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Abstract

We evaluate and compare the performance of LAM,
MPICH, and MVICH on a Linux cluster connected
by a Gigabit Ethernet network. Performance statis-
tics are collected using NetPIPE which show the
behavior of LAM/MPI and MPICH over a gigabit
network. Since LAM and MPICH use the TCP/IP
socket interface for communicating messages, it is
critical to have high TCP/IP performance. De-
spite many efforts to improve TCP/IP performance,
the performance graphs presented here indicate that
the overhead incurred in protocol stack process-
ing is still high. Recent developments such as the
VIA-based MPI implementation MVICH can im-
prove communication throughput and thus give the
promise of enabling distributed applications to im-
prove performance.

1 Introduction

Due to the increase in network hardware speed and
the availability of low cost high performance work-
stations, cluster computing has become increasingly
popular. Many research institutes, universities,
and industrial sites around the world have started
to purchase/build low cost clusters, such as Linux
Beowulf-class clusters, for their parallel processing
needs at a fraction of the price of mainframes or
supercomputers.

On these cluster systems, parallel processing is
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usually accomplished through parallel program-
ming libraries such as MPI, PVM [Geist], and
BSP [Jonathan]. These environments provide well-
defined portable mechanisms for which concurrent
applications can be developed easily. In particular,
MPI has been widely accepted in the scientific par-
allel computing area. The use of MPI has broadened
over time as well. Two of the most extensively used
MPI implementations are MPICH [Gropp, Gropp2]
from Mississippi State University and Argonne Na-
tional Laboratory and LAM [LSC] originally from
Ohio Supercomputing Center. LAM is now being
maintained by the University of Notre Dame. The
modular design taken by MPICH and LAM has al-
lowed research organizations and commercial ven-
dors to port the software to a great variety of mul-
tiprocessor and multicomputer platforms and dis-
tributed environments.

Naturally, there has been great interest in the per-
formance of LAM and MPICH for enabling high-
performance computing in clusters. Large scale dis-
tributed applications using MPI ( either LAM or
MPICH ) as communication transport on a cluster
of computers impose heavy demands on communica-
tion networks. Gigabit Ethernet technology, among
others high-speed networks, can in principle pro-
vide the required bandwidth to meet these demands.
Moreover it also holds the promise of considerable
price reductions, possibly even to commodity levels,
as Gigabit over copper devices become more avail-
able and use increases. However, it has also shifted
the communication bottleneck from network media
to protocol processing. Since LAM and MPICH use
TCP/UDP socket interfaces to communicate mes-
sages between nodes, there have been great efforts
in reducing the overhead incurred in processing the
TCP/IP stacks. However, the efforts have yielded
only moderate improvement. Since then, many sys-
tems such as U-Net [Welsh], BIP [Geoffray], and Ac-



tive Message [Martin] have been proposed to provide
low latency and high bandwidth message-passing
between clusters of workstations and I/O devices
that are connected by a network. More recently,
the Virtual Interface Architecture (VIA) [Compaq]
has been developed to standardize these ideas. VIA
defines mechanisms that will bypass layers of pro-
tocol stacks and avoid intermediate copies of data
during sending and receiving messages. Elimina-
tion of this overhead not only enables significant
communication performance increases but will also
result in a significant decrease in processor utiliza-
tion by the communication subsystem. Since the
introduction of VIA, there have been several soft-
ware and hardware implementations of VIA. Berke-
ley VIA [Buonadonna], Giganet VIA [Speight], M-
VIA [MVIA], and FirmVIA [Banikazemi] are among
these implementations. This has also led to the re-
cent development of VIA-based MPI communica-
tions libraries, noticeably MVICH [MVICH].

The rest of this paper is organized as follows: In
Section 2.1, we briefly overview the VIA architec-
ture. In Section 2.2, we give a brief description
of Gigabit Ethernet technology. The testing en-
vironment is given in Section 3. In Section 4, we
present performance results for TCP/IP, LAM and
MPICH. Preliminary performance results using VIA
and MVICH on a Gigabit Ethernet network will also
be presented. Finally, conclusions and future work
are presented in Section 5.

2 VIA and Gigabit Ethernet

2.1 VIA Overview

The VIA [INTEL, INTEL2] interface model was de-
veloped based on the observation by researchers that
the most significant overhead was the time required
to communicate between processor, memory, and
I/O subsystems that are directly connected to a
network. In particular, communication time is not
scaling to each individual component of the whole
system and can possibly increase exponentially in a
cluster of workstations.

This communication overhead is caused by the
time accumulated when messages move through
different layers of the Internet protocol suite of
TCP/UDP/IP in the operating system. In the past,

the overhead of end-to-end Internet protocols did
not significantly contribute to the poor network per-
formance since the latency equation was primarily
dominated by the underlying network links. How-
ever, recent improvements in network technology
and processor speeds has made the overhead of the
Internet protocol stacks the dominant factor in the
latency equation.

The VIA specification defines mechanisms to avoid
this communication bottleneck by eliminating the
intermediate copies of data. This effectively reduces
latency and lowers the impact on bandwidth. The
mechanisms also enable a process to disable inter-
rupts under heavy workloads and enable interrupts
only on wait-for-completion. This indirectly avoids
context switch overhead since the mechanisms do
not need to switch to the protocol stacks or to an-
other process.

The VIA specification only requires control and
setup to go through the OS kernel. Users (also
known as VI Consumers) can transfer their data
to/from network interfaces directly without oper-
ating system intervention via a pair of send and re-
ceive work queues. And, a process can own multiple
work queues at any given time.

VIA is based on a standard software interface and
a hardware interface model. The separation of
hardware interface and software interface makes VI
highly portable between computing platforms and
network interface cards (NICs). The software inter-
face is composed of the VI Provider library (VIPL)
and the VI kernel agent. The hardware interface
is the VI NIC which is media dependent. By pro-
viding a standard software interface to the network,
VIA can achieve the network performance needed
by communication intensive applications.

VIA supports send/receive and remote direct
memory access (RDMA) read/write types of
data movements. These operations describe the
gather/scatter memory locations to the connected
VI. To initiate these operations, a registered descrip-
tor should be placed on the VI work queue. The
current revision of the VIA specification defines the
semantics of a DMA Read operation but does not
require that the network interface support it.

The VI kernel agent provides synchronization by
providing the scheduling semantics for blocking
calls. As a privileged entity, it controls hardware
interrupts from the VI architecture on a global, and



per VI basis. The VI kernel agent also supports
buffer registration and de-registration. The regis-
tration of buffers allows the enforcement of protec-
tion across process boundaries via page ownership.
Privileged kernel processing is required to perform
virtual-to-physical address translation and to wire
the associated pages into memory.

2.2 Gigabit Ethernet Technology

Gigabit Ethernet [GEA], also known as the IEEE
Standard 802.3z, is the latest Ethernet technology.
Like Ethernet, Gigabit Ethernet is a media access
control (MAC) and physical-layer (PHY) technol-
ogy. It offers one gigabit per second (1 Gbps) raw
bandwidth which is 10 times faster than fast Eth-
ernet and 100 times the speed of regular Ethernet.
In order to achieve 1 Gbps, Gigabit Ethernet uses a
modified version of the ANSI X3T11 Fibre Channel
standard physical layer (FC-0). To remain back-
ward compatible with existing Ethernet technolo-
gies, Gigabit Ethernet uses the same IEEE 802.3
Ethernet frame format, and a compatible full or half
duplex carrier sense multiple access/ collision detec-
tion (CSMA/CD) scheme scaled to gigabit speeds.

Like its predecessor, Gigabit Ethernet operates in ei-
ther half-duplex or full-duplex mode. In full-duplex
mode, frames travel in both directions simultane-
ously over two channels on the same connection
for an aggregate bandwidth of twice that of half-
duplex mode. Full duplex networks are very efficient
since data can be sent and received simultaneously.
However, full-duplex transmission can be used for
point-to-point connections only. Since full-duplex
connections cannot be shared, collisions are elimi-
nated. This setup eliminates most of the need for
the CSMA/CD access control mechanism because
there is no need to determine whether the connec-
tion is already being used.

When Gigabit Ethernet operates in full duplex
mode, it uses buffers to store incoming and outgoing
data frames until the MAC layer has time to pass
them higher up the legacy protocol stacks. During
heavy traffic transmissions, the buffers may fill up
with data faster than the MAC layer can process
them. When this occurs, the MAC layer prevents
the upper layers from sending until the buffer has
room to store more frames; otherwise, frames would
be lost due to insufficient buffer space.

In the event that the receive buffers approach their
maximum capacity, a high water mark interrupts
the MAC control of the receiving node and sends
a signal to the sending node instructing it to halt
packet transmission for a specified period of time
until the buffer can catch up. The sending node
stops packet transmission until the time interval is
past or until it receives a new packet from the re-
ceiving node with a time interval of zero. It then
resumes packet transmission. The high water mark
ensures that enough buffer capacity remains to give
the MAC time to inform the other devices to shut
down the flow of data before the buffer capacity
overflows. Similarly, there is a low water mark to
notify the MAC control when there is enough open
capacity in the buffer to restart the flow of incoming
data.

Full-duplex transmission can be deployed between
ports on two switches, a workstation and a switch
port, or between two workstations. Full-duplex con-
nections cannot be used for shared-port connections,
such as a repeater or hub port that connects mul-
tiple workstations. Gigabit Ethernet is most effec-
tive when running in the full-duplex, point-to-point
mode where full bandwidth is dedicated between the
two end-nodes. Full-duplex operation is ideal for
backbones and high-speed server or router links.

For half-duplex operation, Gigabit Ethernet will
use the enhanced CSMA/CD access method. With
CSMA/CD, a channel can only transmit or receive
at one time. A collision results when a frame sent
from one end of the network collides with another
frame. Timing becomes critical if and when a col-
lision occurs. If a collision occurs during the trans-
mission of a frame, the MAC layer will stop trans-
mitting and retransmit the frame when the trans-
mission medium is clear. If the collision occurs after
a packet has been sent, then the packet is lost since
the MAC layer has already discarded the frame and
started to prepare for the next frame for transmis-
sion. In all cases, the rest of the network must wait
for the collision to dissipate before any other devices
can transmit.

In half-duplex mode, Gigabit Ethernet’s perfor-
mance is degraded. This is because Gigabit Ether-
net uses the CSMA/CD protocol which is sensitive
to frame length. The standard slot time for Ether-
net frames is not long enough to run a 200-meter
cable when passing 64-byte frames at gigabit speed.
In order to accommodate the timing problems ex-
perienced with CSMA/CD when scaling half-duplex



Ethernet to gigabit speed, slot time has been ex-
tended to guarantee at least a 512-byte slot time us-
ing a technique called carrier extension. The frame
size is not changed; only the timing is extended.

Half-duplex operation is intended for shared multi-
station LANs, where two or more end nodes share
a single port. Most switches enable users to select
half-duplex or full-duplex operation on a port-by-
port basis, allowing users to migrate from shared
links to point-to-point, full-duplex links when they
are ready.

Gigabit Ethernet will eventually operate over a vari-
ety of cabling types. Initially, the Gigabit Ethernet
specification supports multi-mode and single-mode
optical fiber, and short haul copper cabling. Fiber
is ideal for connectivity between switches and be-
tween a switch and high-speed server because it can
be extended to greater length than copper before
signal attenuation becomes unacceptable and it is
also more reliable than copper. In June 1999, the
Gigabit Ethernet standard was extended to incorpo-
rate category 5 unshielded twisted-pair (UTP) cop-
per media. The first switches and network NICs
using category 5 UTP became available at the end
of 1999.

3 Testing Environment

The testing environment for collecting the perfor-
mance results consists of two Pentium III PCs run-
ning at 450MHz with a 100MHz memory bus, and
256MB of PC100 SD-RAM. The PCs are connected
back to back via a Gigabit Ethernet NIC installed
in the 32bit/33MHz PCI slot. The PCs are also
connected together through a SVEC 5 port 10/100
Mbps autosensing/autoswitching hub via 3Com PCI
10/100Mbps Ethernet Cards (3c905B). Three differ-
ent types of Gigabit Ethernet NICs, the Packet En-
gine GNIC-II, the Alteon ACEnic, and the SysKon-
nect SK-NET were tested. The device drivers used
are Hamachi v0.07 for GNIC-II, Acenic v0.45 for
ACEnic, and Sk98lin v3.01 for SK-NET. In addi-
tion, the cluster is isolated from other network traf-
fic to ensure the accuracy of the tests. The clus-
ter is running Red Hat 6.1 Linux distribution with
kernel version 2.2.12. In addition, M-VIA v0.01,
LAM v6.3, MPICH v1.1.2, and MVICH v0.02 were
installed. M-VIA is an implementation of VIA for
Linux, which currently supports fast Ethernet cards

with DEC Tulip chipset or the Intel i8255x chipset,
and the Packet Engines GNIC-I and GNIC-II Gi-
gabit Ethernet cards. The device driver used by
M-VIA is a modified version of Donald Becker’s
Hamachi v0.07. MVICH is a MPICH based MPI
implementation for M-VIA. M-VIA and MVICH are
being developed as part of the NERSC PC Cluster
Project. NetPIPE-2.3 [Snell] was used to test the
TCP/IP, LAM, MPICH and MVICH performance.
For M-VIA tests, we used the vnettest.c, a ping-
pong-like C program, distributed with the software.

4 Performance Evaluation

In this section, we present and evaluate TCP/IP,
M-VIA, LAM, MPICH, and MVICH point-to-point
communication performance using the various Giga-
bit Ethernet NICs mentioned earlier. The through-
put graph is plotted using throughput versus trans-
fer block size. Throughput is reported in megabits
per second (Mbps) and block size is reported in
bytes since they are the common measurements
used among vendors. The throughput graph clearly
shows the throughput for each transfer block size
and the maximum attainable throughput. The
throughput graph combined with application spe-
cific requirements will help programmers to decide
what block size to use for transmission in order to
maximize the achievable bandwidth. The signature
(latency) graph is plotted using throughput per sec-
ond versus total transfer time elapsed in the test. In
NetPIPE, the latency is determined from the signa-
ture graph. The network latency is represented by
the time to transfer 1 byte and thus coincides with
the time of the first data point on the graph.

4.1 Comparing TCP/IP and M-VIA
Performance

Since TCP was originally engineered to provide a
general transport protocol, it is not by default op-
timized for streams of data coming in and out of
the system at high transmission rates (e.g 1Gbps).
In [Farrell], it is shown that communication perfor-
mance is affected by a number of factors and indi-
cated that one can tune certain network parameters
to achieve high TCP/IP performance especially for
a high speed network such as a Gigabit Ethernet
network. We have taken care to tune the TCP pa-
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Figure 1: GNIC-II, Alteon, & SysKonnect: TCP Throughput and Latency

rameters according to RFC 1323 TCP/IP Extension
for High Performance [RFC1323] in order to achieve
high speed TCP/IP communication. We have also
set the window size to 128KB rather than the de-
fault 64KB in the Linux 2.2.12 kernel.

Figure 1 shows the TCP/IP throughput and latency
for various Gigabit Ethernet NICs. Since ACEnic
and SK-NET support frame sizes larger than the
default of 1500 bytes, we tested them with different
MTU sizes. In the figure, we present the TCP/IP
performance with MTU of 1500 bytes for all Gigabit
Ethernet NICs, and also with MTU equals to 9000
for ACEnic and SK-NET which achieves the highest
peak throughput.

One obvious observation from the figures is there are
many severe dropouts in ACEnic TCP/IP perfor-
mance. The reason for these dropouts is supposedly
due to the ACEnic device driver. For instance, using
ACEnic device driver v0.32, we obtained maximum
TCP/IP throughput of 356Mbps using MTU equals
to 1500 and 468 Mbps using an MTU of 6500 bytes
as opposed to an MTU of 9000 bytes. Furthermore,

the latency of ACEnic driver v0.32 is approximately
40% less than the latency of ACEnic device driver
v0.45. In addition, with MTU of 1500 bytes and
the ACEnic device driver v0.32, the TCP through-
put performance is better than that presented here.
However, the TCP/IP performance of the ACEnic
using device driver v0.45 with large MTU has im-
proved substantially. In general, the overall TCP
behavior for both ACEnic device drivers v0.32 and
v0.45 have not been improved since v0.28, i.e., the
performance graphs have many severe dropouts. In
[Farrell], the ACEnic device driver v0.28 running on
the Linux 2.2.1 kernel has a smoother performance
curve and achieved its maximum throughput of 470
Mbps, using an MTU of 9000.

For MTU of 1500, the maximum attainable through-
put is approximately 371 Mbps, 301 Mbps, and
331 Mbps for GNIC-II, ACEnic, and SK-NET re-
spectively. And, the latency is approximately 137
µsecs, 182 µsecs, and 45 µsecs for GNIC-II, ACEnic,
and SK-NET respectively. With the lowest latency,
SK-NET is able to perform much better than the
ACEnic and than the GNIC-II for message sizes up



MTU Alteon SysKonnect
byte sock=64KB sock=128KB sock=64KB sock=128KB
1500 294.624 301.765 326.488 331.028
4500 402.537 441.932 506.391 509.832
8500 362.068 495.932 495.813 561.456
9000 372.955 513.576 512.490 613.219

Table 1: TCP/IP Performance with Large Socket Buffer and MTU
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Figure 2: GNIC-II: M-VIA Throughput and Latency

to 49KB. For example, for message size of 16KB,
SK-NET throughput is approximately 32% more
than the GNIC-II and 82% more than the ACEnic.
However, for message sizes greater than 49KB, SK-
NET reaches its maximum of 331 Mbps.

Tests on networks based on FDDI, ATM [Farrell2]
and Fibre Channel have shown that high speed net-
works perform better when the MTU is larger than
1500 bytes. Similarly, we expect Gigabit Ethernet
would also perform better with an MTU greater
than 1500 bytes. From Figure 1, we see that ACEnic
maximum attainable throughput increases approxi-
mately 70% reaching 513 Mbps when the MTU is set
to 9000; And, for SK-NET, the maximum attainable
throughput has also increased to approximately 613

Mbps. The latency of ACEnic has decreased to 121
µsecs; and, the SK-NET has increased slightly to
46 µsecs. In order to benefit from the larger MTU,
one must also use a larger socket buffer size rather
than the default socket buffer size of 64KB. Table 1
shows this effect for various sizes of MTU and socket
buffer sizes of 64KB and 128KB.

Figure 2 shows the throughput and latency of M-
VIA on the GNIC-II compared with the best at-
tainable performance for each card using TCP.
The maximum attainable throughput for M-VIA re-
mains yet to be determined. This is due to the fact
that vnettest.c stops when message size reaches
32KB which is the maximum data buffer size sup-
ported by the M-VIA implementation. For message



sizes around 30KB, the throughput reaches approx-
imately 448 Mbps with latency of only 16 µ secs.
Thus, the throughput is approximately 53%, 42%
and 4% more than GNIC-II, ACEnic, and SK-NET
respectively.

The VIA specification only requires VIA developers
to support the minimum data buffer of 32KB. How-
ever, developers may choose to support data buffer
sizes greater than 32KB. In this case, developers
must provide a mechanism for the VI consumer to
determine the data buffer size. Thus, we expect
a larger data buffer will give higher throughput as
message sizes continue to increase. On the other
hand allocating larger data buffers may result in
memory wastage.

4.2 Comparing LAM, MPICH, and
MVICH Performance

In this section, we present and compare the perfor-
mance of LAM, MPICH, and MVICH on a Gigabit
Ethernet network. Before moving on to discuss the
performance results of LAM and MPICH, it is use-
ful to first briefly describe the data exchange pro-
tocol used in these two MPI implementations. The
choices taken in implementing the protocol can in-
fluence the performance as we will see later in the
performance graphs.

Generally, LAM and MPICH use a short/long mes-
sage protocol for communication. However, the im-
plementation is quite different. In LAM, a short
message consisting of a header and the message data
is sent to the destination node in one message. And,
a long message is segmented into packets with the
first packet consisting of a header and possibly some
message data sent to the destination node. Then,
the sending node waits for an acknowledgment from
the receiver node before sending the rest of the data.
The receiving node sends the acknowledgment when
a matching receive is posted. MPICH (P4 ADI)
implements three protocols for data exchange. For
short messages, it uses the eager protocol to send
message data to the destination node immediately
with the possibility of buffering data at the receiving
node when the receiving node is not expecting the
data. For long messages, two protocols are imple-
mented - the rendezvous protocol and the get proto-
col. In the rendezvous protocol, data is sent to the
destination only when the receiving node requests
the data. In the get protocol, data is read directly

by the receiver. This choice requires a method to
directly transfer data from one process’s memory to
another such as exists on parallel machines.

All the LAM tests are conducted using the LAM
client to client (C2C) protocol which bypasses the
LAM daemon. In LAM and MPICH, the maximum
length of a short message can be configured at com-
pile time by setting the appropriate constant. We
configured the LAM short/long messages switch-
over point to 128KB instead of the default 64KB.
For MPICH, we used all the default settings. Fig-
ure 3 shows LAM throughput and latency graphs.
And, Figure 4 shows MPICH throughput and la-
tency graphs.

For LAM using MTU size of 1500 bytes, the maxi-
mum attainable throughput is about 216 Mbps, 188
Mbps, and 210 Mbps with latency of 140 µsecs,
194 µsecs, and 66 µsecs for the GNIC-II, ACEnic,
and SK-NET respectively. For MPICH using MTU
size of 1500, the maximum attainable throughput
is about 188 Mbps, 176 Mbps, and 249 Mbps with
latency of 142 µsecs, 239 µsecs and 99 µsecs for
the GNIC-II, ACEnic, and SK-NET respectively.
Since LAM and MPICH are layered above TCP/IP
stacks, one would expect only a small decrease in
performance. However, the amount of performance
degradation in LAM and MPICH as compared to
the TCP/IP performance is considerable. For LAM,
the performance drop of approximately 42%, 38%
and 41% for GNIC-II, ACEnic, and SK-NET re-
spectively. And, the performance drop for MPICH
is approximately 49%, 42%, and 25% for GNIC-II,
ACEnic, and SK-NET respectively.

Changing MTU to a larger size improves LAM per-
formance somewhat. For LAM, the maximum at-
tainable throughput is increased by approximately
42% for SK-NET and by approximately 36% for the
ACEnic with MTU of 9000 respectively. However,
changing MTU to a bigger size decreases MPICH
performance. For MPICH, the maximum attain-
able throughput drops by approximately 7% for an
SK-NET and by approximately 15% for an ACEnic
with MTU of 9000.

In all cases, increasing the size of the MTU also in-
creases the latency slightly except in the case of the
test on MPICH using the ACEnic. In particular, the
latency of LAM is approximately 69 µsecs for SK-
NET and 141 µsecs for ACEnic. And, the latency
of MPICH is approximately 100 µsecs for SK-NET
and 2330 µsecs for ACEnic.
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Figure 3: GNIC-II, Alteon, & SysKonnect: LAM Throughput and Latency

Again, we see that there are many severe dropouts
for both LAM and MPICH using the ACEnic card.

Several things can be said regarding these perfor-
mance results.

• As noted from Table 1, TCP/IP performs bet-
ter on a Gigabit Ethernet network for large
MTU and socket buffer size. During initializa-
tion, LAM sets send and receive socket buffers,
SOCK SNDBUF and SOCK RCVBUF, to a
size equal to the switch-over point plus the size
of the C2C envelope data structure. This ex-
plains why, when we made the MTU greater
than 1500 bytes, LAM performance improved.
However, MPICH initializes SOCK SNDBUF
and SOCK RCVBUF size equal to 4096 bytes.
Hence, a larger MTU does not help to improve
MPICH performance much.

• In both LAM and MPICH, a drop in perfor-
mance, more noticeably for LAM at 128KB, is
caused by the switch from the short to long
message protocol described above. In partic-
ular, we specified that messages of 128KB or
longer be treated as long messages in LAM. For

MPICH, the default switch-over point to long
message handling is 128000 bytes.

From the figures, it is evident that an MPI im-
plementation layered on top of a TCP/IP protocol
depends highly on the underlying TCP/IP perfor-
mance.

Figure 5 shows MVICH performance. MVICH at-
tains a maximum throughput of 280 Mbps with la-
tency of only 26 µsecs for message sizes as low as
32KB. Again, we were unable to run message sizes
greater than 32KB. From the figure, it is evident
that, as hoped, MVICH performance is much supe-
rior to that of LAM or MPICH using TCP/UDP as
communication transport.

5 Conclusion

In this paper, we have given an overview of VIA
and Gigabit Ethernet technology. The performance
of TCP, M-VIA, LAM, MPICH, and MVICH using
three types of Gigabit Ethernet NICs, the GNIC-
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Figure 4: GNIC-II, Alteon & SysKonnect: MPICH Throughput and Latency

II, the ACEnic, and the SK-NET on a PC cluster
were presented. We evaluated and compared the
performance of TCP, LAM, MPICH, and MVICH.
In order to achieve high TCP/IP performance on a
high speed network, we indicated that one has to
tune certain network parameters such as RFC1323,
socket buffer size, and MTU. We attempted to ex-
plain the poor performance of LAM and MPICH
and show MVICH as a promising communication li-
brary for MPI based applications running on a high
speed network. We remark that we tested M-VIA
v0.01 and MVICH v0.02 which are very early imple-
mentations and the performance is likely to improve
further with further development.

Further investigation of the effects of tuning the
MPICH implementation is also warranted. In ad-
dition, ANL is currently in the process of modifying
MPICH to provide a device independent layer which
will permit easy addition of device driver modules
for various networks. This may also lead to further
improvements in performance. SysKonnect is cur-
rently writing a VIA driver for the SK-NET card.
It will be of some interest to compare the through-
put and, in particular, latency achievable with this
implementation.
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