
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



SSH Port Forwarding
Giles Orr

Jacob Wyatt

Georgia College & State University

SSH Port Forwarding allows the use of the encrypted SSH tunnel between hosts to forward 

information on connections that would not normally be encrypted. Using this powerful tool is 

initially daunting, but is fairly straight−forward when it is understood.

1. Introduction

SSH stands for "Secure SHell." SSH is a 

replacement for telnet, rsh, and rlogin, to allow 

secure shell access to remote machines over an 

untrusted network. Telnet was designed at a 

time when the Internet consisted of a relatively 

small number of universities, and no one had 

ever heard of a packet sniffer. Packet sniffers 

such as sniffit and tcpdump are now relatively 

common − they have some highly practical 

uses, but obviously can also be used to collect 

passwords of those using unencrypted 

connections on a local network. Even if the 

password handshaking is encrypted, quite a bit 

of personal information can be collected 

watching an unencrypted transaction after the 

passwords. SSH packets looks like garbage to 

a packet sniffer.

2. Available Versions

SSH is currently available for free in several 

different versions − at least three versions for 

Unix, and at least two free ones for Windows. 

Version 1 of SSH is available for free for 

non−commercial use, but is under a more 

restrictive license than the Gnu Public 

Licence. It is maintained by SSH 

Communications Security Limited − although 

they intend to drop support for SSH 1 soon. 

Version 2 is being maintained and developed 

by the same people, including Tatu Yl˜ nen 

who originally wrote SSH − like SSH, it’s 

available free for non−commercial and 

educational use, but the license is still not 

GPL.

There is also the OpenSSH project currently 

under way. It was developed by the OpenBSD 

people, under the OpenBSD licence. OpenSSH 

has port forwarding with the same command 

line as SSH 1, although X forwarding is 



disabled at installation for security reasons 

with the RPM packages of OpenSSH that we 

worked with. Most versions also rely on 

OpenSSL, so you should have that installed 

before you try to install OpenSSH.

In the Windows world, you can use TTSSH or 

PuTTY to connect to an SSH server. TTSSH 

supports port forwarding both from the GUI 

and the command line. PuTTY doesn’t seem to 

support forwarding at all yet, but it’s still beta. 

There are also pay versions of SSH for 

Windows available (primarily from F−Secure, 

who are directly associated with SSH Ltd.), 

but we won’t be discussing these. We will be 

addressing SSH v1 on Unix, and to some 

extent connecting to Unix from Windows 

clients.

SSH is available from ftp.ssh.com:/pub/ssh as 

a tarball. RedHat and other users of rpm 

packages might be able to get ssh and openssh 

from rpmfind.net, but major distribution 

vendors don’t seem to be contributing, so 

make sure you trust the source of the package. 

In the case of cryptography packages like this 

one, they used to link to www.replay.com. 

Replay is now Zedz.net, and rpmfind no longer 

links to them. To the best of our knowledge, 

Zedz.net’s service is still sound: you can find 

packages at 

ftp://ftp.zedz.net/pub/crypto/redhat/i386/ . 

Binary packages are available for other 

distributions as well. If you’re really serious 

about your cryptography, you’ll get the 

sources, check the PGP signature, check the 

source for backdoors, and compile it yourself. 

However, that’s a fairly arduous task, and not 

what we’re here to discuss.

3. Basic Use of SSH

The most basic use of SSH is as a replacement 

for telnet and rsh. At a command prompt, just 

type "ssh hostname.com" instead of "telnet 

hostname.com". This will only work if 

hostname.com has the SSH server software 

installed. We encourage you, if you’re a 

system administrator, to turn off your telnet 

servers, and switch completely over to SSH.

Login can be set up in two ways, either using a 

PGP key, or plain password. Either way, SSH 

never passes anything in the clear: two way 

handshaking and exchange of session crypto 

keys takes place before any passwords or 

passphrases are sent. After you send your 

password, the session behaves more or less 

like telnet, but it’s encrypted at all times. SSH 

behaves in the same manner as rsh, in that it 

assumes your login name on the remote server 

is the same as on the local one. To override 

this behaviour, use something like this:

root@localhost$ ssh remotehost −l 

giles



4. Port Forwarding

The concept of port forwarding is relatively 

simple. Unfortunately, the command line that 

accompanies it tends to be a little cryptic, and 

there are some twists and turns to work 

through. The idea is to allow any connections 

made to a port on the local machine to be sent 

through the encrypted SSH connection to the 

remote machine, so connections that would 

normally be clear text (such as FTP, SMTP, or 

NNTP, just to name a few) can benefit from 

SSH security.

5. Forwarding X

One of the great beauties of SSH is that X 

Forwarding can be (and usually is) enabled 

during compilation, so that after you have 

connected to another server with:

giles@tesla$ ssh remotehost

giles@remotehost’s password: 

No mail.

giles@remotehost$

You can start X clients simply by typing them 

as you would at the console of the remote 

machine, and they will appear on your local 

machine:

giles@remotehost$ xclock &

[1] 26416

giles@remotehost$ xterm &

[2] 26422

giles@remotehost$

This is because SSH has already set up your 

local machine as the machine to display 

programs on:

giles@remotehost$ set | grep DISPLAY

DISPLAY=tesla.gcsu.edu:10.0

giles@remotehost$

If you want to start using your local machine 

as the work environment for your remote host, 

one of the cooler things you can do is start an 

application manager like the Gnome project’s 

"panel", or perhaps something like "tkdesk" or 

"xfm" if that’s more your style. If you’re not 

familiar with doing something like this, a word 

of warning: you have to be cautious about 

remembering where any given app has been 

launched from, either locally or remotely. If 

you’re reconfiguring the remote host, and you 

type "rm −rf /usr/local/bin/*" on the wrong 

machine, it will be very painful ... One 

solution for that is to colorize your prompts 



differently on every machine you work on, 

with the host name prominently displayed.

Often X forwarding is turned off on servers 

that have a lot of users. My ISP in Toronto, for 

example, has it turned off, presumably because 

their business is dial−up connectivity and web 

hosting, so they don’t want the machine 

bogged down by fifty users all running 

Netscape on their processors. I tend to turn it 

on on my servers, but they usually only have 

twenty or thirty users, and most of those 

people are only using FTP.

6. Forwarding News

Now let’s move on to the forwarding that you 

can do that isn’t configured for you. Perhaps 

the easiest way to explain what this is about is 

to give an example that happened to me. 

I live in Georgia, but I’m originally from 

Toronto. I’m still interested in what happens in 

Toronto, so I like to look at the Toronto news 

groups occasionally. So I set up port 

forwarding for NNTP, Network News 

Protocol, to allow me to read the news groups 

at my ISP in Toronto rather than on my local 

ISP, which doesn’t carry Toronto groups. 

NNTP is carried on port 119, and you use 

some kind of news reader to look at it. I 

usually use trn − a bit arcane, but quite 

powerful.

The servers we’re dealing with in this case are 

"shell.interlog.com" and "news.psi.ca". The 

former is my ISP’s shell server, and the latter 

is their news server. I can’t log in to the news 

server directly, it has no shell access. I can 

read news by logging in on shell.interlog.com 

and running trn, but I’d rather do that on my 

home machine. And since I can’t make news 

requests from my home machine (it’s not in 

the IP range news.psi.ca accepts connections 

from), I had to figure out how to make it work 

another way. This looks a bit daunting, bear 

with me.

giles@tesla$ su −c "ssh −C −L 

119:news.psi.ca:119 

shell.interlog.com −l giles"

I’m going to look at this starting at the back 

end. Since I’m using su to become root (I’ll 

explain why in a second), ssh thinks I’m root 

on the remote machine. I don’t have root on 

my ISP, so I have to tell it otherwise. Since I 

can’t connect directly to news, I connect to 

shell. It isn’t the machine that I’m getting news 

from, and that’s one of the interesting twists 

here. Since "max3−42.dial.accucomm.net" (my 

assigned dial−up IP address) isn’t authorized to 

get news from news.psi.ca, we connect to a 

machine that is authorized. I connect and 

port−forward through shell.interlog.com, which 

I have access to, and which is authorized to get 



news from news.psi.ca. So the "−L 

119:news.psi.ca:119" is telling ssh to take port 

119 on the local machine and send all 

information from there to port 119 on 

news.psi.ca. shell.interlog.com acts as a relay. 

The "−C" flag is important for me at home: I 

have a 56k dial−up connection, and "−C" means 

"use compression." This isn’t useful if you 

have ethernet because the overhead of the 

compression slows you down more than the 

compression speeds you up, but on a phone 

line, it’s great. Note that the connection isn’t 

encrypted between shell and news, but that’s 

not as important as having it encrypted on the 

Internet at large.

Finally, why did I su to root? Port 119 is a 

privileged port. On the remote machine, I’m 

only feeding data to it, so I don’t need root, but 

on the local host, I’m taking it over entirely, so 

I have to be root. All ports below 1024 are 

privileged, so you have to have root to forward 

them. Often, if you don’t have root, you can 

use another port above 1024, and tell the 

application you’re using to look at the other 

port you chose − when you use "−L" with SSH, 

the two port numbers DO NOT have to be the 

same.

Now I’m ready to read news on my machine, 

as if I was directly connected to my ISP in 

Toronto. You need to set one environment 

variable on the local machine, and you’re 

ready to go:

giles@tesla$ NNTPSERVER=localhost ; 

export NNTPSERVER

giles@tesla$ trn

That’s it: you should be up and running.

7. Forwarding FTP

I recently put my web pages on another ISP in 

Toronto. Since I live in Georgia, my local ISP 

is quite a few hops away from my ISP in 

Toronto, and there are a lot of computers I 

don’t trust between me and my new web host. 

So I use ssh to connect to them, and I would 

use scp (a secure replacement for rcp that’s 

usually bundled with ssh) to copy my files to 

and from their service. Unfortunately, for 

reasons unexplained, they don’t have scp 

(secure copy, a part of the SSH package) 

installed. So I decided to use port forwarding 

to use FTP to connect to them. In this case, it 

was a bit easier to do it as a user rather than as 

root:

giles@tesla$ ssh −C shell.eol.ca −L 

2121:ftp.eol.ca:21

giles@shell.eol.ca’s password: 

Warning: Remote host denied X11 

forwarding, perhaps xauth program 

could not be run on the server 

side.

giles@eol$

Note the warning: you will see something like 

that when X11 forwarding is turned off. Now, 

in another window, I do something like this:

giles@tesla$ ftp localhost 2121 

Connected to localhost.



220 babbage.echo−on.net FTP server 

(BSDI Version 7.00LS) ready.

Name (localhost:giles): giles

331 Password required for giles.

Password:

230 User giles logged in, access 

restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

As soon as you issue that ftp command you’ll 

see a message in your other window that’s 

connected to the remote machine:

giles@eol$ fwd connect from 127.0.0.1 

to local port sshdfwd−2121

At this point, it looks like everything is cool 

and you’re in business. But ...

ftp> ls

200 PORT command successful.

425 Can’t build data connection:

 Connection refused.

ftp>

The problem is that FTP spawns connections 

on other ports by default to take care of the 

work. Since the other ports aren’t forwarded, it 

tends to get confused. This is the biggest 

"gotcha" I’ve found so far in SSH port 

forwarding, it took quite a while to figure this 

out.

So I issue the following command:

ftp> passive

Passive mode on.

ftp> ls

227 Entering Passive Mode 

(205,189,151,4,203,122)

150 Opening ASCII mode data 

connection for ’/bin/ls’.

total 134

...

If you’re using a GUI client, you may need to 

do some digging to figure out how to convince 

it to switch to passive mode. My preferred 

client these days is lftp, and I found out by 

digging through the man page that what I 

needed to do was this:

giles@tesla$ lftp −p 2121 −u giles 

localhost

Password: 

LFTP giles@tesla:~ 

> set ftp:passive−mode on

It would also be relatively easy to put a setting 

in your ~/.lftp/rc file so that all connections to 

local host were in passive mode by default.

Another way to establish the same connection 

would be to use the following command line:

ssh −f −C −L 2121:ftp.eol.ca:21 

shell.eol.ca "sleep 30"

There are only two differences here: the "−f" 

flag and the command "sleep 30" added on the 

end. "−f" requests ssh go to background after 

authentication is done and forwardings have 

been established. This will get you your 

terminal back, and "sleep 30" allows you 

enough time to set up a connection with ftp to 

keep the forwarding alive. It will die when you 

disconnect.



8. Port Numbers

You may be wondering how I know what port 

numbers to use. This is actually surprisingly 

easy to find out: "less /etc/services" on a UNIX 

machine will tell you a great deal about what 

ports are used for what purposes. I’ll outline a 

couple more examples, but when we’re done, 

if I haven’t covered what you want to do, you 

should have the tools to figure it out yourself.

9. Forwarding Mail under Windows

Jacob and I work at a mid−sized university in 

middle Georgia, and all of the university 

dorms are wired. The university also has both 

a Computer Science program and a Business 

Information Systems program, so we have a 

lot of potential crackers live on our network 

before you even consider the fact that we have 

a T1 to the rest of the internet without a 

firewall ... So when I collect my mail using 

Eudora running on Windows, I’m not 

enthusiastic about having my password sent in 

clear text three or four times a day, or however 

often I press the "Check Mail" button. So I 

used a free Windows SSH client to secure my 

connection to our mail server − fortunately, 

we’re allowed telnet and ssh access. The mail 

server administrator has set it up so that as 

soon as you log in, Pine starts up, and there’s 

no way out to the shell (without getting very 

creative), but this doesn’t matter: forwarding is 

taken care of on your local machine, so long as 

an SSH connection is established.

The program that I use is TeraTerm Pro, a very 

nice terminal emulator for Windows. It’s 

available at 

http://hp.vector.co.jp/authors/VA002416/terater

m.html . You will also need the SSH 

extensions, available at 

http://www.zip.com.au/~roca/ttssh.html , 

which turn TeraTerm into an SSH client. Both 

of these are available for free. You can set port 

forwarding up in the "Setup" −> "SSH 

Forwarding" menu item, or you can do it from 

the command line in batch mode:

"C:\Program Files\TTERMPRO\ttssh" 

mail.gcsu.edu:22 /ssh 

/ssh−L110:mail.gcsu.edu:110 

/ssh−L25:mail.gcsu.edu:25

I then have to give a password login to the 

mail server. Since it’s Windows, I don’t have 

to give a root password to forward privileged 

ports.

The first /ssh switch tells ttssh to run in SSH 

mode. The next two are each just like the −L 

switches to ssh under Unix. I’m forwarding 

SMTP (port 25) and POP3 (port 110), so both 

sending and retrieving mail is encrypted. 

Sending mail this way isn’t of much benefit if 

the mail is going out into the world, because it 

goes clear−text as soon as it’s past the mail 

server, but the majority of my mail is going to 

recipients on the same mail server.



10. Pitfalls

Once SSH Forwarding is established on a Unix 

box, all users of that machine can − and in fact, 

have to − use the forwarding. If someone is 

trying to FTP to localhost (perhaps to access 

files as another user) while you have 

forwarding set up on that port, they’d get a big 

surprise, finding themselves connected to 

another server. This would be a pretty good 

argument for using a high number 

non−standard port if you’re working on a 

multi−user system. However, it would 

occasionally be advantageous to allow other 

users on other machines to use a forward that 

you have set up: by default, SSH doesn’t allow 

this, but you can switch it on if you like. The 

option is "−g". I would suggest using this with 

extreme caution.

11. Conclusion

SSH Port Forwarding is primarily a single−user 

pursuit, and any access by multiple users 

should be approached with considerable 

caution. Initial setup can also be a bit tricky, 

and we recommend that you create scripts to 

assist you in recreating the forwards you need. 

Within these limitations, SSH Port Forwarding 

is an extremely useful extension to the security 

provided by SSH, allowing you to encrypt 

many other applications that didn’t originally 

present a security risk in an unencrypted form.

12. Resources

SSH Communications Security Limited is 

located at http://www.ssh.com/ . Source code 

for either version of SSH is available. You can 

also go directly to ftp://ftp.ssh.com/pub/ssh/ .

http://zedz.net/ has RPM and source packages 

for most of the Unix software discussed in this 

talk.

OpenSSH can be found at 

http://www.openssh.com/portable.html.

Putty can be obtained at 

http://www.chiark.greenend.org.uk/~sgtatham/p

utty/ : it is a beta Windows−based SSH client. 

At the time of writing, it doesn’t support port 

forwarding, but it does include a Windows 

version of scp called pscp.

TTSSH is an add−on for Teraterm. Teraterm is 

an excellent Windows software terminal 

emulator, available at 

http://hp.vector.co.jp/authors/VA002416/terater

m.html . TTSSH is available at 

http://www.zip.com.au/~roca/ttssh.html .

Commonly used ports (which you can check 

for yourself in /etc/services on most Unix 

machines) are given below.



ftp−data 20/tcp

ftp 21/tcp

ssh 22/tcp # SSH Remote Login

telnet 23/tcp

smtp 25/tcp mail

www 80/tcp http # WorldWideWeb HTTP

pop−2 109/tcp postoffice # POP version 2

pop−3 110/tcp # POP version 3

nntp 119/tcp readnews untp # USENET News Transfer

imap2 143/tcp imap # Interim Mail Access

snmp 161/udp # Simple Net Mgmt Proto

irc 194/tcp # Internet Relay Chat

imap3 220/tcp # Interactive Mail Access

exec 512/tcp

biff 512/udp comsat

login 513/tcp

who 513/udp whod

shell 514/tcp cmd # no passwords used

syslog 514/udp

printer 515/tcp spooler # line printer spooler

talk 517/udp

ntalk 518/udp

uucp 540/tcp uucpd # uucp daemon

rsync 873/tcp # rsync

mysql 3306/tcp # MySQL

ircd 6667/tcp # Internet Relay Chat


