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Abstract

In this paperwe describehow we implementedjour-
naling and recovery in the Global File System(GFS),
a shared-diskclusterfile systemfor Linux. We also
presenpurlatestperformanceesultsfor a16-way Linux
cluster

1 Intr oduction

Traditionallocal file systemssupporta persistenhame
spaceby creatinga mappingbetweenblocks found on
disk drivesanda setof files, file namesanddirectories.
Thesefile systemsriew devicesaslocal: devicesarenot
sharedso thereis no needin the file systemto enforce
device sharingsemanticsinsteadthefocusis onaggres-
sively cachingandaggreatingfile systemoperationgo
improve performanceby reducingthe numberof actual
disk accessesequiredfor eachfile systemoperation1],

[2].

New networking technologiesallow multiple machines
to sharethe samestoragedevices. File systemshatal-

low thesemachinedo simultaneouslynountandaccess
files on theseshareddevices are called shaed file sys-
tems[3], [4], [5], [6], [7]. Sharedfile systemsprovide

asener-lessalternatie to traditionaldistributedfile sys-

temswheretheseneris thefocusof all datasharing.As

shawvn in Figure 1, machinesattachdirectly to devices
acrossa storage areanetwork[8], [9], [10].

A sharedile systemapproachhasedupona sharednet-

work betweenstoragedevicesand machinesoffers sev-
eraladwvantages:

1. Availability is increasedbecausdf a single client
fails, anotherclient may continueto processits
workload becausét can accesshe failed client’s
filesontheshareddisk.

2. Load balancing a mixed workload among multi-
ple clientssharingdisksis simplified by the client’s
ability to quickly accessary portion of the dataset
onary of thedisks.

3. Pooling storagedevicesinto a unified disk volume
equallyaccessiblgo all machinesn the systemis
possible which simplifiesstoragemanagement.

4. Scalabilityin capacity connectvity, andbandwidth
canbe achieved without the limitationsinherentin
network file systemdike NFS designedvith a cen-
tralizedsener.

In the following sectionswe describeGFS version 4
(which we will referto simply as GFSin the remain-
der of this paper),the currentimplementatiorincluding
thedetailsof ourjournalingcode new scalabilityresults,
changego thelock specificationandour plansfor GFS
version5, includingfile systenversioningwith copy-on-
write semanticgo supporton-linebackups.

2 GFSBackground

Previousversionsof GFSaredescribedn thefollowing
papers:[7], [6], [11]. In this sectionwe provide a sum-
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mary of the key featuresf the GlobalFile System.

2.1 DMEP

Device Memory Export Protocol (DMEP) is a mecha-
nismusedby GFSto synchronizeclientaccesso shared
metadataThey help maintainmetadataoherencavhen
metadatas accesseby severalclients. TheDMEP SCSI
commandallows device to export memoryto clients,
and clients map lock stateinto thesememory buffers.
Thelock stateis containedn the storagedevices(disks)
andaccessewvith the SCSIDMEP command12]. The
DMEP commands independenof all other SCSIcom-
mands,so devices supportingthe locks have no aware-
nessof the natureof theresourcehatis locked (or even
that the buffers are usedto implementlocks). The file

systemprovides a mappingbetweenfile metadataand
DMEP buffers.

Originally GFSusedDlocks SCSIcommandwhich had
the device maintainingthelock semanticaswell asthe
lock state. The advantageof DMEP over Dlocks[13] is
thatthe SCSlIcommands simpler andthe lock seman-
tics may be modified on the client without affecting the
SCSIcommanddefinition. This changewas suggested
by several SCSI disk vendorsto easeimplementation
andcreatea more generalSCSI synchronizatiorprimi-
tive. All the semanticghat usedto be implementecby
the SCSldevicesaspartof the Dlock commandarenow
implementedntheclient. The DMEP devicesarejusta

reliablesharednemorylocation.

In the eventthat a lock device is turnedoff and comes
backon, all the stateof the DMEP bufferson the device

could be lost. Thoughit would be helpful if the locks
werestoredin someform of persistenstoragejt is un-

reasonabléo requireit. ThereforeJock devicesshould
not acceptDMEP commandswvhenthey are first pow-

eredup. The devicesshouldreturnfailure resultsto all

DMEP actionsuntil a DMEP enablecommands issued
to thedrive.

In this way, clients of the lock device are madeaware
thatthe locks on the lock device have beencleared.and
cantake actionto deal with the situation. This is ex-
tremelyimportant,becausé machinesassumehey still
hold locks on failed devices or on DMEP senersthat
have failed, thentwo machinesmay assumethey both
have exclusive accesdo a givenlock. This inevitably
leadsto file systemcorruption.

The DMEP specificationhas beenimplementedas a
sener daemoncalled memeapd that can run on ary
UNIX machinesothat usersneednot have disk drives
with speciaDMEP firmwareto run GFS[14.



2.2 Lock Semantics

2.2.1 Expiration

In a shareddisk ervironment,a failed client cannotbe
allowedto indefinitely hold whatever locksit heldwhen
it failed. Therefore,eachclient must periodically in-
crementa counterin a DMEP buffer on the disk. If
this counter(which the clientsmustmonitor)isn’t incre-
mentedor agivenperiodof time,recoveryfunctionscan
bestartedo freethelock stateassociatewvith thatclient.
Whena client fails to updateits counterit is referredto
astimed-out andthe actof updatingthe counteris often
referredto asheartbeatinghe DMEP device.

2.2.2 ConversionLocks

Thecorversionlock is asimple,single-stageueueused
to preventwriter stanation. In previouslock protocols
usedby GFS,oneclient maytry to acquireanexclusive
lock but fail becausetherclientsareconstantlyacquir
ing anddroppingthe sharedock. If thereis nevera gap
whereno clientis holdingthe sharedock, thewriter re-
guestingexclusive accessever getsthelock. To correct
this, whena client unsuccessfullyriesto acquirealock,
andno otherclient alreadypossessethatlock’s corver-
sion,theconversionis grantedo theunsuccessfutlient.
Oncethe corversionis acquired ho otherclientscanac-
quirethelock. All the currentholderseventuallyunlock,
and the corversionholder acquiresthe lock. All of a
client's corversionsarelostif theclient expires.

2.3 Pool- A Linux Volume Driver

The Pool logical volume driver coalescesa heteroge-
neouscollection of sharedstorageinto a single logical
volume. It was developedwith GFSto provide simple
logical device capabilitiesand to deliver DMEP com-
mandsto specificdevicesat the SCSldriver layer [15].
If GFSis usedasalocalfile systemwhereno locking is
neededthenPoolis notrequired.

Poolalsogroupsconstituentlevicesinto sub-pools Sub-
poolsareaninternal constructionwhich doesnot affect
the high level view of a pool* asasinglestoragedevice.
This allows intelligent placementbf databy thefile sys-
tem accordingto sub-poolcharacteristics.If one sub-

1The logical devices presentedo the systemby the Pool volume
driver arecalled“pools”.

pool containsvery low lateng devices, the file system
could potentially place commonlyreferencednetadata
therefor betteroverall performance.Thereis not yet a
GFSinterfacedesignedo allow this. Sub-poolsarecur-
rently usedin a GFSfile systembalancef[16]. Thebal-
ancermovesfiles amongsub-poolso spreaddatamore
evenly. Sub-poolsnow have an additional “type” des-
ignationto supportGFSjournaling. Thefile systemre-
quiresthatsomesub-poolderesenedfor journalspace.
Ordinarysub-poolswill bespecifiedasdataspace.

2.4 File SystemMetadata

GFSdistributesits metadatahroughouthenetwork stor

agepool ratherthanconcentratingt all into a singlesu-
perblock. Multiple resourcegroupsare usedto parti-
tion metadatajncluding data,dinodebitmapsand data
blocks,into separatgyroupsto increasdile systemscal-
ability, avoid bottlenecks,and reducethe averagesize
of typical metadatasearchoperations.One or morere-
sourcegroupsmay exist on a single device or a single
resourcegroupmayincludemultiple devices.

Resourcegroupsare similar to the Block Groupsfound
in Linux’s Ext2 file system.Lik e resourcegroups,block
groupsexploit parallelismand scalability by allowing
multiple threadf a singlecomputetto allocateandfree
datablocks; GFSresourcegroupsallow multiple clients
to dothesame.

GFSalsohasa singleblock, the superblockwhich con-
tains summarymetadatanot distributed acrossresource
groups,including miscellaneousccountingnformation
suchasthe block size,the journal sggmentsize,the din-
odenumbersf thetwo hiddendinodesandtheroot din-
ode,somelock protocolinformation,andversioningin-
formation.

Formerly, thesuperbloclcontainedhenumberof clients
mountedon the file system, bitmapsto calculatethe
unigue identifiersfor eachclient, the device on which
the file systemis mounted,and the file systemblock
size. The superblockalsooncecontaineda staticindex
of the resourcegroupswhich describeghe location of
eachresourcgroupandotherconfiguratiorinformation.
All this information hasbeenmovedto hiddendinodes
(files).

Therearetwo hiddendinodes:

1. Theresouceindex— Thelist of locations sizesand
glocksassociatedavith eachresourcegroup



2. Thejournal index — Thelocations sizesandglocks
of thejournals

This datais storedin files becausét needsto be ableto
grow asthe file systemgrows. In previous versionsof
GFS,wejustallocateda staticamountof spaceatthebe-
ginning of the file systemfor the Resourcdndex meta-
data, but this will causeproblemswhenwe expandthe
file systemlater If thisinformationis placedin afile, it
is mucheasierto grow thefile systemat a latertime, as
thehiddenmetadatdile cangrow aswell.

The Global File SystemusesExtendibleHashing[17],

[7], [18] for its directory structure. ExtendibleHashing
(ExHash)providesa way of storinga directory's dataso
thatary particularentrycanbefoundveryquickly. Large
directoriesdo notresultin slow lookup performance.

2.5 Stuffed Dinodes

A GFS dinode takes up an entire file system block
becausesharinga single block to hold metadataused
by multiple clients causessignificant contention. To
countertheresultinginternalfragmentatiorwe have im-
plementeddinodestuffing which allows bothfile system
informationandrealdatato beincludedin thedinodefile
systemblock. If thefile sizeis largerthanthis datasec-
tion the dinodestoresanarrayof pointersto datablocks
or indirect datablocks. Otherwisethe portion of a file
systemblock remainingafter dinodefile systeminfor-
mationis storedis usedto hold file systemdata. Clients
accesstuffedfiles with only oneblock requestafeature
particularly useful for directory lookupssinceeachdi-
rectoryin the pathnameequiresonedirectoryfile read.

GFSassigngdinodenumbersbasedon the disk address
of eachdinode. Directoriescontainfile namesandac-
comparying inode numbers.Oncethe GFSlookup op-
erationmatchesa file name,GFSlocatesthe dinodeus-
ing the associatedhode number By assigningdisk ad-
dresseso inodenumbersGFSdynamicallyallocateslin-
odesfrom the pool of freeblocks.

2.6 Flat File Structure

GFSusesaflat pointertreestructureasshovn in Figure
2. Eachpointerin the dinodepointsto the sameheight
of metadataree. (All the pointersaredirectpointers,or
they areall indirect, or they areall doubleindirect,and

soon.) Theheightof thetreegrows aslargeasnecessary
to hold thefile.

The more corventional UFS file systems$ dinodehasa
fixednumberof directpointers,oneindirectpointer, one
doubleindirect pointer and one triple indirect pointer
This meansthat thereis a limit on how big a UFS file
cangrow. However, the UFSdinodepointertreerequires
fewer indirectionsfor small files. Otheralternatvesin-
cludeextent-basedllocationsuchasSGl's EFSfile sys-
temortheB-treeapproactof SGI's XFSfile systen{19].
The currentstructureof the GFS metadatds animple-
mentationchoiceandthesealternatvesareworth explo-
rationin futureversionsof GFS.

3 Improvementsin GFS Version4

We describesomeof therecentimprovementdo GFSin
thefollowing sections.

3.1 Abstract Kernel Interfaces

We have abstractedhe kernelinterfacesabove GFS,to
thefile-system-independeltdyer, andbelov GFS,to the
block device drivers,to enhanceGFSSs portability. We
hopeto completea portto FreeBSDsometiman 2001.

3.2 FibreChannelin Linux

Until the summerof 1999, Fibre Channel(FC) support
in Linux waslimited to a singlemachineconnectedo a
few driveson a loop. However, progresshasbeenmade
in thequality of FibreChannefabricdriversandchipsets
available on Linux. In particular QLogic’s QLA2100
andQLA2200 chipsaresupportedn Linux, with multi-
ple GPLed driverswritten by QLogic andindependent
opensourcesoftwaredevelopers.In testingin our labo-
ratorywith large Fabrics(32 ports)andlarge numbersof
drivesandGFSclients,the Fibre Channelhardwareand
softwareworked fine in static ervironments. Other FC
cardvendordike InterphaseJNI, Compag.and Emulex
arebeginningto supportLinux driversfor their cards.

However, it is possibleto useGFSto sharenetwork disks
exportedthroughstandard]P-basedhetwork interfaces
like EthernetusingLinux’s Network Block Device soft-
ware. In addition, new, fast,low-lateng interfaceslike



GFS Dinode

e Dinode Number

e Resource Group
Number

e File Type

e Mode

e Owner/Group

e Number of Links

® Access Times

e Bookkeeping Info

Indirect Blocks

/

Data Blocks

oo0o0

T
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Myrinet combinedwith protocollayerslike VIA holdthe
promiseof high performancemedia-independergtor
agenetworks.

3.3 Booting Linux from GFS and Context-
Sensitve Symbolic Links

It hasbecomepossibleto boot Linux from a GFSfile
system.In addition,GFSnow supportscontect-sensitve
symboliclinks, sothatLinux machinessharinga cluster
disk canseethe samefile systemimagefor mostdirec-
tories,but wherecornvenient(suchas/etc/???)cansym-
bolically link to amachine-specificonfiguratiorfile.

Thesewo featureselpsupporiasinglesystemmageby
providing for asharedlisk from whichthemachinesn a
clustercanboot up Linux, yet throughcontext-sensitve
symboliclinks eachmachinecanstill maintainlocally-
definedconfigurationfiles. This simplifies systemad-
ministration, especiallyin large clusters,where main-
taininga consistenkernelimageacrosshundredf ma-
chinesis adifficult task.

3.4 Global Synchronizationin GFS

The lock semanticsusedin previous versionsof GFS
were tied directly to the SCSI Dlock command. This
tight couplingwasunnecessargasthelock usagen GFS
could be abstractedso that GFS machinescould exploit
ary globallock spaceavailableto all machines.GFS-4
supportsanabstractock modulethatcanexploit almost
ary globally accessibldéock spacenotjust DMEP. This
is importantbecausat allows GFS clusterarchitectsto
buy ary disksthey like, notjustdisksthatcontainDMEP
firmware.

A GFSlock modulecanimplementcallbacksto allow
metadataachingandto improve lock acquisitionlaten-
ciesasshowvn in Figure3. Whenclient 2 needsa lock
exclusively thatis alreadyheld by client 1, client 2 first
sendsit’s normalDMEP SCSlrequesto the disk drive
(steplin thefigure). This requestfails andreturnsthe
list of holders,which happengo be client 1 (step2).
Client 2 sendsa IP callbackto client 1, asking1l to give
up the lock (step3). Client 1 syncsall dirty (modified)
dataand metadatabuffers associatedvith that lock to
disk (step4), andreleaseghe lock. Client 2 maythen
acquirethelock (step5).

Becauseclients cancommunicatewith eachother, they
may hold locksindefinitely if no otherclientschooseto



SCSIDisk |
Locks Data

Reply Data
Result: 0
Holders: 1
CID: 00000001

4 1 5

Client 1 3 Client2

A

CID: 00000001

CID: 00000002

Figure3: Callbacksonglocksin GFS

readfrom inodesassociateavith dlocksthatareheld. As
long asaclientholdsalock, it may cacheary writesas-
sociatedwith thelock. Cachingallows GFSto approach
theperformancef alocal diskfile system;ourgoalis to
keepGFSwithin 10-15%of the performanceof the best
local, journaledLinux file systemsacrossall workloads,
includingsmallfile workloads.

In GFS-4,write cachings write-back,notwrite-through.
GFSusesGloballLocks(glocks). GFSusesnterchange-
able locking modules, some of which map glocks to
DMEP buffers. Otherlocking methods,suchasa dis-
tributed lock manager9] or a centralizedlock sener,
canalsobeused.GFSseeghe Glocksasbeingin oneof
threestates:

1. NotHeld - This machinedoesnt hold the Glock. It
may or may not be held by anothemachine.

2. Held - this machineholdsthe Glock, but thereis
no currentprocesausingthelock. Datain the ma-
chine’s buffers canbe newer thanthe dataon disk
andtherecanbe incoretransactiongor that glock.
If anothermachineasksfor the lock, the current
holderwill syncall thedirty transactionandbuffers
to disk andreleasehelock.

3. Held + Lodked— the machineholdsthe Glock and
thereis a processcurrently usingthe lock. There
can be newer datain the buffers thanon disk. If
anothemachineasksfor thelock, therequesis ig-
noredtemporarily andis acteduponlater. Thelock

is not releaseduntil the processdropsthe Glock
down to theHeld state.

When a GFS file systemwrites data, the file system
movesthe Glock into the Held+Locked state,acquiring
the lock exclusively, if it was not alreadyheld. If an-
otherprocesss writing to thatlock, andthe Glockis al-

readyHeld+Locked, the secondprocesamustwait until

theGlockis droppedbackdown to Held.

The Write is then doneasynchronously The I/O isn’t
necessarilyvrittento disk, but thecachebufferis marked
dirty. The Glockis movedbackto the Held state.Thisis
theendof thewrite sequence.

The Buffers remaindirty until either bdflushor a sync
causeghetransactionsandbuffersto be syncedto disk,

or until anothemachineasksfor thelock, atwhich point

the datais syncedto disk andthe Glock is droppedto

Not Held andthelock is released This is importantbe-

causat allows a GFSclientto hold aGlock until another
machineasksfor it, andservicemultiple requestgor the

sameGlock without makinga separatdock requestfor

eachprocess.

3.5 GFS and Fibre Channel Documentationin
Linux

We have developed documentationfor GFS over
the last year Linux HOWTOs on GFS and Fi-



bre Channel can be found at the GFS web page:
http://www.globalfilesystem.ay. In addition, thereare
corventionalmanpagedor all theGFSandPoolVolume
Managerutility routines,includingmkfs, ptool, passem-
ble,andpinfo[14].

4 File SystemJournaling and Recovery in
GFS

To improve performancemostlocal file systemscache
file systemdataand metadataso that it is unnecessary
to constantlytouch the disk as file systemoperations
are performed. This optimizationis critical to achies-
ing goodperformancesthelateng of diskaccesseis 5
to 6 ordersof magnitudegreatethanmemorylatencies.
However, by not synchronouslyupdatingthe metadata
eachtime afile systemoperatiormodifiesthatmetadata,
thereis arisk thatthefile systemmay beinconsistentf
themachinecrashes.

For example,whenremoving afile from adirectory, the
file nameis first removed from the directory, thenthe
file dinodeand relatedindirect and datablocks are re-
moved. If the machinecrashegust after the file name
is removed from the directory, thenthe file dinodeand
otherfile systemblocksassociatedvith thatfile canno
longerbe usedby otherfiles. Thesedisk blocksarenow
erroneoushnow markedasin use.Thisis whatis meant
by aninconsisteng in thefile system.

Whenasinglemachinecrashesatraditionalmeanof re-

covery hasbeento run afile systemcheckroutine(fsck)

that checksfor and repairsthesekinds of inconsisten-
cies. The problemwith file systemcheckroutinesis that

(a) they areslow becausehey take time proportionalto

the size of the file system,(b) the file systemmustbe

off-line while the fsck is being performedand, there-
fore, this techniqueis unacceptabldor sharedfile sys-
tems.Instead GFSusesatechnique&known asfile system
journalingto avoid fsck’s altogethemandreducerecovery

time andincreaseavailability.

4.1 The Transaction Manager

Journalingusestransactiondor operationsthat change
the metadatastate. Theseoperationsnustbe atomic,so
that the file systemmovesfrom one consistenton-disk
stateto anotherconsistenton-disk state. Thesetrans-
actionsgenerallycorrespondo VFS operationssuchas

create,mkdir, write, unlink, etc. With transactionsthe
file systemmetadataanalwaysbe quickly returnedto a
consistenstate.

A GFSjournalingtransactioris composedf the meta-
datablocks changedduring an atomic operation. Each
journal entry hasone or more locks associatedvith it,

correspondindo the metadatgprotectedby the particu-
larlock. For example,acreat()transactiorwould contain
locksfor thedirectory, thenew dinode,andtheallocation
bitmaps. Somepartsof a transactionmay not directly
correspondo on-diskmetadata.

All metadatablockscontaina generatiomumberthatis
incrementectachtime it is changedandthatis usedin
recovery.

A transactionis createdin the following sequenceof
steps:

1. starttransaction
2. acquirethenecessaryslocks
3. checkconditionsrequiredfor thetransaction

4. pin thein-coremetadatduffersassociateavith the
transaction(i.e., don't allow themto be written to
disk)

5. modify themetadata
6. passthe Glocksto thetransaction

7. commit the transactionby passingit to the Log
Manager

To representhe transactiorto be committedto the log,

the Log Manageris passeda structurewhich contains
a list of metadatébuffers. Eachbuffer knows its Glock

number Passinghis structurerepresenta committo the
in-corelog.

4.2 The Log Manager

The Log Managelis separatdrom the transactiormod-
ule. It takesmetadatdo be written from the transaction
moduleandwritesit to disk. The TransactiorManager
pins,while the Log Managerunpins. The Log Manager
alsomanagesheActive ltemsList, anddetectsanddeals
with Log wrap-around.



For a shareddisk file system,having multiple clients
sharea single journal would be too comple< andinef-

ficient. Instead,asin Frangipani[4], eachGFS client
getsits own journal spacethatis protectedby onelock
thatis acquiredat mounttime andreleasedat unmount
(or crash)time. Eachjournal canbe on its own disk for

greaterparallelism. Eachjournal mustbe visible to all

clientsfor recovery.

In-corelog entriesarecommittedasynchronouslyo the
on-disklog. TheLog Manageffollowsthesesteps:

1. getthetransactiorfrom the TransactiorManager

N

. waitandcombinethistransactiorwith otherg(asyn-
chronoudogging)

. performthe on-diskcommit
. putall metadatan the Active ItemsList

. unpinthe metadata

o 0 b~ W

. later, whenthe metadatas on disk, removeit from
the Active ltemsList

Recall that all transactionsare linked to one or more
Glocks,andthat Glocksmay be requestedy otherma-
chinesduring a callback operation. Hence, callbacks
may resultin particulartransactiondeingpushedout of
thein-corelog andwritten to the on-disklog. Beforea
Glockis releasedo anothemachinethefollowing steps
mustbetaken:

1. transactionsdependenton that Glock must be
flushedto thelog

2. thein-placemetadatauffersmustbe synced

3. thein-placedatabuffersmustbesynced

Only transactionglirectly or indirectly dependenbn the
therequestedlockneedo beflushed.A journalentryis
dependenvnaGlockif either(a)it referenceshatGlock
directly, or (b) it hasGlocksin commonwith transactions
whichreferencehatGlock directly.

For example,in Figure4, five transactionsn sequential
order(startingwith 1) areshowvn, alongwith the Glocks
uponwhich eachtransactionis dependent.If Glock 6
is requestedy anothermachine transactiond, 2, and
5 mustbe flushedto the on-disklog in ordet (Because
transactionsnvolving overlappingglocksare combined

asthey are commitedto the in-core log, transaction3

will be written out aswell. It's not strictly necessary
though.) Thenthe in-place metadataand data buffers
mustbe syncedfor Glock 6, andfinally Glock 6 is re-

leased.

4.3 Recovery

Journalrecoveryis initiated by clientsin two cases:

e a mounttime checkshaws that ary of the clients
wereshutdavn uncleanlyor otherwisefailed

¢ alocking modulereportsan expired client whenit
pollsfor expiredmachines

In eachcase,a recovery kernelthreadis calledwith the
expired client’s ID. The machinethen attemptsto be-
gin recovery by acquiringthe journal lock of a failed
client. A very dangerousspecialcasecanresultwhen
aclient (known asa zombie)fails to heartbeatts locks,
so the other machinesthink it is dead, but it is still
alive; this couldhappenfor example,if for somereason
the "failed” client temporarily was disconnectedrom
the network. This is dangeroudbecausehe supposedly
failedclient’'sjournalwill berecoveredby anotherclient,
which hasa differentview of thefile systemstate. This
"split-brain” problemwill resultin file systemcorrup-
tion. For this reasonthe first stepin recovery after ac-
quiring thejournallock of afailedclientis to preventthe
failed machinefrom writing to the shareddevice. This
operationis calledl/O Fencing.

Therearesereralmethodsor 1/0 Fencing.

e Network Power Switdh — a machineconnectsto a
power switchover IP andasksit to cycle the power
onafailedclient

e X10 — a machinecan piggy-backsignalsonto of
the in-the-wall-power to causeanothermachines
powerto becycled.

e PersistentReservation- SomeSCSldevicesimple-
menta commandthat allows one machineaskthe
deviceto ignoreanothemachine.

e Fibre Channel Zoning — Some Fibre Channel
switchessupportthe capabilityto preventthefailed
clientfrom accessinghe disks.
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GFSallows arbitraryl/O fencingmethodgo disablethe
failedclientsaccesgo the sharedstoragedevices. There
arecurrentlymodulesthatsupportall of theabose meth-
ods except PersistenReseration. (PersistenResera-
tion is only just startingto appeaion SCSldevices.)

Oncea client fencesout the fail machineandobtainsits

journal lock, journal recovery proceedsasfollows: the
tail (start)andhead(end)entriesof thejournalarefound.
Partially-committedentriesareignored.For eachjournal
entry, the recovery client tries to acquireall locks asso-
ciatedwith that entry, and then determinesvhetherto

replayit, anddoessoif needed.All expired locks are
markedasnot expiredfor thefailedclient. At this point,

thejournalis markedasrecovered.

Thedecisionto replayanentryis basednthegeneration
numberin the metadatdoundin the entry Whenthese
piecesof metadatarewrittento thelog, theirgeneration
numberis incremented.The journal entry is replayedif
the generatiomumberdn thejournalentry arelargeror
equalto thein-placemetadata.

Note that machinesin the GFS clustercan continueto
work during recovery unlessthey needa lock heldby a
failedclient.

4.4 Comparisonto Alter native Journaling Im-
plementations

The main differencebetweenjournaling in a local file
systemand GFSis that GFS mustbe ableto flush out
transactionsn an order other than that in which they
werecreated.A GFSclient mustbe ableto respondo
callbackson locks from otherclientsin the cluster The
clientshouldthenflushonly thetransactionshatarede-
pendenton thatlock. This meansthat GFSdoesnt au-

tomatically combinetransactionsas they are commited
in-core. They areonly combinedf they shareglocks.

4.5 Cluster Configuration

Thereareanumberof identifiersthateachmembeiof the
clusterneedgo know aboutall the othermembersHost-
name,IP address,JournalNumber andthe I/O fencing
method. The mappingsfor eachhostin the clusterare
storedoutsidethefile systemby thelock module.For the
DMEP lock module,thesevaluesare storedon a block
device readabléby all machinesn the cluster

4.6 Online Growing of File Systems

It is importantto able to add more storagespaceto a
runningcluster WhenA new featureof GFS4 is thatit
now supportsthe ability to grow thefile systemon-line.
Onefeatureof FCis thatdiskscanbeaddedo a Storage
AreaNetwork (SAN). Oncethatis donethe diskscanbe
addedto thefile system$ Pool. The processf growing
the Poolhappensn threesteps:

1. Labels describinghow the new disks fit into the
Poolarewrittento the new disks.

2. An atomicwrite to the label on thefirst disk in the
Poolsetsthe Poolto its new size.

3. At this point, the Pool canbe reassembledndthe
new spacecanbeused.

Oneinterestingfeatureof Poolis thatstep3 doesnt need
to happeron all the machinegight away. Thereassem-
bly to accesdhe new storagespaceonly happensvhen



that new spaceis needed. As the Pool driver in each
machinemapsblock requesto individual disks, it looks
for block numberghatdoesnt exist in the currentPool.
Whenit seeghattheblocknumberbeingaccessed too
large, the Pool labelsare rereadfrom the disksandthe
new, biggerPoolis reassembledThenGFScanbe in-

formedthat new spaceis availableandit canbe added
to thefile system.The new spacetakesthe form of new

Resourcésroupsat the endof thefile system.Theloca-
tions of thesenew resourcegroupsarewrittento theend
of the Resourcéndex hiddendinode.

Again,thegrowth of the GF Sfile systems automatically
detectedy othermachinesn thecluster Duringnormal
operationall themachineshold a sharedock onthe Re-
sourcelndex dinode. The procesggrowing the file sys-
temacquireghatlock exclusively whenaddingthe new

resourcegroupsto the dinode. After that,eachmachine
canreacquireits sharedlock on the dinodeand reread
the new index. Eachmachinecanthenaccesghe new

storagespace.

5 Scalability

Figure5 shows oneto sixteenGFShostsbeingaddedo
a constansizefile systemandeachperforminga work-
load of a million randomoperations.(Theseresultsare
fore a previous non-journaledversionof GFS.) These
sixteenmachinesvereconnectedcrossa BrocadeFab-
ric fabric to 8 8-disk enclosuresgachconfiguredas a
single 8-disk loop. The workload consistedof 50 per
centreads,25 percentappends/createand 25 percent
unlinks. Eachmachinewas working in in its own di-
rectoryandthe directorieswere optimally placedacross
the file system. Notice that the scalability curve shows
nearly perfectspeedup.Thesenew resultscomparefa-
vorably with the dismalscalingresultsobtainedfor the
earlyversionsof GFS[6], which didn’t cachelocks, file
data,or file systemmetadata.

6 Conclusionsand Future Work

In this paper we describedthe GFS journalingand re-
covery implementatiorandotherimprovementsn GFS
version4 (GFS-4). Theseincludealock abstractiorand
network block driver layer, which allow GFSto work
with almostary globallock spaceor storagenetworking
media.Thenew DMEP specificatiorsimplifiesthework

requiredby SCSI storagevendors,and allows the lock
semanticdo be refinedover time. In addition, a vari-
ety of otherchangedo thefile systemmetadatandpool
volume managethave increasedoth performanceand
flexibility . Takentogetherthesechangesneanthat GFS
cannow entera betatestphaseasa preludeto produc-
tion use. Early adopterswho areinterestedn clustered
file systemdor Linux areencouragedo install andtest
GFSto helpusvalidateits performanceandrobustness.

With thework on journalingandrecovery complete we
intendto look at severalnew featuredor GFS.Thesein-
cludefile systemversioningfor on-line snapshotsf file
systemstateusingcopy-on-write semanticsFile system
snapshotallow a slightly older versionof the file sys-
temto be backed up on-line while the clustercontinues
to operate Thisis importantin high-availability systems.
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