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Abstract

In this paperwe describehow we implementedjour-
naling and recovery in the Global File System(GFS),
a shared-disk,cluster file systemfor Linux. We also
presentourlatestperformanceresultsfor a16-wayLinux
cluster.

1 Intr oduction

Traditional local file systemssupporta persistentname
spaceby creatinga mappingbetweenblocks found on
disk drivesanda setof files, file names,anddirectories.
Thesefile systemsview devicesaslocal: devicesarenot
sharedso thereis no needin the file systemto enforce
devicesharingsemantics.Instead,thefocusis onaggres-
sively cachingandaggregatingfile systemoperationsto
improve performanceby reducingthe numberof actual
diskaccessesrequiredfor eachfile systemoperation[1],
[2].

New networking technologiesallow multiple machines
to sharethe samestoragedevices. File systemsthatal-
low thesemachinesto simultaneouslymountandaccess
files on theseshareddevicesarecalledshared file sys-
tems[3], [4], [5], [6], [7]. Sharedfile systemsprovide
aserver-lessalternativeto traditionaldistributedfile sys-
temswheretheserver is thefocusof all datasharing.As
shown in Figure1, machinesattachdirectly to devices
acrossa storageareanetwork[8], [9], [10].

A sharedfile systemapproachbasedupona sharednet-

work betweenstoragedevicesandmachinesoffers sev-
eraladvantages:

1. Availability is increasedbecauseif a single client
fails, anotherclient may continue to processits
workload becauseit can accessthe failed client’s
fileson theshareddisk.

2. Load balancing a mixed workload amongmulti-
pleclientssharingdisksis simplifiedby theclient’s
ability to quickly accessany portion of the dataset
on any of thedisks.

3. Pooling storagedevicesinto a unified disk volume
equallyaccessibleto all machinesin the systemis
possible,whichsimplifiesstoragemanagement.

4. Scalabilityin capacity, connectivity, andbandwidth
canbeachievedwithout the limitations inherentin
network file systemslike NFSdesignedwith a cen-
tralizedserver.

In the following sectionswe describeGFS version 4
(which we will refer to simply as GFS in the remain-
derof this paper),thecurrentimplementationincluding
thedetailsof ourjournalingcode,new scalabilityresults,
changesto thelock specification,andour plansfor GFS
version5, includingfile systemversioningwith copy-on-
write semanticsto supporton-linebackups.

2 GFS Background

Previousversionsof GFSaredescribedin thefollowing
papers:[7], [6], [11]. In this sectionwe provide a sum-
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maryof thekey featuresof theGlobalFile System.

2.1 DMEP

Device MemoryExport Protocol (DMEP) is a mecha-
nismusedby GFSto synchronizeclientaccessto shared
metadata.They helpmaintainmetadatacoherencewhen
metadatais accessedby severalclients.TheDMEPSCSI
commandallows device to export memory to clients,
and clients map lock stateinto thesememorybuffers.
Thelock stateis containedin thestoragedevices(disks)
andaccessedwith theSCSIDMEP command[12]. The
DMEP commandis independentof all otherSCSIcom-
mands,so devicessupportingthe locks have no aware-
nessof thenatureof theresourcethat is locked(or even
that the buffers areusedto implementlocks). The file
systemprovides a mappingbetweenfile metadataand
DMEPbuffers.

Originally GFSusedDlocksSCSIcommand,which had
thedevice maintainingthelock semanticsaswell asthe
lock state.Theadvantageof DMEP over Dlocks [13] is
that theSCSIcommandis simpler, andthe lock seman-
tics may bemodifiedon the client without affecting the
SCSIcommanddefinition. This changewassuggested
by several SCSI disk vendorsto easeimplementation
andcreatea moregeneralSCSIsynchronizationprimi-
tive. All the semanticsthat usedto be implementedby
theSCSIdevicesaspartof theDlock commandarenow
implementedon theclient. TheDMEPdevicesarejusta

reliablesharedmemorylocation.

In the event that a lock device is turnedoff andcomes
backon, all thestateof theDMEP bufferson thedevice
could be lost. Thoughit would be helpful if the locks
werestoredin someform of persistentstorage,it is un-
reasonableto requireit. Therefore,lock devicesshould
not acceptDMEP commandswhen they are first pow-
eredup. The devicesshouldreturnfailure resultsto all
DMEP actionsuntil a DMEP enablecommandis issued
to thedrive.

In this way, clients of the lock device are madeaware
that the lockson the lock device have beencleared,and
can take action to deal with the situation. This is ex-
tremelyimportant,becauseif machinesassumethey still
hold locks on failed devices or on DMEP servers that
have failed, then two machinesmay assumethey both
have exclusive accessto a given lock. This inevitably
leadsto file systemcorruption.

The DMEP specificationhas been implementedas a
server daemoncalled memexpd that can run on any
UNIX machine,so that usersneednot have disk drives
with specialDMEPfirmwareto runGFS[14].



2.2 Lock Semantics

2.2.1 Expiration

In a shareddisk environment,a failed client cannotbe
allowedto indefinitelyhold whatever locksit heldwhen
it failed. Therefore,eachclient must periodically in-
crementa counterin a DMEP buffer on the disk. If
this counter(which theclientsmustmonitor) isn’t incre-
mentedfor agivenperiodof time,recoveryfunctionscan
bestartedto freethelock stateassociatedwith thatclient.
Whena client fails to updateits counterit is referredto
astimed-out, andtheactof updatingthecounteris often
referredto asheartbeatingtheDMEPdevice.

2.2.2 ConversionLocks

Theconversionlock is asimple,single-stagequeueused
to prevent writer starvation. In previous lock protocols
usedby GFS,oneclient maytry to acquireanexclusive
lock but fail becauseotherclientsareconstantlyacquir-
ing anddroppingthesharedlock. If thereis nevera gap
whereno client is holdingthesharedlock, thewriter re-
questingexclusiveaccessnevergetsthelock. To correct
this,whena client unsuccessfullytriesto acquirea lock,
andno otherclient alreadypossessesthat lock’s conver-
sion,theconversionis grantedto theunsuccessfulclient.
Oncetheconversionis acquired,no otherclientscanac-
quirethelock. All thecurrentholderseventuallyunlock,
and the conversionholder acquiresthe lock. All of a
client’s conversionsarelost if theclientexpires.

2.3 Pool - A Linux VolumeDri ver

The Pool logical volume driver coalescesa heteroge-
neouscollection of sharedstorageinto a single logical
volume. It wasdevelopedwith GFSto provide simple
logical device capabilitiesand to deliver DMEP com-
mandsto specificdevicesat the SCSIdriver layer [15].
If GFSis usedasa local file systemwhereno locking is
needed,thenPoolis not required.

Poolalsogroupsconstituentdevicesintosub-pools.Sub-
poolsarean internalconstructionwhich doesnot affect
thehigh level view of a pool1 asa singlestoragedevice.
This allows intelligentplacementof databy thefile sys-
tem accordingto sub-poolcharacteristics.If one sub-

1The logical devices presentedto the systemby the Pool volume
driver arecalled“pools”.

pool containsvery low latency devices, the file system
could potentially placecommonlyreferencedmetadata
therefor betteroverall performance.Thereis not yet a
GFSinterfacedesignedto allow this. Sub-poolsarecur-
rently usedin a GFSfile systembalancer[16]. Thebal-
ancermovesfiles amongsub-poolsto spreaddatamore
evenly. Sub-poolsnow have an additional“type” des-
ignationto supportGFSjournaling. Thefile systemre-
quiresthatsomesub-poolsbereservedfor journalspace.
Ordinarysub-poolswill bespecifiedasdataspace.

2.4 File SystemMetadata

GFSdistributesitsmetadatathroughoutthenetworkstor-
agepool ratherthanconcentratingit all into a singlesu-
perblock. Multiple resourcegroupsare usedto parti-
tion metadata,including data,dinodebitmapsanddata
blocks,into separategroupsto increasefile systemscal-
ability, avoid bottlenecks,and reducethe averagesize
of typical metadatasearchoperations.Oneor morere-
sourcegroupsmay exist on a singledevice or a single
resourcegroupmayincludemultiple devices.

Resourcegroupsaresimilar to the Block Groupsfound
in Linux’sExt2 file system.Like resourcegroups,block
groupsexploit parallelismand scalability by allowing
multiple threadsof asinglecomputerto allocateandfree
datablocks;GFSresourcegroupsallow multiple clients
to do thesame.

GFSalsohasa singleblock, thesuperblock,which con-
tainssummarymetadatanot distributedacrossresource
groups,includingmiscellaneousaccountinginformation
suchastheblock size,thejournalsegmentsize,thedin-
odenumbersof thetwo hiddendinodesandtherootdin-
ode,somelock protocolinformation,andversioningin-
formation.

Formerly, thesuperblockcontainedthenumberof clients
mountedon the file system,bitmaps to calculatethe
uniqueidentifiers for eachclient, the device on which
the file systemis mounted,and the file systemblock
size. The superblockalsooncecontaineda staticindex
of the resourcegroupswhich describesthe location of
eachresourcegroupandotherconfigurationinformation.
All this informationhasbeenmoved to hiddendinodes
(files).

Therearetwo hiddendinodes:

1. Theresourceindex– Thelist of locations,sizes,and
glocksassociatedwith eachresourcegroup



2. Thejournal index – Thelocations,sizesandglocks
of thejournals

This datais storedin files becauseit needsto beableto
grow as the file systemgrows. In previous versionsof
GFS,wejustallocatedastaticamountof spaceat thebe-
ginningof the file systemfor the ResourceIndex meta-
data,but this will causeproblemswhenwe expandthe
file systemlater. If this informationis placedin a file, it
is mucheasierto grow thefile systemat a later time, as
thehiddenmetadatafile cangrow aswell.

The Global File SystemusesExtendibleHashing[17],
[7], [18] for its directorystructure.ExtendibleHashing
(ExHash)providesa way of storinga directory’sdataso
thatany particularentrycanbefoundveryquickly. Large
directoriesdo not resultin slow lookupperformance.

2.5 Stuffed Dinodes

A GFS dinode takes up an entire file system block
becausesharinga single block to hold metadataused
by multiple clients causessignificant contention. To
countertheresultinginternalfragmentationwe have im-
plementeddinodestuffing which allowsbothfile system
informationandrealdatato beincludedin thedinodefile
systemblock. If thefile sizeis larger thanthis datasec-
tion thedinodestoresanarrayof pointersto datablocks
or indirect datablocks. Otherwisethe portion of a file
systemblock remainingafter dinodefile systeminfor-
mationis storedis usedto hold file systemdata.Clients
accessstuffedfileswith only oneblockrequest,a feature
particularly useful for directory lookupssinceeachdi-
rectoryin thepathnamerequiresonedirectoryfile read.

GFSassignsdinodenumbersbasedon the disk address
of eachdinode. Directoriescontainfile namesandac-
companying inodenumbers.Oncethe GFSlookup op-
erationmatchesa file name,GFSlocatesthedinodeus-
ing the associatedinodenumber. By assigningdisk ad-
dressesto inodenumbersGFSdynamicallyallocatesdin-
odesfrom thepool of freeblocks.

2.6 Flat File Structur e

GFSusesa flat pointertreestructureasshown in Figure
2. Eachpointerin the dinodepointsto the sameheight
of metadatatree. (All thepointersaredirectpointers,or
they areall indirect,or they areall doubleindirect,and

soon.) Theheightof thetreegrowsaslargeasnecessary
to hold thefile.

The moreconventionalUFS file system’s dinodehasa
fixednumberof directpointers,oneindirectpointer, one
doubleindirect pointer, and one triple indirect pointer.
This meansthat thereis a limit on how big a UFS file
cangrow. However, theUFSdinodepointertreerequires
fewer indirectionsfor small files. Otheralternativesin-
cludeextent-basedallocationsuchasSGI’sEFSfile sys-
temor theB-treeapproachof SGI’sXFSfile system[19].
The currentstructureof the GFSmetadatais an imple-
mentationchoiceandthesealternativesareworth explo-
rationin futureversionsof GFS.

3 Impr ovementsin GFS Version4

We describesomeof therecentimprovementsto GFSin
thefollowing sections.

3.1 Abstract Kernel Interfaces

We have abstractedthe kernelinterfacesabove GFS,to
thefile-system-independentlayer, andbelow GFS,to the
block device drivers,to enhanceGFS’s portability. We
hopeto completeaport to FreeBSDsometimein 2001.

3.2 Fibr eChannel in Linux

Until the summerof 1999,Fibre Channel(FC) support
in Linux waslimited to a singlemachineconnectedto a
few driveson a loop. However, progresshasbeenmade
in thequalityof FibreChannelfabricdriversandchipsets
available on Linux. In particular, QLogic’s QLA2100
andQLA2200chipsaresupportedin Linux, with multi-
ple GPL’ed driverswritten by QLogic andindependent
opensourcesoftwaredevelopers.In testingin our labo-
ratorywith largeFabrics(32ports)andlargenumbersof
drivesandGFSclients,theFibreChannelhardwareand
softwareworked fine in staticenvironments. OtherFC
cardvendorslike Interphase,JNI, Compaq,andEmulex
arebeginningto supportLinux driversfor theircards.

However, it is possibleto useGFSto sharenetwork disks
exportedthroughstandard,IP-basednetwork interfaces
like EthernetusingLinux’s Network Block Device soft-
ware. In addition,new, fast, low-latency interfaceslike
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Figure2: A GFSdinode.All pointersin thedinodehavethesameheightin themetadatatree.

Myrinet combinedwith protocollayerslikeVIA holdthe
promiseof high performance,media-independentstor-
agenetworks.

3.3 Booting Linux from GFS and Context-
Sensitive SymbolicLinks

It hasbecomepossibleto boot Linux from a GFS file
system.In addition,GFSnow supportscontext-sensitive
symboliclinks, sothatLinux machinessharinga cluster
disk canseethe samefile systemimagefor mostdirec-
tories,but whereconvenient(suchas/etc/???)cansym-
bolically link to amachine-specificconfigurationfile.

Thesetwo featureshelpsupportasinglesystemimageby
providing for ashareddiskfrom whichthemachinesin a
clustercanbootup Linux, yet throughcontext-sensitive
symbolic links eachmachinecanstill maintainlocally-
definedconfigurationfiles. This simplifies systemad-
ministration, especiallyin large clusters,where main-
tainingaconsistentkernelimageacrosshundredsof ma-
chinesis a difficult task.

3.4 Global Synchronization in GFS

The lock semanticsusedin previous versionsof GFS
were tied directly to the SCSI Dlock command. This
tight couplingwasunnecessary, asthelock usagein GFS
couldbeabstractedso thatGFSmachinescouldexploit
any global lock spaceavailableto all machines.GFS-4
supportsanabstractlock modulethatcanexploit almost
any globally accessiblelock space,not just DMEP. This
is importantbecauseit allows GFSclusterarchitectsto
buy any disksthey like,not justdisksthatcontainDMEP
firmware.

A GFS lock modulecan implementcallbacksto allow
metadatacachingandto improve lock acquisitionlaten-
ciesasshown in Figure3. Whenclient 2 needsa lock
exclusively that is alreadyheldby client 1, client 2 first
sendsit’s normalDMEP SCSIrequestto the disk drive
(step1 in the figure). This requestfails andreturnsthe
list of holders,which happensto be client 1 (step2).
Client 2 sendsa IP callbackto client 1, asking1 to give
up the lock (step3). Client 1 syncsall dirty (modified)
dataand metadatabuffers associatedwith that lock to
disk (step4), andreleasesthe lock. Client 2 may then
acquirethelock (step5).

Becauseclientscancommunicatewith eachother, they
mayhold locks indefinitely if no otherclientschooseto
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readfrom inodesassociatedwith dlocksthatareheld.As
long asa client holdsa lock, it maycacheany writesas-
sociatedwith thelock. CachingallowsGFSto approach
theperformanceof a localdiskfile system;ourgoalis to
keepGFSwithin 10-15%of theperformanceof thebest
local, journaledLinux file systemsacrossall workloads,
includingsmallfile workloads.

In GFS-4,write cachingis write-back,notwrite-through.
GFSusesGlobalLocks(glocks).GFSusesinterchange-
able locking modules,someof which map glocks to
DMEP buffers. Other locking methods,suchasa dis-
tributed lock manager[9] or a centralizedlock server,
canalsobeused.GFSseestheGlocksasbeingin oneof
threestates:

1. Not Held– Thismachinedoesn’t hold theGlock. It
mayor maynot beheldby anothermachine.

2. Held – this machineholds the Glock, but thereis
no currentprocessusingthe lock. Datain the ma-
chine’s buffers canbe newer thanthe dataon disk
andtherecanbe incoretransactionsfor thatglock.
If anothermachineasksfor the lock, the current
holderwill syncall thedirty transactionsandbuffers
to disk andreleasethelock.

3. Held + Locked– themachineholdstheGlock and
thereis a processcurrently using the lock. There
can be newer datain the buffers than on disk. If
anothermachineasksfor thelock, therequestis ig-
noredtemporarily, andis acteduponlater. Thelock

is not releaseduntil the processdrops the Glock
down to theHeldstate.

When a GFS file systemwrites data, the file system
movesthe Glock into the Held+Lockedstate,acquiring
the lock exclusively, if it was not alreadyheld. If an-
otherprocessis writing to that lock, andtheGlock is al-
readyHeld+Locked, thesecondprocessmustwait until
theGlock is droppedbackdown to Held.

The Write is then doneasynchronously. The I/O isn’t
necessarilywrittento disk,but thecachebuffer is marked
dirty. TheGlock is movedbackto theHeldstate.This is
theendof thewrite sequence.

The Buffers remaindirty until eitherbdflushor a sync
causesthetransactionsandbuffersto besyncedto disk,
or until anothermachineasksfor thelock, atwhichpoint
the datais syncedto disk and the Glock is droppedto
Not Held andthe lock is released.This is importantbe-
causeit allowsaGFSclient to holdaGlockuntil another
machineasksfor it, andservicemultiple requestsfor the
sameGlock without makinga separatelock requestfor
eachprocess.

3.5 GFS and Fibr e Channel Documentation in
Linux

We have developed documentation for GFS over
the last year. Linux HOWTOs on GFS and Fi-



bre Channel can be found at the GFS web page:
http://www.globalfilesystem.org. In addition, thereare
conventionalmanpagesfor all theGFSandPoolVolume
Managerutility routines,includingmkfs,ptool,passem-
ble,andpinfo[14].

4 File SystemJournaling and Recovery in
GFS

To improve performance,most local file systemscache
file systemdataandmetadataso that it is unnecessary
to constantlytouch the disk as file systemoperations
are performed. This optimization is critical to achiev-
ing goodperformanceasthelatency of diskaccessesis 5
to 6 ordersof magnitudegreaterthanmemorylatencies.
However, by not synchronouslyupdatingthe metadata
eachtimeafile systemoperationmodifiesthatmetadata,
thereis a risk that thefile systemmaybeinconsistentif
themachinecrashes.

For example,whenremoving a file from a directory, the
file nameis first removed from the directory, then the
file dinodeand relatedindirect and datablocks are re-
moved. If the machinecrashesjust after the file name
is removed from the directory, thenthe file dinodeand
otherfile systemblocksassociatedwith that file canno
longerbeusedby otherfiles. Thesedisk blocksarenow
erroneouslynow markedasin use.This is whatis meant
by aninconsistency in thefile system.

Whenasinglemachinecrashes,atraditionalmeansof re-
coveryhasbeento run a file systemcheckroutine(fsck)
that checksfor and repairsthesekinds of inconsisten-
cies.Theproblemwith file systemcheckroutinesis that
(a) they areslow becausethey take time proportionalto
the size of the file system,(b) the file systemmust be
off-line while the fsck is being performedand, there-
fore, this techniqueis unacceptablefor sharedfile sys-
tems.Instead,GFSusesatechniqueknownasfile system
journalingto avoid fsck’saltogetherandreducerecovery
timeandincreaseavailability.

4.1 The TransactionManager

Journalingusestransactionsfor operationsthat change
themetadatastate.Theseoperationsmustbeatomic,so
that the file systemmovesfrom oneconsistenton-disk
stateto anotherconsistenton-disk state. Thesetrans-
actionsgenerallycorrespondto VFS operationssuchas

create,mkdir, write, unlink, etc. With transactions,the
file systemmetadatacanalwaysbequickly returnedto a
consistentstate.

A GFSjournalingtransactionis composedof the meta-
datablockschangedduring an atomicoperation. Each
journal entry hasoneor more locks associatedwith it,
correspondingto the metadataprotectedby the particu-
lar lock. Forexample,acreat()transactionwouldcontain
locksfor thedirectory, thenew dinode,andtheallocation
bitmaps. Somepartsof a transactionmay not directly
correspondto on-diskmetadata.

All metadatablockscontaina generationnumberthat is
incrementedeachtime it is changed,andthat is usedin
recovery.

A transactionis createdin the following sequenceof
steps:

1. starttransaction

2. acquirethenecessaryGlocks

3. checkconditionsrequiredfor thetransaction

4. pin thein-coremetadatabuffersassociatedwith the
transaction(i.e., don’t allow themto be written to
disk)

5. modify themetadata

6. passtheGlocksto thetransaction

7. commit the transactionby passingit to the Log
Manager

To representthe transactionto be committedto the log,
the Log Manageris passeda structurewhich contains
a list of metadatabuffers. Eachbuffer knows its Glock
number. Passingthisstructurerepresentsacommitto the
in-corelog.

4.2 The Log Manager

TheLog Manageris separatefrom thetransactionmod-
ule. It takesmetadatato bewritten from the transaction
moduleandwrites it to disk. The TransactionManager
pins,while theLog Managerunpins.TheLog Manager
alsomanagestheActiveItemsList, anddetectsanddeals
with Log wrap-around.



For a shareddisk file system,having multiple clients
sharea single journal would be too complex and inef-
ficient. Instead,as in Frangipani[4], eachGFS client
getsits own journalspace,that is protectedby onelock
that is acquiredat mount time andreleasedat unmount
(or crash)time. Eachjournalcanbeon its own disk for
greaterparallelism. Eachjournal mustbe visible to all
clientsfor recovery.

In-corelog entriesarecommittedasynchronouslyto the
on-disklog. TheLog Managerfollowsthesesteps:

1. getthetransactionfrom theTransactionManager

2. wait andcombinethistransactionwith others(asyn-
chronouslogging)

3. performtheon-diskcommit

4. put all metadatain theActive ItemsList

5. unpinthemetadata

6. later, whenthemetadatais on disk, remove it from
theActive ItemsList

Recall that all transactionsare linked to one or more
Glocks,andthatGlocksmayberequestedby otherma-
chinesduring a callback operation. Hence,callbacks
mayresultin particulartransactionsbeingpushedout of
the in-corelog andwritten to the on-disklog. Beforea
Glockis releasedto anothermachine,thefollowingsteps
mustbetaken:

1. transactionsdependenton that Glock must be
flushedto thelog

2. thein-placemetadatabuffersmustbesynced

3. thein-placedatabuffersmustbesynced

Only transactionsdirectly or indirectlydependenton the
therequestedGlockneedto beflushed.A journalentryis
dependentonaGlockif either(a)it referencesthatGlock
directly, or (b) it hasGlocksin commonwith transactions
which referencethatGlock directly.

For example,in Figure4, five transactionsin sequential
order(startingwith 1) areshown, alongwith theGlocks
upon which eachtransactionis dependent.If Glock 6
is requestedby anothermachine,transactions1, 2, and
5 mustbe flushedto the on-disklog in order. (Because
transactionsinvolving overlappingglocksarecombined

as they are commitedto the in-core log, transaction3
will be written out as well. It’ s not strictly necessary,
though.) Then the in-placemetadataand databuffers
mustbe syncedfor Glock 6, andfinally Glock 6 is re-
leased.

4.3 Recovery

Journalrecovery is initiatedby clientsin two cases:

� a mount time checkshows that any of the clients
wereshutdown uncleanlyor otherwisefailed

� a locking modulereportsan expired client whenit
polls for expiredmachines

In eachcase,a recovery kernelthreadis calledwith the
expired client’s ID. The machinethen attemptsto be-
gin recovery by acquiring the journal lock of a failed
client. A very dangerousspecialcasecan result when
a client (known asa zombie)fails to heartbeatits locks,
so the other machinesthink it is dead, but it is still
alive; this couldhappen,for example,if for somereason
the ”f ailed” client temporarily was disconnectedfrom
the network. This is dangerousbecausethe supposedly
failedclient’s journalwill berecoveredby anotherclient,
which hasa differentview of thefile systemstate.This
”split-brain” problemwill result in file systemcorrup-
tion. For this reason,the first stepin recovery after ac-
quiring thejournallock of a failedclient is to preventthe
failed machinefrom writing to the shareddevice. This
operationis calledI/O Fencing.

Thereareseveralmethodsfor I/O Fencing.

� NetworkPower Switch – a machineconnectsto a
powerswitchover IP andasksit to cycle thepower
on a failedclient

� X10 – a machinecan piggy-backsignalsonto of
the in-the-wall-power to causeanothermachine’s
power to becycled.

� PersistentReservation– SomeSCSIdevicesimple-
menta commandthat allows onemachineask the
device to ignoreanothermachine.

� Fibre Channel Zoning – Some Fibre Channel
switchessupportthecapabilityto preventthefailed
client from accessingthedisks.



X represents in-memory
metadata buffers which will
be written to the journal

X

X

X

X X

X X

1

2

3

4

2 3 6 8

X X

X X

10 11

Transaction

5

Glock #
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GFSallows arbitraryI/O fencingmethodsto disablethe
failedclientsaccessto thesharedstoragedevices.There
arecurrentlymodulesthatsupportall of theabovemeth-
odsexceptPersistentReservation. (PersistentReserva-
tion is only just startingto appearon SCSIdevices.)

Oncea client fencesout thefail machineandobtainsits
journal lock, journal recovery proceedsas follows: the
tail (start)andhead(end)entriesof thejournalarefound.
Partially-committedentriesareignored.For eachjournal
entry, the recovery client tries to acquireall locks asso-
ciatedwith that entry, and then determineswhetherto
replay it, anddoesso if needed.All expired locks are
markedasnot expiredfor thefailedclient. At this point,
thejournalis markedasrecovered.

Thedecisionto replayanentryis basedonthegeneration
numberin themetadatafound in the entry. Whenthese
piecesof metadataarewrittento thelog, theirgeneration
numberis incremented.The journalentry is replayedif
thegenerationnumbersin thejournalentryarelargeror
equalto thein-placemetadata.

Note that machinesin the GFSclustercancontinueto
work during recovery unlessthey needa lock heldby a
failedclient.

4.4 Comparison to Alter native Journaling Im-
plementations

The main differencebetweenjournaling in a local file
systemandGFS is that GFSmustbe able to flush out
transactionsin an order other than that in which they
werecreated.A GFSclient mustbe ableto respondto
callbackson locks from otherclientsin thecluster. The
client shouldthenflushonly thetransactionsthatarede-
pendenton that lock. This meansthat GFSdoesn’t au-

tomaticallycombinetransactionsas they arecommited
in-core.They areonly combinedif they shareglocks.

4.5 Cluster Configuration

Thereareanumberof identifiersthateachmemberof the
clusterneedsto know aboutall theothermembers:Host-
name,IP address,JournalNumber, andthe I/O fencing
method. The mappingsfor eachhost in the clusterare
storedoutsidethefile systemby thelock module.For the
DMEP lock module,thesevaluesarestoredon a block
device readableby all machinesin thecluster.

4.6 Online Growing of File Systems

It is important to able to add more storagespaceto a
runningcluster. WhenA new featureof GFS4 is that it
now supportstheability to grow thefile systemon-line.
Onefeatureof FC is thatdiskscanbeaddedto aStorage
AreaNetwork (SAN). Oncethatis donethediskscanbe
addedto thefile system’s Pool. Theprocessof growing
thePoolhappensin threesteps:

1. Labels describinghow the new disks fit into the
Poolarewritten to thenew disks.

2. An atomicwrite to the labelon thefirst disk in the
PoolsetsthePoolto its new size.

3. At this point, the Pool canbe reassembledandthe
new spacecanbeused.

Oneinterestingfeatureof Poolis thatstep3 doesn’t need
to happenon all themachinesright away. Thereassem-
bly to accessthe new storagespaceonly happenswhen



that new spaceis needed. As the Pool driver in each
machinemapsblock requestto individual disks,it looks
for block numbersthatdoesn’t exist in thecurrentPool.
Whenit seesthattheblocknumberbeingaccessedis too
large, the Pool labelsarerereadfrom the disksandthe
new, biggerPool is reassembled.ThenGFScanbe in-
formedthat new spaceis availableandit canbe added
to thefile system.Thenew spacetakestheform of new
ResourceGroupsat theendof thefile system.Theloca-
tionsof thesenew resourcegroupsarewritten to theend
of theResourceIndex hiddendinode.

Again,thegrowthof theGFSfile systemis automatically
detectedby othermachinesin thecluster. Duringnormal
operationall themachineshold a sharedlock on theRe-
sourceIndex dinode. The processgrowing the file sys-
temacquiresthat lock exclusively whenaddingthenew
resourcegroupsto thedinode.After that,eachmachine
can reacquireits sharedlock on the dinodeand reread
the new index. Eachmachinecanthenaccessthe new
storagespace.

5 Scalability

Figure5 showsoneto sixteenGFShostsbeingaddedto
a constantsizefile systemandeachperforminga work-
load of a million randomoperations.(Theseresultsare
fore a previous non-journaledversionof GFS.) These
sixteenmachineswereconnectedacrossa BrocadeFab-
ric fabric to 8 8-disk enclosures,eachconfiguredas a
single 8-disk loop. The workload consistedof 50 per-
cent reads,25 percentappends/createsand 25 percent
unlinks. Eachmachinewas working in in its own di-
rectoryandthedirectorieswereoptimally placedacross
the file system.Notice that the scalabilitycurve shows
nearlyperfectspeedup.Thesenew resultscomparefa-
vorably with the dismalscalingresultsobtainedfor the
earlyversionsof GFS[6], which didn’t cachelocks,file
data,or file systemmetadata.

6 Conclusionsand Future Work

In this paper, we describedthe GFSjournalingandre-
covery implementationandotherimprovementsin GFS
version4 (GFS-4).Theseincludea lock abstractionand
network block driver layer, which allow GFS to work
with almostany globallock spaceor storagenetworking
media.Thenew DMEPspecificationsimplifiesthework

requiredby SCSIstoragevendors,andallows the lock
semanticsto be refinedover time. In addition, a vari-
etyof otherchangesto thefile systemmetadataandpool
volume managerhave increasedboth performanceand
flexibility . Takentogether, thesechangesmeanthatGFS
cannow entera betatestphaseasa preludeto produc-
tion use. Early adopterswho areinterestedin clustered
file systemsfor Linux areencouragedto install andtest
GFSto helpusvalidateits performanceandrobustness.

With thework on journalingandrecovery complete,we
intendto look atseveralnew featuresfor GFS.Thesein-
cludefile systemversioningfor on-linesnapshotsof file
systemstateusingcopy-on-writesemantics.File system
snapshotsallow a slightly older versionof the file sys-
tem to be backedup on-line while the clustercontinues
to operate.Thisis importantin high-availability systems.
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