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Abstract

In this paper, we describe an implementation of soft-
ware Distributed Shared Memory (DSM) over Vir-
tual Interface Architecture (VIA) for a Linux-based
cluster of PCs and evaluate its performance. VIA is
a user-level memory-mapped communication model
that provides zero-copy communication and low-
overhead by excluding the operating system kernel
from the communication path. To our best knowl-
edge, our implementation is the first software DSM
protocol on VIA.

The DSM protocol we have implemented on VIA
is Home-based Lazy Release Consistency (HLRC)
that previous studies have shown to exhibit good
scalability by reducing the number of messages and
memory overhead compared to the homeless coun-
terpart. The experimental results obtained on seven
Splash-2 applications show that VIA can be suc-
cessfully used to support software shared memory
on clusters of PCs. The paper is accompanied by a
source-code distribution of the software DSM pro-
tocol for Linux/VIA clusters.

1 Introduction

System Area Networks (SANs) have become an in-
creasingly popular solution to build scalable com-
puter clusters by providing low latency and high
bandwidth communication. Traditional communi-
cation models were unable to fully exploit the raw
performance of the networks due to the high over-
head added by the software protocols.

Virtual Interface Architecture (VIA) [5] is a user-
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level memory-mapped communication model for
SANs, that reduces communication overhead by ex-
cluding the operating system kernel from the com-
munication path. VIA is an industrial standard
inspired from previous research in user-level com-
munication performed in universities [9, 11, 10, 25].
The basic idea in user-level communication is to fac-
tor out the operating system from the critical path
of communication operations. To provide protected
communication, two conditions must be satisfied.
First, the kernel must grant the permission for a pro-
cess to communicate with another process by pro-
viding a communication channel. Second, the net-
work interface must multiplex user-level DMA per-
formed through these channels. This support elim-
inates the need to trap into the kernel each time a
send is executed, and makes the send operation low-
overhead. At the same time, by sending data from
user space to a remote receive buffer, no copy is
necessary and the end-to-end communication band-
width will be close to the raw bandwidth provided
by the network hardware.

There are multiple hardware and software imple-
mentations of VIA today. Giganet[12] has a hard-
ware VIA implementation with drivers for Linux
and Windows-NT. Firmware implementations of
VIA are available for ServerNet[27] and Myrinet[22]
interconnects. M-VIA [23] provides Linux software
VIA drivers for various fast Ethernet cards.

The efficiency of memory-mapped communication
provided by VIA doesn’t come for free. As vari-
ous projects started to use VIA or other memory-
mapped communication libraries, it became obvi-
ous that the lack of buffer management, flow con-
trol and message packaging can make communica-
tion programming more complicated. The solution
is to build high-level communication abstractions on
top of VIA, while preserving its performance bene-



fits. Recently, several message passing libraries over
VIA, such as MPI [24], have been announced.

In this paper, we describe an implementation of soft-
ware distributed shared memory (DSM) over VIA,
for a Linux-based cluster of PCs. Software DSM [17]
is available to applications as a runtime library that
provides the abstraction of a shared address space
across the cluster using message passing and virtual
memory page protection. Given its low latency and
overhead, as well as its capability to DMA directly
into user address space of remote memory without
intermediate copies, VIA appears very promising for
software DSM. To our best knowledge, ours is the
first implementation of a software DSM protocol on
VIA.

The protocol we have implemented on VIA is home-
based lazy release consistency (HLRC) [35, 17]. Pre-
vious studies have shown that HLRC provides good
scalability by reducing the number of messages and
memory overhead compared to the homeless coun-
terpart [35]. Home-based protocols have been pre-
viously implemented on other memory-mapped in-
terconnected clusters both for clusters of unipro-
cessors [20, 15] as well as for clusters of symmet-
ric multiprocessors (SMPs) [29, 26]. Although the
communication model of these networks are simi-
lar to VIA, there are a number of significant dif-
ferences. For instance, compared to the virtual
memory-mapped communication (VMMC) imple-
mentation on Myrinet [9], VIA requires memory
registration both for send and receive, has receive
queues that can be combined into completion queues
(on which threads can block on explicit receive).
Compared to Memory Channel [13] used in [29],
VIA has no broadcast support and no implicit global
ordering.

Our goal is to implement a highly efficient home-
based DSM protocol exploiting the features of the
VIA model and investigate its overall performance
as well as the performance impact of various VIA
features. For the performance evaluation we used
a set of seven Splash-2 applications [33] and a clus-
ter of eight PCs connected by Giganet VIA-based
cLAN network and running Linux version 2.2.10.
We were able to obtain a speedup of greater than
6 for five applications. The performance we ob-
tained is comparable to those previously reported
for home-based protocols on Myrinet/VMMC con-
nected clusters. We have learned from our perfor-
mance study that even though VIA lacks features
desirable for software DSM systems, like scatter-

gather and broadcast support, the VIA primitives
are a good match for the requirements of the soft-
ware DSM communication model.

2 Virtual Interface Architecture

The VI Architecture [5] is a user-level memory-
mapped communication architecture that is de-
signed to achieve low latency, high bandwidth across
a cluster of computers. The VI architecture at-
tempts to reduce the amount of software overhead
imposed by traditional communication models, by
avoiding the kernel involvement in each communica-
tion operation. In traditional models, the operating
system multiplexes access to the hardware between
communication endpoints and therefore all commu-
nication operations require a trap into the kernel.

Each consumer process (VI Consumer) is provided
a directly accessible interface to the network hard-
ware, called the Virtual Interface (VI). Each VI rep-
resents a communication endpoint and pairs of VIs
can be connected to form communication channels
for bidirectional point-to-point data transfer. Each
VI has a pair of work queues, one for send and one
for receive. VI Consumers send and receive mes-
sages by posting requests, in the form of descriptors,
to these queues. These requests are asynchronously
processed directly by network interface controller
(VI Provider) and marked with a status value when
completed. VI Consumers can then remove these
descriptors from the queue and reuse them if neces-
sary. Completion queues allow the VI Consumer to
combine the descriptor completion events of multi-
ple VIs into a single queue.

There are several key features of the VIA commu-
nication model:

e Direct Access to the Network Interface. This
enables low latency communication which has
been shown to improve DSM performance.

e Memory Registration. VIA requires that mem-
ory used for every data transfer request be reg-
istered. Any memory page registered with VIA
is kept pinned to the same physical memory lo-
cation until the memory is deregistered by the
VI Consumer. The necessity of memory reg-
istration becomes an issue for software DSM
when the shared address space is larger than
the physical memory or when memory pressure



due to other applications makes it difficult to
register the entire shared address space.

e Zero-Copy Protocols. With memory registra-
tion, the VI Provider can transfer data directly
between the buffers of a VI Consumer and the
network without copying any data to or from
intermediate buffers. Zero-copy communica-
tion protocols help improve the performance of
DSM systems but because it requires registra-
tion of the entire address space, it can be used
only for small problem sizes.

e Protected Channel for Communication. The
VI architecture requires that a VI be explicitly
connected with another VI in order to trans-
fer data between them. Communication using
the VI channels established by the connection
process eliminates the protection check by the
operating system from the critical path of data
transfer. This feature is not relevant to soft-
ware DSM systems that typically assume no
sharing of the cluster with other applications.

The VI architecture supports two types of data
transfer models for communication. The Send-
Receive model is similar to traditional message pass-
ing, which involves an explicit receive operation, and
the recipient of a message has to specify the mem-
ory location where the data will be placed. The
Remote Direct Memory Access (RDMA) model in-
volves only the sender, and no receive operation is
required. In this case, both the source and desti-
nation buffer are specified by the sender. The VIA
specification defines two RDMA operations, RDMA
Write and RDMA Read.

3 Software DSM

Software DSM is a runtime system that provides the
shared address space abstraction across a message-
passing based cluster of computers. The basic idea
suggested by Kai Li [21], is to use the virtual
memory page protection mechanism to implement
an invalidation-based coherence protocol similar to
directory-based cache coherence, but at page gran-
ularity and completely in software. Since the unit
of coherence is a virtual memory page, false sharing
occurs when multiple unrelated shared objects lie on
the same page. To alleviate the message traffic that
would be generated in the presence of false sharing,
several relaxed consistency models have been pro-
posed [16, 4, 19, 6, 18]. These consistency models

define a memory model for programmers in which
they agree to exclusively use explicit synchroniza-
tion. Under this assumption, the coherence protocol
can delay the invalidation messages until a synchro-
nization operation is performed, thus reducing both
the protocol messages as well as the extra commu-
nication that an early invalidation would have un-
necessarily caused.

3.1 Lazy Release Consistency

The most frequently used consistency model in soft-
ware DSM is Lazy Release Consistency (LRC) [19,
6], in which the invalidations are propagated at ac-
quire time. Acquire and release are the two ex-
plicit synchronization operations required in release
consistency model and correspond to lock acquire
and lock release respectively. A barrier is a global
synchronization operation, implemented as a release
followed by an acquire. In LRC, the updates are de-
tected in software by computing diffs between the
dirty page and a snapshot of the clean copy of the

page.

The protocol that we chose to implement on VIA
is HLRC [35]. The HLRC protocol implements a
multiple-writer scheme by selecting a home for each
page, to which updates are sent. The basic idea is
to compute diffs at the end of an interval to detect
updates and to transfer the updates as diffs to their
homes. As a result, the home copy is up-to-date
and can be used to update other non-home copies
on demand. This protocol has been shown to have
very good scalability: the number of messages nec-
essary to update all copies is linear in the number
of nodes and the memory overhead is constant [35].
The home-based protocol has also been shown to
suit well with user-level memory-mapped commu-
nication because pages can be fetched from homes
with no copy and diffs can be applied directly on
the home’s copy [15].

In software DSM, the explicit synchronization op-
erations (acquire, release and barrier) are imple-
mented using message passing. Each lock has a
home through which the current owner of the lock
is found. Usually, a distributed queue is used to
implement queuing for lock acquires. Barriers can
be implemented with a linear number of messages
using a barrier manager or hierarchically using a
logarithmic number of messages. In release consis-
tent software DSM, invalidations are propagated as
a list of write-notices at synchronization time.



3.2 Basic Programming Model

Typically, software shared memory provides an in-
complete shared memory programming model. The
execution model is based on multiple threads (one
or more on each node) that share static global data
in read-only mode, and dynamically allocated data
in read-write mode. The coherence applies to the
latter exclusively. Static data is usually updated
by the main thread before the other threads are
spawned. Also, all global shared memory alloca-
tions must be performed by the main thread before
the other threads are spawned. Since static data
cannot be modified once the threads are spawned, it
is typically used to maintain pointers to the shared
data.

Applications written to use our DSM system make
use of the parmacs macros, which were developed at
ANL. The macros provide platform independence to
the application, enabling it to run on software DSM
as well as hardware DSM systems without modi-
fication. These macros provide a minimum set of
primitives that are necessary in order to program a
shared memory application.

The protocol implements the multi-threading model
by “forking” one process on each node of the cluster.
Each process will execute at least one application
thread. The threads will share the address space
within the process as well as across the forked pro-
cesses using software DSM. Since Linux doesn’t pro-
vide a remote fork, we provide the “illusion” of this
by starting the same executable on each node using
rsh. Each remote process executes the same code as
the initial process did before spawning, to initialize
static data, making it coherent across nodes.

4 Protocol Design

In this section, we explain the design of the HLRC
protocol. We describe the entry points to the pro-
tocol by specifying for each entry point the protocol
actions and the messages used to perform these ac-
tions.

4.1 Protocol Entry Points

Protocol activity occurs at various points in the ex-
ecution of an application. The entry points to the
protocol can be synchronous or asynchronous. Syn-

chronous entry points are those at which the ap-
plication traps into the protocol and executes some
protocol action. The asynchronous entry points are
entered as a result of incoming messages generated
by protocol action on other nodes in the system.

4.1.1 Synchronous Entry Points

During its execution, the application can enter the
protocol synchronously for the following:

e Lock Acquire - When the application needs a
lock, it depends on the underlying HLRC pro-
tocol to get the lock from the current owner and
perform the appropriate coherence actions.

e Lock Release - When the application needs to
release the lock, it uses the HLRC protocol to
manage the released lock and perform the ap-
propriate coherence actions.

e Barrier - The application depends on the HLRC
protocol to implement a barrier among the par-
ticipating nodes.

e Page fault - When the application tries to ac-
cess shared data which has been invalidated as
a result of a coherence action, a page fault is
generated. The page fault handler, installed by
the HLRC protocol at initialization, will fetch
the shared page from its home.

4.1.2 Asynchronous Entry Point

The synchronous entry points generate request mes-
sages which have to be serviced at the receiv-
ing node. The HLRC protocol provides an asyn-
chronous entry point to process the received mes-
sages. This can be implemented in several ways:

e Hardware - If support is available in the net-
work interface for asynchronous message han-
dling (for instance with a complete implemen-
tation of the VIA specification, a page request
can be serviced with an RDMA Read).

e Interrupt Handler - Interrupt handlers can be
used to receive and process remote requests if
notifications are issued on message arrival.
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Figure 1: Coherence Messages exchanged by three
processes in HLRC

e Communication Thread - A separate communi-
cation thread can be used to handle messages,
using either polling or blocking.

We use Giganet’s implementation of VIA, which
does not support RDMA Read or asynchronous no-
tification. Therefore, the asynchronous entry point
in our implementation is covered by a separate com-
munication thread on each node that is responsible
for handling all the incoming messages.

4.2 Protocol Messages

The protocol activity generates two types of mes-
sages: coherence messages and synchronization
messages.

The coherence messages are related to update prop-
agation and fall in one of the following categories:

e Diffs - sent by a writer of the page to the home
of the page at release or acquire time; contain
the updates performed by the sender since the
last release or acquire.

e Invalidations - sent at acquire time by the last
releaser; contain a list of pages that were up-
dated at the last releaser and elsewhere, that
the acquirer must update.

e Page fetch request - sent at page fault time to
the home.

e Pageresponse - sent by the home to the faulting
node as a response to the page fetch request
message.

Figure 1 illustrates the flow of coherence messages
when a shared page (p) is updated by a process
(P2) and subsequently accessed by another process
(P1). The timing and order of the coherence op-
erations are determined by the consistency model
implemented by the DSM system. For example, in
homeless LRC, the diff messages are sent lazily on
demand, while in the home-based LRC, diffs are sent
eagerly, either at release or acquire time.

The synchronization messages are used to imple-
ment the distributed queue for locks and the dis-
tributed barrier. In most software DSM protocols,
especially in LRC, coherence messages and synchro-
nization messages are combined in a single message
whenever possible. For example, in LRC, the inval-
idation message is combined with the reply message
to a lock acquire.

4.3 Implementation of HLRC on VIA

4.3.1 Data Transfers

The data transfers (pages and diffs) are performed
using RDMA Write with or without copy. If the
problem size is small, the entire shared address
space is registered with VIA, and page transfers
from home to the non-home nodes are performed
without any copy. Memory registration consists of
locking the pages of a virtually contiguous mem-
ory region into physical memory and providing the
virtual to physical translations to the NIC. The
amount of physical memory on the machine im-
poses a limit on the amount of memory that can
be registered. If the problem size is larger than the
limit imposed by the VIA implementation for mem-
ory registration, a set of communication buffers are
registered instead and page transfers are performed
with one copy at each end (from page to buffer at
the sender and from buffer to page at the receiver).
Unlike VMMC, another memory-mapped commu-
nication library that requires receive buffers to be
registered (“exported” in its terminology), VIA re-
quires both send and receive buffers to be registered.

To send an update, the diff is computed by packing
all the modified words within a dirty page into one
message by the sender (non-home node), and sent to



Applications Problem Size Sequential Time (s) | Shared memory size
Barnes-Spatial 262144 bodies 357 325 MB
FFT 2048x2048 86 196 MB
LU 2048 x 2048 209 33 MB
Ocean 514 x 514 30 97 MB
Radix 45M keys 95 377 MB
Water-Nsquared | 32768 molecules, 5 steps 22450 22 MB
Water-Spatial 262144 molecules 14202 264 MB

Table 1: Application characteristics

the home of the page. The receiving node applies
the diff by modifying the appropriate page at the
words mentioned in the diff message.

4.3.2 Remote Requests

The DSM protocol may issue remote requests for
data and synchronization. These requests, which
require a response, are sent using the send-receive
model. Since each node executes one application
thread, there can be only one outstanding request
issued by that node and, one corresponding reply.
Therefore, each node expects at most N-1 requests
(one from each other node). This means that each
node must register N-1 receive buffers and post the
same number of receive descriptors, where N is the
number of nodes in the cluster. A N-th registered
receive buffer is used to receive the reply messages
(acks, locks, etc). Since VIA does not support no-
tification on message arrival, a server thread is run
on each node, which is responsible to handle remote
requests. When no requests are pending, the server
thread blocks on a completion queue that aggregates
the receive queues for the N-1 buffers on which the
node can receive asynchronous requests.

Messages that do not require a response (barrier,
reply messages) are sent using RDMA Write and
do not consume a descriptor on the receiving side.
These messages are consumed in a busy loop by the
application (not server) thread, since there is noth-
ing else the application thread can do. The memory
location for the flag on which spinning is performed,
is updated by RDMA Write.

5 Performance Evaluation
5.1 Applications

We evaluated the performance of our DSM system
using seven applications from the SPLASH-2 bench-
mark suite [33]: Barnes, FFT, LU decomposition,
Ocean, Radix, Water-Spatial and Water-Nsquared.
Due to space limitations, we don’t describe the ap-
plications in our paper. In Table 1, we show the
problem size, sequential execution time and the
shared memory footprint for each of these applica-
tions.

5.2 Experimental Platform

All our experiments were performed on a cluster of
eight SMP PCs. Each PC contains two 300 MHz
Pentium II processors. However, for this study, we
used only one processor on each node. Each proces-
sor has a 512KB L2 cache and each node contains
512 MB of main memory. All nodes run Linux-
2.2.10.

Each node has a Giganet cLAN NIC, which is a 32-
bit 33 MHz PCI-based card. These nodes are con-
nected by an 8-port Giganet cLAN switch. The per-
formance characteristics for our experimental plat-
form are reported in Table 2. Latency denotes the
time taken to transfer a 1 word packet between
two nodes using VIA. PostSend denotes the aver-
age time taken to post a send using VIA. The last
row presents the cost of the VipRegisterMem oper-
ation used to register memory used for communica-
tion buffers in VIA.

We also present (Table 3) the cost of other opera-
tions or events that occur frequently in a software
DSM system: page fault handler invocation, the
mprotect system call, and memory copy bandwidth.



One-way Latency (1 word) 8.2 us
Bandwidth (32 KB) 101 MB/s
PostSend (4 KB) 2.1 us
RegisterMem (4 KB) 4.3 ps

Table 2: Giganet VIA Microbenchmarks

The last row in Table 3 presents the time taken to
copy a page(4096 bytes on the Pentium II running
Linux) from memory to cache.

Operation (per page) | Time (us)
Page fault 6.2
Mprotect call 2.7
Memory copy 23.2

Table 3: Linux System Microbenchmarks

In Table 4, we present some microbenchmarks for
the DSM system itself. To derive the basic cost of all
these operations, these microbenchmarks were done
using just two nodes. The Acquire microbench-
mark gives the time to update data structures and
fetch the lock from a remote node. The Release mi-
crobenchmark measures the cost of a release with-
out any pending request for the lock. The page fetch
time indicates the time to fetch a page from home
without copies. The diff application time includes
the time to copy the diff from the diff buffer onto
the page and update the version of the page. The
Barrier microbenchmark includes the time to send
the barrier message to the other node, and wait for
the barrier message from the other node.

Operation Time (us)
Acquire (Local, Remote) 1, 34
Release 1
Page fetch (no copy) 89
Diff Computation 24
Diff Application 22
Barrier(2-node) 17

Table 4: Software DSM Microbenchmarks

5.3 Application Performance

We ran the seven applications on our cluster of eight
nodes. On each node, the application consists of
two threads, the communication thread for handling
incoming messages and the application thread that
performs computation. We present the performance

results for the problem sizes mentioned in Table 1
and then analyze the performance in detail.

Table 5 shows the speedups for the seven SPLASH-
2 applications we used. LU and Ocean achieved
speedups of 7.4 and 7.7 respectively, followed by
Water-Spatial, Barnes and Water-Nsquared with
speedups greater than 6. FFT comes next followed
by Radix which has the worst speedup of the lot.

Applications Speedup (8 nodes)
Barnes 6.3
FFT 5.8
LU 7.4
Ocean 7.7
Radix 4.3
Water-Nsquared 6.2
Water-Spatial 6.7

Table 5: Speedups on 8 nodes

For the purpose of this study, we classify the ap-
plications according to their data access patterns
and synchronization behavior. The application can
be single writer or multiple writer, based on the
number of concurrent writers on the same coher-
ence unit (a page). The communication to compu-
tation ratio is determined by the granularity of data
access. Fine grain access can introduce fragmenta-
tion and/or false sharing, resulting in an increase
in the communication to computation ratio. Since
all coherence events in the LRC protocols happen
at synchronization points, the frequency of synchro-
nization plays an important role in the performance.
The average computation time between two consec-
utive synchronization events is a good measure of
the frequency of synchronization.

LU and Ocean are single-writer applications with
coarse-grain access. These applications exhibit good
spatial locality with only one writer per shared page
and hence achieve good speedups. FFT is a single-
writer application with fine-grained access. The
mismatch between the access granularity and the
communication granularity prevents it from achiev-
ing a better speedup. Applications like Barnes-
Spatial and Water-Spatial are multiple-writer with
fine-grain access and coarse-grain synchronization.
The high average time between synchronization
events for these applications helps in achieving good
performance. The relaxed consistency model and
the multiple-writer support of HLRC helps these
applications in achieving good speedups. Water-
Nsquared and Radix are multiple-writer applica-
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Figure 2: Normalized execution time breakdown on 8 nodes

tions with coarse-grain access. In Water-Nsquared,
since each process updates successively a large num-
ber of contiguous molecules, the access pattern is
preserved at the page level which leads to a coarse-
grain access pattern, which is well suited. Radix,
however, does not achieve a good speedup due to a
large amount of time spent in the barrier, which is
caused by an imbalance.

5.4 Performance Impact of Copies

We evaluate the impact of copies, necessary as part
of data transfer when the entire shared address
space cannot be registered with VIA, by present-
ing a comparison between the performance of the
no-copy and copy versions in Figure 2. We present
a comparison of the execution times breakdown for
both versions, normalized with respect to the exe-
cutions with copies. We had to run the applications
with problem sizes smaller than the ones mentioned
in Table 1 so that we could use both versions with
the same problem size. The bars on the left, la-
beled “NO COPY”, present the performance results
for the no-copy version, and the bars on the right,
labeled “COPY”, present the performance results
for the version with copies. Each bar presents a
percentage breakdown of the different components
which make up the execution time on a single node.
Computation time is the time spent doing applica-
tion computation. Page fetch time is the time spent
in fetching a page from the home node, on a page

miss. Lock time is the time spent in getting the
lock from the current owner. Barrier time is the
time spent waiting for barrier messages from other
nodes, at the barrier. Overhead time is the time
spent performing protocol actions. Handler time is
the time spent inside the handler, servicing remote
requests. Since we used only one processor on each
node, for our experiments, the handler competes for
the CPU with the application thread to service the
messages received via the receive completion queue.

The page fetch time is what increases as a result of
the additional copies at the home node and the re-
ceiving node during page transfers. We can see that
Page Time makes up for a significant percentage of
the execution time for Barnes, FFT and Radix, and
these three applications show an improvement in
performance with copy avoidance. Although avoid-
ing copy is good, data transfer with copies doesn’t
degrade performance drastically. The performance
degradation was maximum for FFT (15%) and very
little (less than 5%) for the other applications.

6 Discussion

In this section, we present the lessons we learned
from this implementation. In particular, we dis-
cuss the potential and limitations of the current
VIA specification and implementations, for software
DSM.



Low-latency Communication. VIA provides low
latency communication which is critical for the per-
formance of a DSM system. Figure 3 presents the
percentage distribution of the message sizes for four
of the applications. For all four applications, small
messages (less than 256 bytes in size) constitute
more than 75% of the total number of messages.

Copy Avoidance. Copies can be avoided in data
transfers but VIA requires both the send and re-
ceive buffers to be registered in advance. The cost of
memory registration (Table 2) prevents us from do-
ing it at the time of transfer. On the other hand, any
VIA implementation imposes a limit on the amount
of memory that can be registered. As a result, for
large problem sizes, copies cannot be avoided. How-
ever, from the results presented in Section 5, we can
see that performing copies as part of data transfer
doesn’t adversely affect application performance ex-
cept in the case of FFT, where we observed a degra-
dation of roughly 15%.

Scatter-Gather. A scatter-gather mechanism
would have been ideal to implement direct diffs
without incurring the penalty of multiple message
latencies. In the absence of scatter-gather, prelimi-
nary calculations indicate that direct diff solutions
win over the diff copy solution only when the chunks
of consecutive updates are large enough to offset the
latency of sending multiple messages using VIA.

To understand the impact of writing diffs di-
rectly, avoiding copies but without scatter-gather,
we looked at two of the applications, viz., Radix
and Barnes which generate a substantial amount of
diff traffic. When diffs are written directly, a mes-
sage is generated for every contiguous dirty segment
in the page. Radix achieves an improvement in per-
formance by writing diffs directly, whereas the per-
formance of Barnes degrades. On a careful look at
the granularity of the writes and the number of dirty
segments per modified page, we realized that Radix
resulted in only one contiguous dirty segment per
page, whereas Barnes resulted in about 21 dirty seg-
ments per page. For Barnes, the overhead of send-
ing multiple dirty segments per page outweighs the
improvement achieved by avoiding the copy.

What VIA provides as scatter-gather support is
however insufficient for the implementation of di-
rect diffs with one message per page. VIA allows the
source of an RDMA Write to be specified as a list
of gather buffers. However, this gather mechanism
doesn’t allow us to specify multiple addresses on the

destination node. In software DSM, transfer of diffs
for any page involves transfer of multiple contiguous
dirty segments contained within the page.

We try to estimate the potential performance im-
provement with scatter-gather support from VIA.
We can calculate this by subtracting the time to
apply the diff from the handler time. Knowing the
total diff size that was transferred and approximat-
ing the diff application time with the memory copy
time, for all seven applications we studied, we got
a gain of no more than 5%. This is consistent with
what other people have shown [2].

Remote Read. RDMA Read is a VIA feature that
allows fetching of data without interrupting the pro-
cessor on the remote node. Although present in the
VIA specification, the VIA implementation that we
used in our experiments does not support RDMA
Read. We try to make a rough approximation of
the impact of RDMA Read on the performance re-
sults.

Using RDMA Read, we can potentially eliminate
the handling time for remote requests (since they
can be performed by the NIC as an RDMA Read),
assuming that RDMA Reads do not require ser-
vicing by the CPU. Even though not all remote
requests are remote fetches, we look at an upper
bound by assuming that the entire handling time is
eliminated. For all the applications that we stud-
ied, this component (handling incoming messages
as a server) of the execution time is not larger than
5%. The elimination of the remote handling time,
would also reduce the communication latency expe-
rienced by the clients, by the same amount. This
brings the total contribution of the remote read to
no more than 10%, not counting the side-effect on
synchronization due to critical section dilation [2].
Bilas et al [2] have shown that the remote read fa-
cility can help reduce the page fetch times by about
20% for most applications.

Broadcast Support. VIA doesn’t specify any
primitive or mechanism for broadcast. Broadcast
can be really useful in the context of a software DSM
system. With support for inexpensive broadcast, we
can adopt an eager selective update mechanism us-
ing broadcast, instead of sending write notices for
invalidation. This will help us save unnecessary
page requests generated at nodes accessing heav-
ily accessed pages, and in reducing the contention
and protocol overhead of serving these pages at the
home nodes. We can also broadcast the invalida-
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Figure 3: Message size distribution

tions sent at the time of barriers. Previous studies
[30] have revealed that a gain of up to 13% could be
achieved over 8 nodes, with selective use of broad-
cast for data used by multiple consumers. They
present simulation studies to speculate that a per-
formance improvement of even 50% is possible with
32 nodes.

7 Related Work

This work focuses on using memory-mapped com-
munication to build a high-performance software
DSM. In this context, we evaluate VIA as an ef-
fective communication substrate for software DSM.

A great deal of work has been done on shared virtual
memory since it was first proposed[21]. The Release
Consistency (RC) model was proposed in order to
improve hardware cache coherence. RC was used
to reduce false sharing by allowing multiple writers
[4]. Lazy Release Consistency (LRC) [19, 6] further
relaxed the RC protocol to reduce protocol over-
head. Treadmarks [18] was the first SVM implemen-
tation using the LRC protocol on a network of stock
computers. The Automatic Update Release Consis-
tency (AURC) [14] protocol was the first proposal
to take advantage of memory-mapped communica-
tion to implement an LRC protocol. Home-based
Lazy Release Consistency (HLRC) [17] proposed a
home-based approach to improve the performance
on large-scale machines. Cashmere [20] is an eager

Release Consistent (RC) SVM protocol that imple-
ments a home-based multiple-writer scheme using
the I/O remote write operations supported by the
DEC Memory Channel network interface [13].

The VI architecture [5] builds on previous work in
user-level communication. The VI architecture is
based on ideas similar to that of U-Net [11], virtual
interfaces to the network from application device
channels [7], and Virtual Memory Mapped Com-
munication (VMMOC) [8]. Other research that dis-
cuss user-level direct access to the network interface
are FM [25], AM [10], Hamlyn [32], PM [31], and
Trapeze [34].

Prototype implementations of the VI Architecture
have been developed on Myrinet, and 100 Mb/s Eth-
ernet. M-VIA [23] is a software emulation of VIA
over various network interface cards including Eth-
ernet cards. Berkeley VIA [3] is an implementation
of VIA over Myrinet. A performance study of VIA
[28] has compared software as well as hardware im-
plementations. The study also explores several per-
formance and implementation issues related to the
use of VIA by distributed applications.

Previous work [2, 30, 1] has looked at exploiting
support available in hardware to improve the per-
formance of software DSM. Bilas et al [2] explore
performance gains to be obtained from perform-
ing asynchronous message handling in the network
interface. Another study [30] investigates the im-
pact of features such as low-latency messages, pro-



tected remote memory writes, inexpensive broad-
cast and total ordering of network packets on the
performance of software DSM. The use of a PCI-
based programmable protocol controller for hiding
coherence and communication overheads in software
DSMs, is studied in [1].

This work sets out to illustrate the match be-
tween software DSM requirements and the memory-
mapped communication features offered by VIA. To
our knowledge, ours is the first performance study
of software DSM over VIA.

8 Conclusions

We have implemented a high-performance software
distributed shared memory protocol for clusters of
PCs connected by Virtual Interface Architecture
networks. In this paper, we describe the implemen-
tation of a Home-based Lazy Release Consistency
DSM protocol on VIA and evaluate its performance
on a eight node cluster of PCs using 7 benchmark
applications from the Splash-2 suite.

We observe that the VIA primitives are a good
match for the requirements of the software DSM
communication model. We have learned from our
performance study that desirable features for soft-
ware DSM systems, like scatter-gather, broadcast
support, are missing from VIA. Even though the
memory registration mechanism imposes a limit on
the problem size that can be handled with a zero-
copy protocol, our performance studies reveal that
copies do not affect the application performance ad-
versely.

The experimental results show that VIA can be suc-
cessfully used to support shared memory on clusters
of PCs but further study is necessary to evaluate its
scalability on larger clusters and for a larger set of
applications.
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