USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,
Atlanta

Atlanta, Georgia, USA
October 10-14, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Perspective On Printing

Ben Woodard
VA Linux Systems

ben@valinux.com

Nick Moffitt
VA Linux Systems

nick@valinux.com

Abstract

Printing is one aspect where Linux has pro-
gressed very slowly. Most free operating sys-
tems continue to use Berkeley LPR, and re-
placement printing systems have been slow to
catch on. This paper describes how VA Linux
Systems and HP’s LaserJet division teamed
up to add PPD functionality to Ipr.

1 Introduction

In the world of computing there are certain
topics which are more sexy than others. For
example, kernel development is sexy because
the people that do it regularly are very elite.
User interface development is sexy because
you are doing things that people see and
you have the opportunity to make something
flashy and visually appealing. In between
the kernel and the user interface are a whole
bunch of command line tools and libraries
that have very little sex appeal within the
hacker community. Even within this world
of command lines and APIs some things are
more attractive projects to work on than oth-
ers.

The system daemons are amongst the most
often ignored, the most often neglected pieces
of software on a system. Many of these dae-
mons were written in the early days of BSD
4.2 by grad students and never have really
had an owner or maintainer. They were noth-
ing more than check boxes on the list of mile-
stones that the CSRG had to complete to

satisfy the requirements for its grant money.
They were often banged into existence over a
Christmas vacation to meet a DARPA dead-
line by grad students who had varying de-
grees of skill, and then cobbled together into
something that sort of worked. Since that
point the only time that people look at them
is when is when someone discovers a security
problem.

This is the story of LPR.

1.1 History

In the very early days of Unix, there were
no differences between terminals and print-
ers, there were only teletypes. Your shell
prompt was on the teletype and the output of
your commands was always printed. It didn’t
matter if the output was a directory listing
or the results of some long running job. If
you needed a print out to give someone, you
simply got our your scissors and cut the pa-
per in the appropriate places and gave that
to whomever needed it. The CRT terminal
changed that, and the path taken by termi-
nals and printers diverged forever. Now we
have fancy translucent x-windows based ter-
minals and high resolution network connected
laser printers. They seem about as different
as you can get but they both have a common
ancestor.

One of the first changes was that print-
ing became batch oriented while terminals
remained interactive. This was the birth of
LPR. Initially, there must have been a bunch
of development of LPR as everybody added

the features that they needed. The impres-
sion that I get having talked to Kirk McKu-
sick was that someone wrote LPR in an af-
ternoon and then pretty much abandoned it.
Since the source code was around, various
people added the features that they were in-
terested in having, but there was never a cen-
tral person who maintained the whole thing.
At some point, LPR did enough things that
people were happy with it and turned their
attention elsewhere. At that point LPR ba-
sically underwent a feature freeze from which
development never resumed.

About that time, Unix fragmented and ev-
eryone picked up their copy of the BSD source
code and ran with it. Every one made fixed
the bugs that they found and added the fea-
tures that found necessary and various incom-
patibilities arose. This made printing very
difficult between different versions of Unix
and so everyone kind of standardized on the
least common denominator version of LPR
and refused to alter it for fear of breaking
compatibility. This helped to freeze LPR
even more solidly.

The problem is that since that time, print-
ers have evolved from simple teletypewriters
with potentially 3 or 4 different font wheels
directly connected to a computer through a
serial port into high resolution, high quality,
network connected printers. However, LPR
has failed to evolve with them. The mem-
ory of the problems caused by the fragmenta-
tion of Unix and the resultant fragmentation
of LPR still lingers on and very few people
are willing to delve deeply into LPR to bring
it out of its frozen state. During this time
rest of the world has not stood still. There
have been at least two major paradigm shifts
during that time, personal computers and the
internet. LPR and the rest of the Unix print-
ing infrastructure has also failed to make the
transition to meet the demands of the current
printing audience.

Because of its lack of sexiness, because of
fears grounded in the past, because techies
don’t print as much as traditional users, and
because of a lot of other reasons Linux print-
ing is very primitive and needs to be brought
up to date with current technologies.

All these years of neglect have allowed
many issues to build up until now, and there
are problems all over the place. Several peo-
ple have worked on different parts of the so-
lution but it has yet to come all together.

2 VA begins work

In the past I worked for Cisco Systems
and I helped construct the print environment
there. We were able to take standard compo-
nents such as LPR, Samba, and Apache and
create a very scalable, highly reliable, print
system. During that time, I built up a lot
of experience working with printers and even
more ideas of how to make printing work bet-
ter. I changed jobs and moved over to VA
Linux Systems and a few months later HP’s
LaserJet division, came knocking on our door.
They wanted someone to work on improving
printing for them.

They had done their homework. They
knew that printing wasn’t a sexy project that
people were excited to work on. If I remem-
ber correctly they referenced Eric Raymond
and said, “You have to pay people to take out
the garbage.” They had an idea of what fa-
cilities were most urgently needed and were
willing to open up their checkbooks to make
it happen.

3 Libppd

One of the most pressing problems with
respect to Unix printing for printer vendors
these days is that they build all these wonder-
ful capabilities into their printers but no one
in the Unix world has access to them. This
problem bites just about everybody. The
users have a problem because they really
can’t make use of these features. The sysad-
mins have a problem because to fill the users’
needs they have to do a lot of work in the
filter scripts to enable the necessary features.
The application software developers have to
write functionality that allows them to access
the printer’s capabilities. The printer ven-

dors have two problems. They can’t use these
features to distinguish their products because
the features are of little value to a user com-
munity that can’t make use of them. The
second problem is since the application de-
velopers have written their own support for
printers, and some of them have done it im-
properly, often causing the users to blame the
printer vendors.

Our solution to this problem was to make
a library called libppd. Because the LaserJet
division was paying our bills and because the
low end printers are a moving target, Libppd
is designed for PostScript-capable printers.
The idea is that libppd and the associated
utilities would provide solutions a solution for
almost all the people affected. User’s would
have access to the features that they wanted.
Sysadmins would find it easier to write the
filter scripts that they need to satisfy the
users’ requirements. The application devel-
opers would be saved the effort of writing
their own code to generate a PPD parsing
engines. And HP and other printer vendors
would have applications that more reliably
show off the fancy features that distinguish
their printers from other vendor’s printers.

3.1 PostScript and PPD files

PostScript is designed to be a completely
device independent language. It describes
the pages in terms of high level abstract pic-
ture elements such as fonts and letters, lines
and curves rather than pixels. It expects the
printer to map these drawing elements onto
whatever underlying imaging system it might
have. This way an application can generate
PostScript and not have to worry what kind
of printer it is going to be sent to. You can
send exactly the same PostScript job to an
old 300 dpi ink jet printer as well as a a 2400
dpi image setter. The only difference is the
quality of the output.

There are many advantages to this model
of printing that are not commonly recognized.
First of all, the fact that PostScript files can
be sent to any printer means that the print
job can be archived and printed at a later
date without having access to either the ap-

plication that created the document or the
printer that it was first printed on. The
more paranoid amongst us believe that binary
device specific printer languages are yet an-
other attempt by the legacy proprietary ap-
plication vendors to separate users from their
data. This means that you need to always
have an available copy of Word and an oper-
ating system that can run Word in order to
print a Word document. Other device specific
printer languages are not archivable because
they require that a specific type of printer al-
ways be available.

Since PostScript files are device indepen-
dent, PostScript provides a mechanism for
vendors to specify device specific commands
to be inserted into a device independent PS
file just before printing. PostScript Printer
Definition (PPD) files store device specific
commands as well as some hints about the
user interface that should be used to present
them to the user. In the model that Adobe
envisioned when they designed PostScript, an
application would output device independent
PS which could potentially be archived. Then
just before the print job is sent to the printer,
the spooling system (which knows what kind
of printer it is sending the job to) uses the
appropriate PPD file to look up the device
specific PostScript commands necessary to
enable a particular feature and then inserts
them into the PS job at appropriate locations.

3.2 Development of libppd

It has been said that “good programmers
write good code. Great programmers steal
code.” I'm not saying that I'm a great pro-
grammer but will confess to being very lazy.
Parser code, which would be needed to parse
a PPD file and manipulate PostScript jobs
based upon the contents, has got to be one of
my least favorite types of code to write. So
I looked around to see if anyone had written
a PPD parser already. I was lucky enough to
find that the developers of CUPS had writ-
ten just the kind of thing that I needed.
So I ripped out their PPD processing code,
tweaked it a bit so that it would stand on its
own, and woild, I had libppd. libppd hasn’t
evolved very far beyond it’s CUPS origins,

and still has some vestigial remnants that
need to be cleaned up. Despite this, it per-
forms its intended function nicely.

As a sort of combination test and prototype
application, I brought over another program
from CUPS. Under CUPS it was a deeply
buried filter called pstops. I modified this to
take more conventional arguments and also
to be used not only as a system level filter
but also as a filter called by users. I changed
the command-line arguments and gave it a
new name, “ppdfilt”, so that it wouldn’t con-
flict with another program that I had. The
purpose of ppdfilt is to take a PostScript file
and a list of PPD options and modify the
PostScript job to incorporate the device spe-
cific PostScript commands from the PPD file.

3.3 Modifications to LPR

The initial cut of ppdfilt allowed me to take
a PS job and run it through ppdfilt and have
a device specific PS job with the appropri-
ate options come out the other side. As a
user tool ppdfilt is useful; however, because
it is not integrated into the spooling system,
it requires extra work on the part of the users
to print. They must first manually convert
whatever they have into PostScript rather
than allowing the filter scripts to do the con-
version automatically. Secondly, they must
pipe their PS through ppdfilt before handing
it off to LPR. This is not very difficult but it
does involve more typing. Finally, they must
also know what kind of printer they are print-
ing to and where the PPD file for that printer
is stored on their systems. In addition, this
processing of the PS file before it is sent to the
spooler doesn’t jive with the way that Adobe
envisioned printing with PPD files to work.

The problem of integrating ppdfilt into the
spooling system is a slightly difficult one.
Somehow we have to pass information about
the user’s desire for certain features from the
Ipr command line to the print filter. LPR,
whose options have not been significantly
changed since the days of the four font wheel
teletypewriters, does not have any command
line arguments flexible enough to allow PPD
options to be passed to the print filter. To

fix this, a new command line argument was
added, ‘-0’. Once again I stole some code, this
time from my old friend Damian Ivereigh who
made similar modifications to the the version
of Ipr that they run at Cisco.

We cannot modify the print job based upon
the ‘-0’ option because that could poten-
tially break the file format conversion pro-
cess, printers that do not use PPD’s filters
that know nothing about the ‘-0’ option or
printing of files by symlink reference. There-
fore we must make changes not to the print
job’s data file, but rather to the print job’s
control file. Since the format of the control
file has not changed since the the last time
lpr’'s command line options changed, there
were no existing tags which were suitable for
passing this new information. Fortunately,
the Ipd daemon ignores any items in the con-
trol file that it doesn’t know what to do with.
We simply added a new type of item ’E’,
for environmental variable, and backward-
compatability was maintained.

When you specify one or more ‘-0’ options
on the lpr command line, lpd adds one or
more E items to the control file. When the
LPD daemon comes across these items, it
appends them to an environmental variable,
LPOPTS which is set in the context of the
print filters. That way only filter scripts that
want to know about the options passed on the
command line have to be modified to handle
the extra information.

There are some security considerations to
adding this new ‘-0’ option. You are taking
information from an untrusted source, the Ipr
command line, and making it available while
running with some privilege, the context of a
print filter. This requires some care. To make
it difficult for a malicious user to exploit this,
the characters allowed in the arguments to ‘-
o’ are limited to [0-9A-Za-z:=]. A maximum
of 50 ‘-0’ options are allowed. I would be
very interested in having some people with
more experience writing secure software eval-
uate this patch to make sure that there are
not any issues that I missed.

3.4 Modifications to
printfilters

rhs-

Once I had the means of passing informa-
tion from the lpr command line to the fil-
ter script, it was an easy step to incorpo-
rate it this into the rhs-printfilters on my
system. The only difficulties were making
sure that the PostScript processing happened
after the file conversion had completed and
making sure that it didn’t interfere with non-
PostScript printers or printers for which we
didn’t have a PPD file.

The design of rhs-printfilters made this
fairly easy. After all the file conversions are
done, if it is a PostScript printer, it exe-
cutes the ps-to-printer.fpi script. This elim-
inates the problem with all non-PS printers.
To ensure that it didn’t adversely affect any
printers for which there wasn’t a PPD file, I
don’t feed the print job through ppdfilt unless
ppdfilt exists, LPOPTS is set, and PPDFILE
is set. LPOPTS is set by the LPR modifi-
cation mentioned above. PPDFILE is added
to the configuration file postscript.cfg, which
(when using rhs-printfilters) resides in the
spool directory. To make sure that this line
ends up there automatically required chang-
ing the way that printers are normally setup
when running the Red Hat printtool.

3.5 gpr

In traditional open source fashion, a few
weeks after I had released the initial code,
someone contributed to it. A guy named
Thomas Hubbell of CompuMetric corpora-
tion, a company that provides vendors with
usability information about printers, felt that
having to put all those -o options on a lpr
command line was too cumbersome and so
he sat down and wrote a gnome based GUI
to my -0’ enabled version of lpr.

It was a nice contribution. It greatly sim-
plified the process of picking what options you
want for a print job. I, a staunch command
line kind of person, found it so much easier
to use that I started running it regularly to
test various features within the printer.

Right now gpr is a stand alone program
that you run when you want to print. It pops
up its own window; and once you are done se-
lecting the options that you want, it executes
lpr with the correct set of options. I can-
not speak authoritatively for Thomas (and it
is his program) but when we first conceived
it, we thought that gpr would make a good
print-setup dialog box that could be incorpo-
rated into any gnome program that needs to
be able to print. The thing was that neither
Thomas nor I knew how to make a component
like that when he first suggested the project.

4 Setup, configuration, and

printer management

All the work in creating libppd, and
ppdfilt, and modifying lpr and rhs-printfilters
made it possible to easily send print jobs to
PostScript printers with special device spe-
cific commands. However, that was only half
of what HP wanted us to do in our initial at-
tempt to make printing work better for Linux.
HP also wanted to make setting up print-
ers and configuring them substantially eas-
ier. This is an amazingly broad topic because
Linux lags so far behind other operating sys-
tems in this area. Obviously, we couldn’t at-
tack all of the many facets of this problem
at once. We picked a couple of pieces of low
hanging fruit.

Back in the days of the teletypewriters,
pretty much everybody was using the same
computer through physically connected ter-
minals. A Unix machine would have literally
hundreds of serial ports and the teletypewrit-
ers would be connected to some of them. Be-
cause these units were physically connected
to serial ports, and because that physical con-
nection was the job of professional system ad-
mins who had a deep understanding of both
the hardware and software, it was not un-
reasonable to also ask the admins to config-
ure the software to use particular printers.
They installed the printer, connected it, and
so would know how to configure it. Things
have changed a bit since then. The average
Unix box is much smaller and instead of hav-
ing multiple sysadmins taking care of one box

you usually have one sysadmin taking care of
multiple boxes. The people connecting the
printers are not usually professional sysad-
mins; they are average users who have to ad-
min their box because there is no one else to
do it. Printer vendors are usually targeting
different audiences these days. Printers are
either sold as consumer devices with little or
no technical documentation, or they are sold
to business users where a little more docu-
mentation is available but is written for IT
professionals. Many printers these days are
not connected directly to the Unix machines,
exist as standalone network devices.

4.1 Printtool

Printing under Linux has always been a bit
of a cumbersome thing to setup. The docu-
mentation on how to set it up is pretty scarce
and to be honest, it is an involved multistage
process. Since the software is basically there
but the difficulty is in the configuration, it
has generally fallen on the shoulders of the
distribution maintainers to make the setup
and configuration of printers easier.

A few years back, Red Hat took a stab
at improving the setup and configuration of
printing when they made printtool. Print-
tool is a TCL/Tk application that does most
of the grunt work of setting up a printer. At
the time that printtool was originally writ-
ten, the standards that allow printers to be
automatically detected and configured were
still nascent. Since that time, the standards
have solidified and have become more widely
deployed, but printtool hasn’t been updated
to use them.

Red Hat hasn’t been completely asleep at
the switch, though. They have been tinker-
ing with the possibility of replacing printtool
with a new KDE-based application with some
capability to automatically detect printers.
This application has yet to see the light of
day and may never be fully functional.

We decided that a good first step would
be to simply modify printtool to enable auto-
matic detection and configuration of printers.
TCL/Tk being what it is, this was fairly sim-

ple. We modified the user interface to provide
a means to automatically detect the printer,
and triggered a command line utility called
“pconfdetect” which actually did the work of
detecting a printer.

4.2 pconfdetect

Having a separate program pconfdetect do
the work of detecting a printer seemed like
a wise idea to us for several reasons. Being
true Unix people, we believe that GUI’s are
nice but they are not easily scriptable and
that makes them difficult to embed in other
applications, and often limits their scalabil-
ity. Seeing that Red Hat had already taken
a stab at making a replacement for printtool
told us that printtool might not be long for
this world and a having lots of work invested
into printtool might not be efficient for over
the long run.

Finally, TCL/Tk is a good rapid applica-
tion development tool, but is not the best
language for doing the kind of low level pro-
gramming that is necessary for printer de-
tection. Having TCL/Tk call C functions is
possible, but is more difficult than executing
an external program and parsing the results.
Also someone someday might decide to de-
velop a new printer configuration utility and
it would be much easier for them to embed
pconf detect than to steal a bunch of code
out of printtool. Finally, pconfdetect is re-
ally a very thin wrapper around some func-
tionality we bundled together into something
that we called libprinterconf. It was easier to
develop and test libprinterconf with a simple
command line tool like pconfdetect than to
try to develop and test it already embedded
into printtool.

4.3 libprinterconf

Right now libprinterconf is just the library
of functions that actually do the work of de-
tecting the printers. It was conceived with
a much broader scope in mind. The origi-
nal notion was that it would be a library of
functions that people writing printer config-

uration utilities could call to do most of the
work for them.

The first feature we implemented was two
different kinds of printer automatic printer
detection. We are planning to add two more
significant features to libprinterconf. We in-
tend for it to setup spool directories, and
printcap files and anything else needed by a
particular spooling system. We also intend
for it to be a clearing house of functions for
configuring not only the spooler aspect of a
printer, but also for configuring the printing
hardware.

Auto-detection of printers can be done
quite a few different ways. For printers con-
nected to the parallel port there is a protocol
called IEEE 1284 which can be used over a
bidirectional parallel port to query any at-
tached hardware for certain types of informa-
tion such as what it is. For network connected
printers, you have several options to auto-
detect printers. For IP you can use SNMP
to detect printers. HP also implements a
multicast protocol something like SLP but
markedly different. You can also detect print-
ers using the IPX and Appletalk protocols.
Printers can also be connected serially but
there is no standard way to identify them.
Some printers have IR ports and there is a
protocol within the IRDA standard that facil-
itates discovering and identifying IR devices.
Finally, USB has its own method of identi-
fying hardware. For this first swipe at auto-
matic printer detection, we implemented the
IEEE 1284 parallel port detection as well as
SNMP detection. We tried to implement the
HP SLP-like protocol but we were unable to
reverse engineer it.

Like most things in this project, we stole
code from other places. The parallel port
printer detection code came from the KDE
printer setup tool that Red Hat made but
never really put into production. The SNMP
code came from a package that I had previ-
ously written called npadmin.

4.4 snmpkit

npadmin was a program I wrote a few years
ago while I was at Cisco. It used SNMP to
find out all sorts of information from SNMP
capable printers. When I was writing it, I dis-
covered that the SNMP library that existed
at the time could not do the things that I
needed to do. The problem was one of perfor-
mance: I needed to poll 3000 printers and find
out information from each of them. Quite a
few printers were either turned off, had been
retired, or for some other reason were unavail-
able on the network. If I were polling these
printers sequentially, the time added to the
run by having to wait for the timeouts on
printers that were down was unacceptable. I
needed something that could plow on through
a large number of printers without waiting for
down printers. I also found that just fork-
ing off new processes for each printer used
an unacceptable number of file descriptors.
When I designed npadmin, I made it multi-
plex the SNMP sessions on one socket. The
initial design was a very clever state machine
but I soon figured out that SNMP interac-
tions were arbitrarily complex and making a
state engine flexible enough to handle this ar-
bitrary complexity was extraordinarily com-
plex. I finally decided to shove most of this
complexity off onto the kernel’s scheduler and
implemented npadmin using threads.

It had always been my intent to make a
separate library out of the SNMP portion of
npadmin, but I had never taken the time to
do it. Uncoupling snmpkit from npadmin
turned out to be a much bigger project than
I ever imagined. The work paid off, though. I
believe that [made a nice clean SNMP library
optimized to do large numbers of transac-
tions quickly without putting undue burdens
on the operating system. Snmpkit was orig-
inally written in C++ but to make it more
useful to the UNIX community, I also added
a C library interface to it.

5 Current gaps

This printing project for HP was a first
pass at improving printing under Linux. It
was never intended to be the complete solu-
tion to the many problems with Unix/Linux
printing. It was just intended to get the ball
rolling and pick off some low hanging fruit.
There are many gaps and weaknesses in the
work that we have done. Whether these gaps
ever get filled depends on a lot of things, time,
money, community interest and passion.

5.1 Libppd and ppdfilt

Libppd was ripped out of CUPS, and I will
confess that the edges are still ragged. It
needs to be cleaned up so that it looks less
like something ripped out of another piece of
software and more like a library of its own.

The containers in libppd are something
that I have always found problematic. Het-
erogeneous data structures are stored in un-
terminated vectors with associated counts.
Although this works, I think that the code
could be greatly simplified and potentially
made more robust if it we used glib to store
the groups of objects.

My original intent was to rip libppd out of
CUPS and then put it back as a shared library
that both CUPS and other utilities relied on.
For various reasons this never happened, but
is a possibility for the future.

Many printers are not PostScript printers
and therefore do not have PPD files. There is
a standard called UDMF evolving that seeks
to do something like PPD files for all types
of printers. When this standard has set-
tled down and is widely deployed it might be
worth it it to turn libppd into libudmf.

5.2 GPR

I have always been pleased by the existence
of GPR. To me it has always seemed like a
bonus. Thomas Hubbel wrote it without any

help from me, so it has never been my pro-
gram and probably never will be. Therefore,
I don’t directly control its destiny. This does
not stop my imagination from extrapolating
where I would like to see it go.

I would like to see it evolve into the stan-
dard gnome print-setup dialog box. That way
every application that needs to print will have
access to these features.

Right now many of the PPD options are all
lumped together on the “advanced” page of
the gpr interface. Despite the fact that the
PPD specification suggests that the authors
of PPD files define groups for their options,
very few ever have. Thomas and I have kicked
around the idea of making gpr implement
the groups feature and then adding groups
to all the PPD files that we use and making
the modifications to other PPD files an open
source project that people could participate
on. This would clean up the gpr interface
quite a bit and make it more useful.

There is no doubt that GPR simplifies the
process of selecting the PPD options when
printing. All of these options are available
through the command line, but they are a
bit cumbersome to use. There are a couple
of ideas we have about using gpr to simplify
things for command line users. The first is to
make it possible for the users of GPR to view
and copy the command line that gpr will ex-
ecute upon completion. That way users will
be able to take that command line and mod-
ify it or embed it in scripts. The second idea
involves the creation of a “.gpr-aliases” file.
Whenever you create a saved set of options
within gpr, it will write an alias in “.gpr-
aliases” so that if you source the file out of
your .bashrc or similar file then you will have
quick access to your saved settings from the
command line.

5.3 LPR

As T have said before, LPR is a very old pro-
gram that is desperately in need of being seri-
ously updated. In this project, we intention-
ally modified LPR as little as possible under
the assumption that it would be more likely

that the changes would be adopted. Whether
this was a valid assumption or not remains to
be seen. There are a lot of improvements that
need to made to lpr.

Quite a few of the things we are planning to
do are just cleanups which should have been
done a long time ago. We need to make the
software autoconfed and automaked and dep-
recate of obsolete options.

Other, planned changes are to provide
better interoperability with other programs.
Instead of having programs like GPR and
Samba being forced to parse the printcap file
for themselves, we should make a library out
of the parsing routines that LPR uses and
then export that interface. In addition to
functions to read the printcap, to simplify
the writing of configuration applications, we
should provide functions that write the con-
figuration files.

Once those are done, we rewrite LPR to
use this library and then provide alternate
versions of the library that work completely
differently. For example, we could pull out
the library which reads from printcap and re-
place it with a library which reads the con-
figuration from an LDAP directory or some-
thing. Maybe we’ll call this libprintspool or
something like that. If we make the API gen-
eral enough, then it would give people the op-
tion of selecting spoolers as well. A sysadmin
could plug in LPRng, CUPS, or what-have-
you so long as the spooler interacts with the
underlying data store using the libprintspool
functions.

Still other changes that we are considering
would be a radical departure for LPR. Why
not make LPR use SLP to announce its pres-
ence? Why not implement IPP as well as the
standard LPR protocol?

5.4 npadmin

There are only a handful of things that I
am going to do with npadmin in the future. I
am going to port it over to using snmpkit, as
the npadmin SNMP code is a little old. I am
going to finish implementing all the SNMP

sets that are in the RFC 1759 MIB. I should
have done this a long time ago but I just never
got around to it. The third thing is [am going
to restructure npadmin in such a way that
most of the functionality is in libprinterconf
and that npadmin in and of itself is just a thin
wrapper on the libprinterconf functionality.

5.5 snmpkit

Snmpkit has a few gaps in it as well. It
needs to have set functionality added to it
and will probably have to be updated to in-
corporate the SNMP3 specification if printer
vendors want it.

5.6 printtool

Maybe we will rewrite printtool to make
it a nice gnome application and have it use
libprinterconf and libprintspool.

6 Future plans

There is a magic to open source develop-
ment. For a developer, it is always a bit like
stepping into the unknown and then allow-
ing things to happen around you rather than
forcing something to happen a certain way.
Much of this is the way that I have conceived
printing working. One of the things that I
have always found interesting about the open
source world is that projects take on a life of
their own and as the little bits of technology
that we build become more widely distributed
and get incorporated into other pieces of tech-
nology they become mutated and evolve into
something that is different and beyond what
I ever conceived.

