solution 
was discovered. The performance hunt is documented 
to demonstrate the methods used to find and fix a 
performance problem.  
 
2. What? 
 
A customer running a chemistry benchmark on an 
Alpha system reported a radically different application 
run time between Tru64 UNIX and Linux/Alpha on the 
same hardware. Since the hardware of the two test 
systems was identical, the runtime difference had to be 
caused by software. Fortunately, the customer used the 
Compaq Fortran compiler, the Compaq Portable Math 
Library (CPML), and the Compaq Extended Math 
Library  (CXML) on Tru64 UNIX and Linux/Alpha. 
This meant that the compiler subsystem was also the 
same. The main difference was the operating system.  
 
The program was run on both systems, and the "time" 
command showed the runtime of both. The customer 
reported that the user time was roughly the same on 
both operating systems, but system time on 
Linux/Alpha was much greater than on Tru64 UNIX.  
 
 

      
 User     System   Elapsed CPU   

Linux 256.284u 209.641s 7:46.35 99.9% 

Tru64 
UNIX 

257.027u 3.176s 4:29.85 96.4% 

 
This difference pointed to a possible performance 
problem in the Linux operating system. To determine 
where in Linux the time was spent, DCPI1 (an alpha 
profiling system) and was used to extract the following 
data2:  

 
This profile showed that a large amount of the non idle 
kernel cycles was spent in the 'do_anonymous_page' 
kernel function.  It also showed that a large number of 
dtbmisses occurred in xvcc, the customer’s chemistry 
code.   
 
The function of ‘do_anonymous_page’ was not 
immediately clear, but further investigation revealed 
that it was part of the Linux kernel's memory 
management routines (in 
/usr/src/linux/mm/memory.c), and that all calls to it 
ultimately began with the page fault handler 

cycles3  dtbmiss Image 
8116120 1062 System Total 
6979695 0 /vmlinux 
6044706 0   cpu_idle 
386675 0   do_anonymous_page 
87264 0   __free_page 
79269 0   __get_free_pages 
60127 0   __copy_user 
45412 0   EntMM 
36035 0   do_page_fault 

1110642 1052 Xvcc 
226983 183   Dgemm_nt 
213498 86   Dgemm_nn 
187057 47   Icopy_ 
92613 153   Dgemm_tt 



‘handle_pte_fault’. Therefore, if 
‘do_anonymous_page’ was called a large number of 
times, the page fault handler was also being called a 
large number of times.  
 
In addition to DCPI, the "time" command was also 
used to measure where time was spent. As a side effect, 
it revealed that a large amount of minor page faults 
occurred.  
 
.. 
(168major+23099385minor)pagefaults  
.. 
 
It was unclear at this point what a minor page fault 
was, and whether a high number of them could cause a 
performance problem. However, if Linux displayed a 
high number of minor faults, and Tru64 UNIX did not, 
it could have been an indication of the problem.  
 
It was known that a minor fault was a type of 
pagefault, and when a pagefault occurred a dtbmiss4 or 
itbmiss must also have occurred.  The high number of 
page faults that the "time" command reported 
corresponded nicely with DCPI's report of a high 
number of dtbmisses.  
 
To determine if the number of minor faults was 
different on the two Alpha operating systems, the 
customer ran the following script on both Linux/Alpha 
and Tru64 UNIX:  
 
(findfault.sh) 
#!/bin/sh 
  
COMMAND=$1 
#Print command with headers. 
 
ps -a -o vsize,rss,minflt,majflt,cmd 
| grep -e $COMMAND -e CMD | grep -v 
grep | grep -v $0 
  
while (true) 
do 
    sleep 1  
    #Print command without headers. 
    ps -a -o vsize, rss, minflt, \ 
    majflt, cmd | grep -e $COMMAND |\ 
    grep -v grep |grep -v $0 
done 
 
This script showed the size of the virtual and resident 
set as well as the number of major and minor page 
faults for a specified process.  
 
The customer reported a significant number of minor 
faults on Linux/Alpha, but nearly none on Tru64 

UNIX.  
The result of the test is reported in graphical form 
below.  
 

 
 

 
(Notice the difference in the scale of the minor faults)  
 
Linux/Alpha had an ever-increasing number of minor 
faults, while Tru64 UNIX's fault count stayed nearly 
constant. Linux/Alpha's virtual set size fluctuated, 
while Tru64 UNIX's stayed nearly constant.  
 
3. Faults are at fault 
 
The high minor fault count on Linux/Alpha pointed to 
a significant difference between Tru64 UNIX and 
Linux/Alpha. This was the first piece of the puzzle. 
However, to understand what a high minor fault count 
meant, it was necessary to understand what a minor 
fault was.  
 
A google5 search of "minor fault" and "linux", revealed 



the following information about the different types of 
page faults.  
 
In Linux and Unix, page faults are either minor or 
major. A major fault requires an I/O operation to 
complete such as a page swap from disk. Minor faults 
can be handled without an I/O such as a Copy on Write 
(COW) request or a request for a zeroed page.  
 
A linux kernel website6gave the following definitions:  

Major fault  
A major page fault occurs when an 
attempt to access a page not currently 
present in physical memory was 
made. The page must be swapped in 
to physical memory by the fault fix-
up code. 

 
Minor fault  

A minor page fault occurs when an 
attempt to access a page present in 
physical memory, but without the 
correct permissions. An example is 
the first write to a second reference to 
a shared page, when the kernel must 
perform the copy-on-write and allow 
the task to update the copied page. 

 
On Compaq’s OpenVMS7, a high number of minor 
faults usually indicated that a process's working set was 
larger than its allowed working set. Every attempt to 
use a new page would result in an old one being kicked 
out of its working set, and the program would spend a 
significant amount of time faulting in new pages.  
 
It was assumed that this was what was happening on 
Linux.  
 
The resident set of the customer's program hovered 
around 131 megabytes of memory, which seemed 
suspiciously close to a 128 megabytes limit. The Linux 
kernel code was searched for such a hard coded limit, 
but unfortunately, it was a dead end.  
 
By running the following program, it was determined 
that a program could allocate 256 megabytes of 
memory, and touch every page without taking a minor 
fault:  
 
#include <unistd.h> 
#include <malloc.h> 
#include <stdio.h> 
#include <stdlib.h> 
  
int main(int argc, char *argv[]) 

{ 
 int num_byte; 
 char *buffer, *p; 
  
 num_byte = atoi(argv[1])*1024*1024; 
 buffer = malloc(num_byte); 
  
 while (1){ 
   for (p = buffer; 
 p < (buffer+num_byte); 
 p += getpagesize()) 
        {*p= 0;} 
    } 
} 
 
This lack of faults did not match the behavior of the 
customer's program.  
 
4. Mmap Maker, Make Me a Map 
 
The author of this paper would have been puzzled had 
he not remembered that a member of the Compaq 
Math library team reported a similar problem months 
ago. The problem of the Math Library team member 
and that of the customer appeared to be very similar. A 
message to the Math library team member revealed 
that he had found more information about the problem, 
but had not found a solution.  
 
His message stated that:  

"The problem involving minor page faults in 
DGEMM on Linux/Alpha is caused by the 
way Linux does heap management (i.e., 
malloc and free). Allocation of large buffers is 
done via mmap, and when they are freed, they 
are unmapped via munmap. The buffer 
allocated by DGEMM falls into this category. 
Thus, for each call to DGEMM, address space 
for the buffer is created, buffer pages are 
faulted into the resident set and then the 
buffer, and the address space, is deleted. " 

 
This changed the focus of the search, and also allowed 
for the creation of a smaller test program which 
showed similar behavior to the original chemistry 
code: an ever increasing number of minor page faults 
on Linux, and a small number of page faults on Tru64 
UNIX.  
 
For those not fortunate enough to have a colleague who 
experienced a similar problem, the kernel's minor page 
fault handler could have been instrumented to print the 
address of instructions that cause more than 1000 
minor page faults. Using this to find the guilty 
instruction, one could then use 'nm' and 'gdb' to 



determine which function or line of code caused the 
minor faults. Although this would not be a general-
purpose solution, the availability and modifiability of 
Linux kernel source makes this instrumentation 
possible. 
 
5. Minor Fault in Allocation 
 
Since it appeared that memory allocation was the cause 
of the problem, it could be tested independently of the 
customer's chemistry program. This was fortunate 
because the customer's chemistry program had many 
modules and a long compile time.  
 
The following simple program could reproduce the 
high number of minor faults; it allocates a piece of 
memory, and then immediately frees it.  
 
#include <malloc.h> 
#include <stdio.h> 
#include <stdlib.h> 
  
int main(int argc, char *argv[]) 
{ 
  int number_of_meg, num_byte; 
  char *buffer; 
  
  num_byte = atoi(argv[1])*1024*1024; 
   
  while (1){ 
    buffer = malloc(num_byte); 
    free(buffer); 
    } 
} 
 
5.1 Linux/Alpha 
 
An strace8 of the test on Linux/Alpha confirms what 
the math library engineer had said. ‘mmap’ is used 
when mallocing large amounts of memory. 
Linux/Alpha had an ever-increasing amount of minor 
faults. 
 
strace ./malloc_test 1 
.... 
mmap(0, 1056768, PROT_NONE,  
       0 /* MAP_??? */, 0, 0) = 
0x20000456000 
munmap(0x20000456000, 1056768) = 0 
mmap(0, 1056768, PROT_NONE,  
       0 /* MAP_??? */, 0, 0) = 
0x20000456000 
munmap(0x20000456000, 1056768) = 0 
mmap(0, 1056768, PROT_NONE,  
       0 /* MAP_??? */, 0, 0) = 
0x20000456000 
munmap(0x20000456000, 1056768) = 0 
mmap(0, 1056768, PROT_NONE,  

       0 /* MAP_??? */, 0, 0) = 
0x20000456000 
munmap(0x20000456000, 1056768) = 0 
.... 

 
5.2 Tru64 UNIX 
 
Tracing the same program on Tru64 UNIX yielded two 
interesting facts:  

 
Few minor page faults occurred on Tru64 UNIX, 

and 
Tru64 UNIX used obreak() (a system call which 
increases the processes heap size) instead of mmap() (a 
system call which allocates system wide resources to a 
program) to malloc memory. 
 
... 
obreak (0x140108000) = 0 
obreak (0x14020a000) = 0 
obreak (0x140108000) = 0 
obreak (0x14020a000) = 0 
.... 

 
5.3 Intel/Linux 
 



An Intel/Linux system behaved the same as an 
Linux/Alpha system, with a fluctuating mmap() value 
and an increasing number of faults.  
 
strace ./malloc_test_i386 1 
.... 
old_mmap(NULL, 1052672,               
  PROT_READ|PROT_WRITE, 
         MAP_PRIVATE|MAP_ANONYMOUS, 
         -1, 0) = 0x4024f000 
munmap(0x4024f000, 1052672) = 0 
old_mmap(NULL, 1052672, 
         PROT_READ|PROT_WRITE, 
         MAP_PRIVATE|MAP_ANONYMOUS, 
         -1, 0) = 0x4024f000 
munmap(0x4024f000, 1052672) = 0 
old_mmap(NULL, 1052672, 
         PROT_READ|PROT_WRITE,  
         MAP_PRIVATE|MAP_ANONYMOUS,  
         -1, 0) = 0x4024f000 
munmap(0x4024f000, 1052672) = 0 
..... 
 

 
5.4 FreeBSD 
 
To test this malloc issue on another operating system, 
FreeBSD was installed on VMware9, a very fast i386 
virtual machine.  
 
FreeBSD did not display the increasing number of page 
faults. FreeBSD used break() to set memory limits, 
much like Tru64 UNIX. 
 
 ... 
2814 pagefault CALL break(0x4000) 
2814 pagefault RET break 0 
2814 pagefault CALL break(0x104000) 
2814 pagefault RET break 0 
2814 pagefault CALL break(0x14000) 
2814 pagefault RET break 0 
2814 pagefault CALL break(0x114000) 
2814 pagefault RET break 0 

2814 pagefault CALL break(0x14000) 
2814 pagefault RET break 0 
2814 pagefault CALL break(0x114000) 
2814 pagefault RET break 0 
2814 pagefault CALL break(0x14000) 
2814 pagefault RET break 0 
.... 

 
 
 Linux Tru64 

UNIX 
Linux FreeBSD 

Architecture Alpha Alpha Intel Intel 

Allocation  mmap obreak mmap Break 

Changing 
Allocation 
Amount 

Yes Yes Yes Yes 

Large # of 
Minor Faults 

Yes No Yes No 

 
It appeared as if this problem was unique to Linux, and 
possibly mmap.  
 
6. Memory Management in Linux/Unix 
 
To understand why different system calls were used 
(mmap() & break()) when the same lib memory 
allocation routine (malloc()) was called, it is necessary 
to understand how memory management in 
Linux/Unix works.  
 
A Linux/Unix process can have three types of memory 
allocated on its behalf: stack, heap and mmaped 
memory.  
 
Stack memory is managed by the operating system, and 



is not generally managed by individual processes. 
Stack memory (or "the stack") usually contains local 
variables, and information saved during a function call.  
 
Stack memory is automatically allocated by the 
operating system, when a process needs more. Stack 
memory is a temporary storage space, which is not 
guaranteed to remain allocated for the life of a process.  
Heap and mmaped memory are more permanent areas 
of memory and remain allocated for the life of a 
process. Normally, heap and mmapped memory are 
managed through malloc, but they can also be 
managed independently. (A process can call the 
memory allocation system calls directly to bypass 
malloc.)  
 
Heap memory (or "the heap") is managed by the brk() 
system call. The brk() system call takes one argument 
which sets the "end of heap" for a process. If brk() is 
passed a value greater than the process's current brk() 
value, the size of a process's heap grows to the new 
value, and the operating system reserves more memory 
for the process. If the value passed to brk() is less than 
the current brk() value, the size of a process's heap 
shrinks to the new value, and the operating system will 
free memory from the process. (break(), brk() and 
obrk() are different names for the same system call 
‘brk()’)  
 
Mmaped memory is managed by the mmap() and 
munmap() system calls. When a piece of mmapped 
memory is to be allocated, mmap() is called the with 
size of the requested memory. A pointer to the memory 
is returned, which is used by the process. When the 
memory is to be deallocated, the pointer is passed to 
the munmap() system call, and the operating system 
deallocates the memory.  
 
Use of mmap()/munmap() is more flexible than brk(), 
but it has more size restrictions and a higher overhead 
per allocation. If a piece of memory allocated with 
brk() is not at the end of the heap when it is freed, it 
can not be released back to the system as free memory, 
because the brk() interface only allows the end of heap 
memory to be specified. mmap() & munmap do not 
suffer this problem.  
 
Some mallocs, GNU libc's in particular, use both heap 
memory and stack memory to fulfill allocation. Which 
type of memory is used depends on the size of the 
allocation request.  

 
7. Focusing on the Linux problem 
 
It was reasoned that at some point below one megabyte 
allocations, malloc would start to behave more like a 
traditional malloc(), using brk() instead of mmap(). As 
a result, a test program was rewritten to allow kilobytes 
to be specified as an allocation amount instead of 
megabytes.  
 
#include <stdlib.h> 
#include <stdio.h> 
int main(int argc, char *argv[]){ 
  char *buffer; 
  int num_byte; 
  
  num_byte = atoi(argv[1])*1024; 
  
  while(1) 
    {buffer=malloc(num_byte); 
     free(buffer);}  
} 
 
After further investigation under linux, it appeared that 
128k was an important malloc threshold. Three 
memory allocations close to 128k in size (126k, 127k 
and 128k) yielded very different results.  
 
7.1  126k allocation 
 
When malloc was called with an allocation request of 
126k, brk() was used to allocate the memory. free() did 
not release the memory; once the end of the heap was 
set to "0x8069000", it did not change. Minor page 
faults did not occur.  
 
strace ./pagefault 126 
.... 
brk(0) = 0x804965c 
brk(0x8068e74) = 0x8068e74 
brk(0x8069000) = 0x8069000 
(Nothing further) 



 
 
7.2 127k allocation 
 
When malloc was called with an allocation request of 
127k, brk() was used to allocate the memory. free() 
released the memory; the end of the heap fluctuated 
between 0x806a000 and 0x804a000. A large number of 
minor page faults occurred.  
 
strace ./pagefault 127 
.... 
brk(0) = 0x804965c 
brk(0x8069274) = 0x8069274 
brk(0x806a000) = 0x806a000 
brk(0x804a000) = 0x804a000 
brk(0x806a000) = 0x806a000 
brk(0x804a000) = 0x804a000 
... 

 
  
7.3 128k allocation 
 
When malloc was called with an allocation request of 
128k, mmap was used to allocate the memory. free() 

released the memory, as the repeated calls to mmap 
showed. A large number of minor page faults occurred.  
 
strace ./pagefault 128 
old_mmap(NULL, 135168,  
         PROT_READ|PROT_WRITE,  
         MAP_PRIVATE|MAP_ANONYMOUS,  
         -1, 0) = 0x40116000 
munmap(0x40116000, 135168) = 0 
old_mmap(NULL, 135168,  
         PROT_READ|PROT_WRITE, 
         MAP_PRIVATE|MAP_ANONYMOUS, 
         -1, 0) = 0x40116000 
munmap(0x40116000, 135168) = 0 
old_mmap(NULL, 135168,  
         PROT_READ|PROT_WRITE,  
         MAP_PRIVATE|MAP_ANONYMOUS,  
         -1, 0) = 0x40116000 
munmap(0x40116000, 135168) = 0 
old_mmap(NULL, 135168,  
         PROT_READ|PROT_WRITE,  
         MAP_PRIVATE|MAP_ANONYMOUS,  
         -1, 0) = 0x40116000 
munmap(0x40116000, 135168) = 0 
 

 
 

Allocation Size 126k 127k 128k 

Linux Allocation Method brk brk mmap 

Changing Allocation 
Amount 

No Yes Yes 

Large # of Minor Faults No Yes Yes 

 
It appeared that mmap() was only part of the story, and 
that malloc and free worked differently depending on 
the amount of memory requested and freed.  



 
8. Memory in slow motion 
 
It was unclear at this point whether the malloc() 
function or the free() function was to blame for the 
high number of minor faults. To test why the faults 
were occurring, the author slowed down the loop by 
placing five second delays before both malloc and free. 
Fortunately, this would also put a five second break 
between image initialization (where faults legitimately 
occur) and the first malloc.  
 
The following program was used:  
 
#include <stdlib.h> 
#include <stdio.h> 
 
int main(int argc, char *argv[]){ 
  char *buffer; 
  int num_byte; 
  num_byte = atoi(argv[1])*1024; 
  while(1) 
     { sleep(5); 
      buffer=malloc(num_byte); 
      sleep(5); 
      free(buffer); } 
} 
While running the program with both a 127k and 128k 
call to malloc (brk & mmap() version), minor faults 
occurred only when the memory footprint of the image 
increased. This happened whenever a malloc occurred. 
Therefore malloc() was the cause of the page faults.  
It is interesting to note that a single call to malloc 
caused a single page fault. The high minor fault count 
above was the result of malloc being called many, 
many times.  

 

The number of minor faults increased when the 
process's virtual size increased. Memory allocation 
appears to cause the fault. 

 

 
 
Similar results are seen for a 128k call to malloc. 
(when mmap is being used instead of brk()) 
 
Mallocing memory appeared to be the cause of the 
page faults. It was unclear whether any use of the brk() 
system call caused the single minor fault, or this was 
an oddity of GNU libc's malloc.  
 
To determine where the blame lay, a simple program 
was written which used the brk() system call to change 
the amount of allocated heap in much the same way 
that malloc would call brk().  
 
The following program is basically the same as the 
"malloc/free" program above, only it does its own 
memory management.  
 
#include <stdlib.h> 
#include <stdio.h> 
  
#define PAGE_SHIFT 12 
#define PAGE_SIZE (1UL << PAGE_SHIFT) 
#define PAGE_MASK (~(PAGE_SIZE-1)) 
#define PAGE_ALIGN(addr) 
(((addr)+PAGE_SIZE-1)&PAGE_MASK) 
  
int main(int argc, char *argv[]){ 
 char *buffer; 
 
 /* Page-aligned start of heap */ 
 void *heap=PAGE_ALIGN(sbrk(0)); 
 
 int num_byte; 
 num_byte = atoi(argv[1])*1024; 
  
 while(1) 
  { sleep(5); 
    /* Increase the start address.*/ 
    brk(heap+num_byte); 
    sleep(5); 



    /* Reset the start address. */ 
    brk(heap);} 
} 
 

 
 
When run, each brk() statement did not produce a 
minor fault. The linux kernel was not causing the 
minor faults. 
 
It appeared that GNU libc's malloc was the cause of the 
faults. This would explain why Tru64 UNIX and 
FreeBSD did not exhibit the problem. Neither used 
GNU libc.  
 
9. Malloc: How Can It Be Tuned? 
 
The next step was to download the GNU libc, and 
investigate the malloc source.  
 
Exploration of the malloc.c file revealed a function 
"mallopt" which could be used to tune the way that 
GNU libc's malloc performs. 10 
 
Two options looked interesting:  
 
M_TRIM_THRESHOLD 
This is the minimum size (in bytes) of the top-most, 
releasable chunk that will cause sbrk to be called with 
a negative argument in order to return memory to the 
system. 11 
 
M_MMAP_THRESHOLD 
All chunks larger than this value are allocated outside 
the normal heap, using the mmap system call. This 
way it is guaranteed that the memory for these chunks 
can be returned to the system on free. 
 
The page fault program was modified as shown below 

to turn off malloc trimming.  
 
#include <stdlib.h> 
#include <stdio.h> 
#include <malloc.h> 
  
int main(int argc, char *argv[]){ 
  char *buffer; 
  int num_byte; 
  num_byte = atoi(argv[1])*1024; 
  
  mallopt(M_TRIM_THRESHOLD,-1); 
  
  while(1) 
    { sleep(5); 
      buffer=malloc(num_byte); 
      sleep(5); 
      free(buffer); } 
} 
 
When malloc trimming was turned off and malloc was 
using brk(), free() did not return memory to the system. 
 
 strace ./pagefault3 127 
.... 
brk(0)                 = 0x8049690 
brk(0x80692a8)         = 0x80692a8 
brk(0x806a000)         = 0x806a000 

 

The minor page faults for the malloc of 127k (when malloc used 
brk()) with malloc trimming turned off. 

 
However, when malloc trimming was turned off and 
malloc was using mmap, free() did return memory to 
system.  
 
strace ./pagefault3 128 
... 
old_mmap(NULL, 135168, 
         PROT_READ|PROT_WRITE, 
         MAP_PRIVATE|MAP_ANONYMOUS, 
         -1, 0) = 0x4014e000 



munmap(0x4014e000, 135168) = 0 
old_mmap(NULL, 135168, 
         PROT_READ|PROT_WRITE, 
         MAP_PRIVATE|MAP_ANONYMOUS, 
         -1, 0) = 0x4014e000 
munmap(0x4014e000, 135168) = 0 
 

 
Disabling malloc trimming did NOT remove the minor 
page faults for the malloc of 128k (when malloc used 
mmap()) 
Disabling Trimming was half of the solution to the 
puzzle. Minor faults stopped occurring when using 
brk() version of malloc, but not the mmap() version. 
Thankfully, GNU malloc allows us to turn off malloc's 
use of mmap() by setting "M_MMAP_MAX" option to 
0, as shown in the following program.  
 
#include <stdlib.h> 
#include <stdio.h> 
#include <malloc.h> 
  
int main(int argc, char *argv[]){ 
  char *buffer; 
  int num_byte;   
  num_byte = atoi(argv[1])*1024; 
  
  /* Turn off malloc trimming. */ 
  mallopt(M_TRIM_THRESHOLD,-1);  
  /* Turn off mmap usage. */ 
  mallopt(M_MMAP_MAX, 0); 
  
  while(1) 
    { buffer=malloc(num_byte); 
      free(buffer);} 
} 
 
All mallocs used brk(), no memory was returned to the 
system and no page faults occurred. Success!  
 
./pagefault 4 128 
... 
brk(0)         = 0x804974c 
brk(0x8069764) = 0x8069764 

brk(0x806a000) = 0x806a000 
 

 
 
 

Allocation Size 127k 127k 128k 128k 

Linux Allocation 
Method 

brk brk mmap brk 

Malloc Trimming No Yes Yes Yes 

Increasing # of page 
faults 

Yes No Yes No 

 
To stop the increasing number of page faults, it was 
necessary to turn off both malloc trimming, and the use 
of memory mapping. As a result, once allocated, 
memory was never returned to the system.  
 
10. Fine Tuning 
 
Although calling mallopt allowed a program to 
perform better, recompiling and changing source code 
to tune for a particular version of malloc was not a 
clean solution to the performance problem.  
 
Fortunately, GNU libc's malloc could also be tuned 
through environmental variables, which were nearly 
identical to mallopt options. By setting the 
environmental variables MALLOC_MMAP_MAX_ to "0" 
and MALLOC_TRIM_THRESHOLD_ to "-1", malloc 
behaved as if mallopt(M_MMAP_MAX,0) and 
mallopt(M_TRIM_THRESHOLD,-1) were called.  
 
Setting these variables showed dramatic speedup in the 
user's chemistry code, and a significant reduction in 
the amount of time spent in the system. (This is 
without a change of a single line of code!)  



 

Malloc 
User 
(sec) 

System 
(sec) 

Elapsed Major 
Faults 

Minor 
Faults 

Normal  216.0 166.7 6:29.20  170 23099385 

Tuned  196.7 14.3 3:41.71 168 16820 

 

 
 

 
(Notice the difference in the scale of the minor faults)  
 
It is interesting to note that the tuned Linux/Alpha 
code now behaved much like the high performing 
Tru64 UNIX code.  
 
11. Why memory map at all? 
 
If the performance of malloc when using mmap() was 
worse than using brk(), why did GNU libc designers 
decided to use it at all?  
 
The info pages of GNU libc give a explanation12: 

  
"Very large blocks (much larger than a page) are 
allocated with mmap (anonymous or via /dev/zero) by 
this implementation. This has the great advantage that 
these chunks are returned to the system immediately 
when they are freed. Therefore, it cannot happen that a 
large chunk becomes "locked" in between smaller ones 
and even after calling free wastes memory. The size 
threshold for mmap to be used can be adjusted with 
mallopt. The use of mmap can also be disabled 
completely." 
  
It appears that GNU libc is tuned for system wide 
efficiency in memory usage, instead of raw 
performance. Using brk() instead of mmap() could 
cause memory that has been freed to be locked in place, 
becoming unused. This fits with the preceding 
experiments. Notice that the tuned Linux/Alpha code 
has a virtual set size that is about 10% bigger than the 
non-tuned code.  
 
MicroQuill, makers of SmartHeap, describe13 the 
differences between brk and mmap as follows:  
"mmap_vs._sbrk" 

"The sbrk() approach grows the heap and the 
process address space in page increments as 
the sum of allocations and unallocated, 
fragmented heap space increases. Most tasks 
eventually reach some typical maximum heap 
footprint, which remains constant with time. 
This technique is most efficient and is the 
default.  
 
The mmap() approach grows the heap and the 
process address space as required to contain 
all of the current allocations. Large 
unallocated blocks of the heap are returned to 
the OS for use elsewhere in the system. Of 
course, some of the heap will remain 
unallocated and fragmented. This technique is 
less efficient, but is well suited to a few 
situations in which the sbrk() technique runs 
out of heap space prematurely. Our 
recommendation is to adopt the sbrk() 
approach for maximum flexibility and 
performance. If a problem is observed in your 
environment with excessive process address 
space, then you should consider trying the 
mmap() build to see if it helps.  
....  
be aware that mmap is significantly slower 
than sbrk." 
 



12. Summary 
 
When allocating and deallocating large (>128k) 
amounts of memory on Linux, the default memory 
management tunings have a high performance penalty.  
By using the brk() with no malloc trimming to allocate 
memory instead of malloc trimming and mmap(), the 
number of minor page faults decreases, and the 
performance of malloc increases.  
 
Before running the performance sensitive program, to 
improve malloc performance, turn off mmap usage and 
malloc trimming, by either:  

 
1) Adding the following code to a program before 

heavily using malloc:  
 

mallopt(M_MAP_MAX,0);  
mallopt(M_TRIM_THRESHOLD,-1)  

 
2) Setting the following environmental variables: 

(Note the trailing underscores)  
 
For sh compatible shells:  

    export MALLOC_MMAP_MAX_=0  
    export MALLOC_TRIM_THRESHOLD_=-1 
 
       For csh compatible shells:  
          setenv MALLOC_MMAP_MAX_ 0 
    setenv MALLOC_TRIM_THRESHOLD_ -1 
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