USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,
Atlanta

Atlanta, Georgia, USA
October 10-14, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Dynamic Probes and Generalised Kernel Hooks Interface for Linux
Richard J Moore - richardj moore@uk.ibm.com, IBM Corporation, Linux Technology Centre

Abstract:

Dynamic Probes (Dprobes)[1] is a generic and pervasive system debugging facility that will operate under the most
extreme software conditions such as debugging a deep rooted operating system problems in a live environment. For
example, page-manager bugs in the kernel or perhaps user or system problems that will not re-create easily in either a
lab or production environment. For such inaccessible problem scenarios Dprobes not only offers a technique for
gathering diagnostic information but has a high probability of successful outcome without the need to build custom
modules for debugging purposes.

Dprobes allows the insertion of fully automated breakpoints or probepoints, anywhere in the system and user space.
Probepoints are global by definition, that is they are defined relative to a module not to a storage address. Each
probepoint has an associated set of probe instructions that are interpreted when the probe fires. These instructions
allow memory and CPU registers to be examined and altered using conditional logic. When the probe program
terminates an external debugging facility may be optionally triggered - should it register for this purpose. For
example:

A trace facility may augment its capability with a dynamic trace capability by using the Dprobes facility as a
means of inserting tracepoints - dynamically, without any prior code modification.

A crash dump facility may use Dprobes as a means of invoking dumps conditionally when a specific set of
circumstances occurs in a particular code path.

A debugger may use Dprobes as high-speed complex conditional breakpoint service.

This paper describes the architecture of Dynamic Probes and briefly discusses a couple of examples of its successful
application.

In creating Dynamic Probes, we were challenged with the conflicts between:

Size of the kernel modification

Co-existence with other kernel enhancements, particularly debugging and instrumentation enhancements.
Maintaining concurrency with the latest kernel version.

Ease of development and continued enhancement of Dynamic Probes.

We alleviated these problems by developing a generalised interface for kernel modifications to use allowing them to
exist as dynamically loadable kernel modules.

This interface: The Generalised Kernel Hooks Interface (GKHI) is described in the second part of this paper.

Historical Perspective

The idea for Dprobes was taken from a technology we
previously developed on OS/2[2] originally for
implementing tracepoints dynamically without requiring
source code modification. This facility operated by
making dynamic changes to the code of a loaded
module to cause an interrupt at a tracepoint in the same
way a debugger inserts a breakpoint. When the
tracepoint handler received control it interpreted a small
program associated with the tracepoint to collect data
from processor registers and memory and built a trace
record which was then passed to the system trace
facility. Using this methodology there was no overhead
when the tracepoints were not active and no
requirement to modify a program to allow tracepoints.
The trace program contained conditional logic and a
limited amount of arithmetical and logical manipulation
of data. We extended the programming language to
allow Dynamic Trace to invoke user code in the form of
device drivers and to exit to other debugging facilities
for example:

Kernel Debugger
Application Debugger
System Dump
Application Dump.

Or indeed do nothing! The fact that we had conditional
logic gave us a very powerful tool for monitoring a
piece of code until conditions presented themselves that
required user action. We were also able to accumulate
information in the form of local variables, which could
be used to retain data from one invocation of a
tracepoint to another and be later accessed and display
by a command utility.

The original OS/2[2] facility suffered from three design
limitations:

1. It was deeply imbedded in large parts of the kernel
processing and could not be modularised easily.

2. It was designed primarily as a tracing mechanism.

3. Some simplifications were made upon where and
when tracepoints could be placed, for example
interrupt-time tracepoints were originally
disallowed. Also, because of the mechanism for
implementing tracepoints (described later), they
could not be placed on certain Intel[3] instructions.

In bringing this technology to Linux we have sought to
address these problems in particular. We have
attempted to divorce dynamic trace from trace and have
generalised it’s capability. We have called the Linux

realisation of this technology: Dynamic Probes or
Dprobes for short. We have correspondingly changed
the term tracepoint to the more generalised probepoint.

Over and above the original OS/2[2] idea we have
implemented Dprobes with the following
characteristics:

It has a greatly extended and generalised probe
program command set.

The implementation under Linux has been to make
Dprobes an independent facility with a formal
interface to allow other debugging facilities to gain
control when a probepoint executes.

Dprobes is modular, existing as a set of command
utilities and kernel modules. The modification to
the kernel has been abstracted to a minimal set of
changes by means of a technology we have
introduced called Generalised Kernel Hooks
Interface (GKHI).

We have also sought to separate platform
dependent code from independent code so that the
effort in porting to other platforms is minimised.

The probe insertion technique has been improved
by delaying the physical insertion of probes in a
page of an executable until the time that page is
brought into memory on demand.

Probes can be applied to code that is under control
of a debugger, without interference to the either the
debugger or Dprobes.

Component Overview
Dprobes comprises the following major components
whose interrelationships are shown in the figure below:

DProbes Components

| : dprobes
! cmd
Probe
— |—| Mgr 1

B ——
'
'
'
'
|
'
'
'
'
'
'

— — | DPEH '

|

RPN .J !
- -

“IXe

rmzZzaxmX

Logging

Cl
Facility

The Kernel part of Dprobes comprises the Dprobes
Manager and the Dprobes Event Handler (DPEH).
The Dprobes Manager is responsible for:

Accepting requests to register and deregister probes
from the dprobes command line utility. It provides
an API for this purpose.

Saving the probe definitions for each probed
module in a per-module dynamic probe object[4].
This object comprises the following parts:

The set of probe programs for this module.
The local variable array.

Probe records for each probe defined for that
module. Each probe record contains the
location of the probe, maintained as file
inode-offset pair. This provides a universal
way of identifying the a probe regardless of
whether the module is in memory or not, and if
it is, where in memory different instances of
the module are located. The probe record also
contains a pointer to the probe program
associated with it.

As discussed below under The Breakpoint
Mechanism, probe insertion causes code to be
modified in memory. Probes are inserted whenever
a page within a probed module is loaded into
memory. This is achieved by creating an alias
virtual address to the physical address of the probe
location . This allows us to insert probe in modules
in other process contexts. We also cater for pages
marked Copy-on-Write and pages of a shared
module that might be loaded at different virtual
addresses in different processes. When probes are
inserted for the first time we register the readpage
filter routine for the module. This allows us to be
able to re-insert probes when discarded pages are
reloaded in memory. This probe insertion technique
avoids changing the page state and avoids breaking
off multiple copies of swappable pages which
would happen if we were merely to store into the
virtual address.

Re-inserting probes when a page of code is brought
back into memory after having been discarded.

Removal of a probe. As discussed below under The
Breakpoint Mechanism, we use an
instruction-replacement form of breakpoint, which
requires us to restore the original instruction in a
similar manner to insertion by means of an alias
address.

The DPEH is responsible for handling a probe event
notification. Event notification occurs when a probed
location of a module executes. The DPEH does this by
intercepting the system breakpoint and single-step
exception handlers. This is described in more detail
below. The DPEH identifies a probe event with its
dynamic probe object by determining the inode-offset
that corresponds to the event. It then invokes the Probe
Program Command Interpreter.

The Probe Program Command Interpreter executes
commands in the probe program lodged in the dynamic
probe object. Should an exception occur then
interpretation is quietly terminated with an error
indication in the temporary log buffer, which is the
temporary piece of storage allocated per processor. This
buffer is made available to any external facilities that
might register to be notified when the Interpreter exits
via the exit RPN command. The usable size of the
temporary log buffer is determined per probe object,
with a fixed maximum size of 1K, which will become
configurable.

The user communicates with the kernel components by
means of the dprobes command line utility, which
supports the following major functions:

Insert:

This reads a dynamic probe definition file
(DPDF), which contains among other things, the
module name to which the probe definitions apply,
the local variable array size, and for each probe
within the module its probe definition. The probe
definition comprises the probe location, which may
be expressed as a symbolic expression, a user

identifier for the probe - a major-minor code pair
and the text of the associated RPN probe program.
The insert function parses the DPDF and passes a
condensed form of this to the probe manager to be
saved as a dynamic probe object.

Existing probe definitions for the same target
module may be optionally replaced or merged with
the new definitions.

Remove:
This will remove all probes from a module.

Optionally a subset of the probes may be removed.
Probe removal is the reverse of insertion.

Getvars:

This will extract local and global variables for one
or more probe definitions. Optionally it may be
used to reset the values to zero.

Query

This will display the state of registered probes.

BuildPPDF

This builds a pre-built probe definition file
(PPDF), which is essentially a file version of the
package built by the Insert function. The value in
providing this function is that probe definitions can
be pre-built from a makefile and later inserted
using the dprobes command’s insert function.
This would allow a module to be installed along
with its PPDF so that is debug-ready, without being
a special built with debugging code present.
Pre-building is made possible because the probe
location may be expressed symbolically using
symbols from the module’s symbol table.

The dprobes command supports preprocessor
directives supported by the GNU gec compiler. If
present, dprobes will invoke gee to resolve preprocessor
directives and direct the output to a temporary file
against which the probe definitions are parsed. This
facilitates:

Substitution into the DPDF from the command line
Macro definitions
Conditional preprocessing

The Breakpoint Mechanism

At the heart of dynamic probes lies the probepoint
which is a breakpoint - the same as that implemented by
a debugger - with a few implementation differences:

Because Dprobes is in one sense an automated kernel
debugger we do not wish a breakpoint to interrupt
execution temporarily. Instead it gives control to the
Dprobes Event Handler (DPEH), which under normal
circumstances will return control to the program without
user intervention. Because the breakpoint is automated
and does not really break execution, we refer to it as a
probepoint.

As is usual for breakpoints we intercept code before the
probed instruction executes. This might seem like an

otiose statement given that the beginning of one
instruction is the end of another - but not so when the
mechanism for implementing the breakpoint is
examined. There are in general two mechanisms by
which to implement a breakpoint:

Instruction replacement
Watchpoint.

Instruction replacement as the name implies requires
that the probed instruction is replaced by another that
gives control to the DPEH. Before the DPEH returns
control to the probed program we execute the original
instruction. Use of instruction replacement provides a
pre-execution breakpoint on all hardware platforms.

The watchpoint is a hardware assisted mechanism for
interrupting execution in order to give control to some
monitoring application, such as the DPEH.
Unfortunately watchpoint implementation is not
consistent across all processors. On Intel[3] 32-bit
architecture there are four debugging registers provided
for watchpoint implementation, a severe limitation in
itself. Intel[3] watchpoints interrupt on instruction fetch.
In contrast S/390[5] watchpoints operate over a
continuous range and interrupt on completion or partial
completion of the execution of an instruction.

Since there’s no easy abstraction of watchpoints across
processor platforms we use the Instruction Replacement
technique.

The DPEH is discussed more fully later however it does
play an essential role in the breakpoint mechanism. Its
main components are:

Execute Probe Program commands
Single-step original instruction
Commit probe buffer

Return to probed program.

On entry to the DPEH, application, system and
processor state can be examined as one would do from a
kernel debugger but by means of commands in the
associated RPN Probe Program. This requires that the
DPEH operates at a supervisor level of privilege.
Therefore to enter the DPEH from any privilege level
we require the breakpoint to be implemented using an
instruction that will cause an interrupt. Under Intel[3]
the INT3 instruction suffices and is designed for this
purpose. Under S/390[5] the SVC255 instruction
provides an equivalent function. Each processor
platform that distinguishes privilege levels will offer an

instruction equivalent to these that will allow controlled
access into a supervisor privilege level of execution.

The second stage of the DPEH is to single-step the
original instruction followed by a commit phase.
(Committal applies to the temporary log buffer, when
passing this to an external facility, for example a tracing
facility or the default Syslog facility).

Two questions arise:

1. Why single-step?
2. Why commit after single-stepping?

Because the DPEH is privileged we cannot easily
execute a copy of the original instruction in-line in the
context of the DPEH since that would:

a. Grant to the original instruction and hence the
probed program a privilege level that may not
authorised

b. Alter the execution outcome of some instructions,
e.g. POPF on Intel[3].

The DPEH allows the Probe Program to save data in a
temporary buffer before committal on completion of the
single-step. In this way the DPEH provides a tracing or
logging mechanism. Some instructions might be
interrupted several times and restarted before they
complete (I am including here the possibility of
recoverable exceptions, for example page-faults). We
would not wish to record multiple events for each
re-execution. This requires the DPEH to commit log
data after the original instruction has completed
execution.

Single-step allows the DPEH to execute the original
instruction in its intended context and gain control on
completion.

In the current implementation under Intel[3] 32-bit
architecture (IA32), the single-step phase of the DPEH
comprises restoring the original instruction, returning
from the DPEH using the IRET instruction with the
TRACE flag set in the EFLAGS register. If the
single-stepped instruction completes without
interruption or exception control is returned to the
DPEH via the single-step system exception handler and
logged information is committed. The INT3 is restored
and the DPEH returns to the probed program.

If the single-stepped original instruction terminates with
an exception (other than single-step), the log buffer is
discarded and the INT3 is restored. This requires that

the DPEH be given control from all system exception
handlers. (In the current implementation under IA32 we
have disallowed probes on INTn instructions since
these always end in an exception and would require an
unnecessary intrusion into the system exception
handlers for exceptions 0x20 - 0xfY).

Implementation details of the probepoint, particularly
the single-step are clearly processor dependent.
However, mechanisms for single-stepping instructions
under program control exist on all modern processor
architectures. The single-step mechanism is therefore
customised per architecture. To ease porting to other
platforms, the single-step is made modular and therefore
easily replaceable. The single-step implementation
under Intel[3] more or less forces us to do this with
interrupts disabled, since there is no easy way to save
state across the single-step should we re-enter the
breakpoint exception handler, consequently we
single-step with interrupts disabled and make
appropriate adjustments for instructions such as
PUSHF, CLI and STI. In addition we take steps to
avoid recursion due to probepoints being placed in the
path of the DPEH. We do this in two ways:

Preventatively: by disallowing registration of
probepoints within the DPEH module.

Reactively: by using a recursion counter to detect
unexpected recursion. This caters for probepoints
in subroutines called by the DPEH. If we detect
recursion we silently remove the recursing
probepoint and return to the probed code.

The Instruction Replacement form of breakpoint has
two undesirable side-affects, which may or may not be
troublesome, depending on architecture:

In order to single-step the original instruction in
context, we temporarily replace the breakpoint
instruction with the original instruction. This opens a
window of opportunity for a probepoint to be missed if
the same piece of probed code is executed on another
processor in close succession. We can avoid this by
forcing processor serialisation during the single-step.
However, that can badly affect performance, and so, is
left as an option for the user to deploy if needed. In
practice this has not been a problem because Dprobes
has been used to find bugs in code that is already
serialised or races against other code that jointly
accesses common data.

The other side-affect is very much architecture
dependent. When dynamically changing instructions,
some architectures will require additional actions to be

carried out in order to guarantee consistent results. For
example, not all architectures fetch whole instructions
as an atomic entity nor do they do this in address order.
Furthermore the problem is compounded when code is
stored in read-only memory and an update has to be
done using an aliased read/write virtual address. Usually
there are ways around these problems; one needs to read
very carefully the processor documentation regarding
instruction caching, pipe-lining and speculative
execution.

The instruction-replacement form of breakpoint and
single-step requires that the breakpoint be re-instated on
completion of the single-step.

The Dynamic Probe Event Handler

The Dynamic Probe Event Handler (DPEH) is invoked
as a result of a probepoint executing. As mentioned in
the description of the breakpoint mechanism, the DPEH

comprises 4 phases of operation:

Execute Probe Program commands
Single-step original instruction
Commit probe buffer

Return to probed program.

The last three phases were discussed under the previous
section - The Breakpoint Mechanism. We now look in
detail at the first phase - The Probe Command
Interpreter.

When a probe is registered with the Dprobes Manager
an associated probe program is lodged with he
Dprobes Manager. This program defines the actions that
will be carried out when the probe is executed. The
probe program language is of the Reverse Polish
Notation (RPN) family of languages. Therefore, an
implicit stack is associated with the probe program for
temporarily storing operands and results of RPN
commands.

The RPN family of languages are implemented using a
stack on which command operands are pushed. When a
command is executed the operands are popped from the
RPN stack and the result pushed on to the stack. Many
implementation use a circular array of fixed width for
the RPN stack and maintain a special pointer that
locates the Top of Stack (TOS), which is precisely the
implementation within Dprobes. Two special (families
of) commands are provided to for the program to
access the stack:

PUSH

This rotates the stack forward and copies data to
the TOS.

POP

This rotates the stack backward, but does not
update tack contents.

RPN Interpreter

RPN Stack

pop

et

"Top of Stack"

push

Dprobes implements a 32-element circular RPN stack
of width equal to the bus width of the processor. In the
case of Intel[3] 32-bit architecture each RPN stack
element is 32-bits.

There are three other storage areas provided for use by
the RPN program:

RPN Program Storage

DPO [P1P2
PO
far Global
E:;‘I)PO Per-Processor X: :;ab's
Variable L0 EE
Array Log

Probe ey

Definitions

The Temporary Log Buffer is used to accumulate data
during the execution of the RPN program. Depending
on how the program terminates, will be passed on to an
external debugging facility, for example, Syslog or
Trace. The temporary log buffer contents persists only
during the execution of the probe program. Contents are
discarded if the program ends abnormally or is
deliberately aborted. One temporary log buffer is
defined per processor, the usable size of which is
defined per module, when probes are registered.

The Local Variable Storage Array is provided per
probed module and shared among all probe programs
that are operative for a probed module. Each array
element, or local variable, is retained across
invocations of the RPN program and may be used to

share data between probe programs for a given module.
Local Variables can be extracted, displayed and reset by
the dprobes command utility. The size of the local
variable array is defined when probes for a module are
registered.

Global Variable Storage is similar to Local variable
Storage, but is common to all probed modules.

The DPEH RPN Command Interpreter implements
the following classes of commands:

Execution and Sequencing Group.
This group includes conditional jumps, loop, subroutine
call, exit control and probe control.

Logging Group.
This group includes commands that update the
temporary log buffer.

Local and Global Variable Group.

This includes commands that perform allocation of
global variables and command that read and write to
global and local variables.

Arithmetic/Logic Group.

This includes commands that operate with the RPN
stack. They include addition, multiplication,
subtraction, bit masking, bit shifting and rotation.

Address Verification.

This in a small group of two commands that will test the
validity of a memory addresses. These are provided
because the interpreter runs with interrupts disabled and
cannot page-in swapped or discarded memory - see
Data Group below.

Stack Manipulation.

A single POP command used to rotate the RPN stack
without data manipulation. Commands that manipulate
data on the RPN stack are included in the groups
relating to the data origins and destinations.

Register Group.

This include commands to push processor registers onto
the RPN stack and commands to pop registers from the

RPN stack. Both the current processor registers and the

current user context registers may be accessed.

Data Group.

This includes commands to push and pop data in
memory to and from the RPN stack. A subset of this
group is the system variable subgroup which will access

key system data values, for example current process ID
and address of current task_struct. Because the DPEH
runs with interrupts disabled, exceptions caused by data
group commands are soft-failed by the interpreter by
halting interpretation and storing a failure code in the
temporary log buffer.

10 Group.
This include commands to push and pop data from the

10 address space (not implemented on platforms that do
not support an 10 address space).

Example Probe Programs

Example 1 - fork and Kill:

name = bzlmage
modtype = kernel
major = 1
jmpmax = 32
logmax = 100\
dfitexit=1

vars = 2

offset = kill_proc
opcode = 0x55
minor = 1
pass_count = 0
max_hits = 1000
inc 1v,0

push d,16

push r, esp

log mrf

exit

offset = do_fork
opcode = 0x55
minor = 2
pass_count = 0
max_hits = 1000
inc Iv,1

push d,16

push r, esp

log mrf

exit

The example above shows an RPN probe that will
create a Syslog entry ever time a process forks and is
killed. It will accumulate the number of forks and kills
in local variables 1 and 0. These variable may be
displayed at any time using:

dprobes -g -a

from the command line. Whenever kill_proc or
do_fork is entered, the probe programs above will write
to the temporary log 16 bytes of current stack data,
which on exit will be written to Syslog using printk.

Example 2 - malloc:

name = "/lib/libc.s0.6"

modtype = user

major = 1

jmpmax = 32

logmax = 100

dfltexit=0

offset = malloc

opcode = 0x55

minor = 1

pass_count = 0

push r,esp // push the stack
pointer

push d,4

add // TOS -> first parm
to malloc (size)

push d,0x20000000 // size 0x20000000
sub // compare

jz take dump // if equal, take core
dump

exit // else exit without
further ado

take dump: exit 3

In this example we place a probe on entry to the malloc
routine of libe. We look for the instance where malloc
is called with a size value of 0x20000000 and when
found we force a core dump.

Real-life Examples of Dprobes Use.
Dprobes is a new technology for Linux so the number
of example problem determination uses on Linux is
limited, however it is worth mentioning that Dprobes
was used to debug itself during development.

The following examples have been taken from the
0S/2[2] platform from which Dprobes was developed.
I’lIl summarise two contrasting examples: the first an
operating system bug, the second an application space
bug.

Example: A deep-rooted operating system bug.
We had a situation where we found the file-system was
page-faulting unexpectedly. What was very odd about

this situation was that the page-fault was occurring on a
page that should have been locked in memory. We
could never reproduce this problem in the lab, it only
happened on a customer’s server, once a day at peak
load.

The first hypothesis was that the file system had a bug
and had accidentally unlocked a locked page. So we
created a PPDF that contained probe definitions of the
file system’s locking and unlocking subroutines. We
sent this to the customer and asked him to insert the
probes. When the system next crashed, the customer
sent the crash dump and log created by dprobes.

The dump and dprobes logs showed only a lock request
for the faulting page, however the page status could be
seen from the dump to be unlocked.

The second hypothesis was to assume that another
kernel module was unlocking the page. So we sent the
customer a PPDF that logged all calls to the kernel’s
lock and unlock routines. Once again the log showed
that no-one had unlocked the faulting page. However
we did notice that every time the locked page faulted a
great deal of process switching had taken place. We
began to suspect that there might be a page-manager
problem in the kernel. To see whether something odd
was happening we placed probes inside the process
context switching routine.

Code inside the context switcher is very difficult to
debug, We are in no defined process state. Page Tables
and system state variables in an inconsistent state with
respect to each other. But because the DPEH was
designed to operate in the most hostile conditions we
could use Dprobes to find out what was happening.
Inside the Context Switcher we placed two probes: one
before page data was saved. This probe logged the
out-going processes page tables. The other probe was
placed near the exit of the context switcher and logged
the in-coming process’ page tables.

On re-creating the problem we could see that the
out-going process’ page tables showed the faulting page
present and when the process was next run the faulting
page table entry was zero. But the copy of the page
data, maintained by the system while the process was
not being run , still had the page table entry intact (we
could see this from the dump). There had to be a bug
in the context switcher - despite having been written
some 15 years ago and not had a defect in all that time.

It was time to examine the code: someone had
introduced a performance enhancement to avoid
double-updating of page tables. This enhancement had a

bug which caused valid page tables entries to be zeroed
when the outgoing process’ upper bound for low
memory over-lapped the in-coming process’ lower
bound for high. See the picture below for clarification.

Process Switching

Out-going Process In-coming Process

copy from system ———

hi lower bound

zero difference ——»

hi lower bound

1o upper bound
zero difference ————

o upper bound

copy from system ———»

This situation worked until the following occurred:

Process Switching

Out-going Process In-coming Process

copy from system ———=

hi lower bound

1o upper bound
destroyed data

zero difference ———= hi lower bound

o upper bound

copy from system ———=

Example: who sent the parcel-bomb?

This is an application-space example. The messaging
facility within OS/2[2] has an asynchronous function:
WinPostMsg. When a message is posted the
application’s message thread is posted - made ready to
run. When it runs it will find one or messages on its
message queue along with optional parameters. A
posted message is asynchronous. By the time the
receiver wakes, the poster could have even terminated.
And there’s no way of knowing who it was.

We had a situation where a message was being posted
to an application but every now and then a message was
posted with an erroneous parameter that caused the
receiver to trap. The question is who sent it?

We found this out simply by putting a probe on the
entry to the WinPostMsg. The probe contained
conditional logic to examine the message ID and the
parameter. When the ID and Parameter matched the
values that caused the receiver to trap we invoked a
crash dump. The dump was taken in the context of the
poster and allowed us to see who it was and where in
their code it was happening.

Conclusions:

Both these examples could have been solved with other
debugging tools, but not easily so. Both would have
needed an ability to place global breakpoints at certain
code locations and at the same time exercise conditional
logic. Potentially a kernel debugger can do this.
However, the breakpoints deployed require
performance to be maintained, furthermore kernel
debuggers tend to assume a breakpoint really means
break - so are designed to perform serialisation function
to allow direct user communication. The DPEH, on the
other hand, is designed with minimal serialisation
dependencies and no user interaction. It can therefore
maintain system performance with complex conditional
breakpoints applied.

Other uses of Dprobes has been to provide a high-speed
conditional breakpoint facility which gives control to a
kernel debugger when the correct situation presents
itself.

Generalised Kernel Hooks Interface

Like other modifications to the base operating system,
there are problems with having to manage large
modifications, for example:

If more than one independent enhancement needs
to co-exist with another, then patches for each may
conflict and have to be resolved - possibly by the
user.

If the enhancement needs to be updated then a new
patch must be supplied and integrated with existing
patches. The kernel will require recompilation and

possibly also some kernel modules.

If the kernel needs to be modified for maintenance
reasons then the patches need to be re-worked and
re-applied.

If the user wants to use patches, albeit infrequently,
they must either run with that additional function
even when not needed , or switch kernels when the
function is needed. Either way there’s an
inconvenience and an overhead implied.

Dprobes, like other diagnostic and instrumentation
facilities tends to insert additional function rather than
replace it. For this category of kernel enhancement we
have the opportunity to separate the kernel enhancement
from the kernel by confining it to a loadable kernel
module - provided - interfaces are added to the kernel to
allow kernel modules to be called at the appropriate
time.

A particular problem that needs to be overcome is how
to define such an interface. We cannot simply code
within the kernel, calls to external modules because we
would not be able to resolve those calls at kernel load
time. To overcome this , we define hooks within the
kernel.

A hook is a small piece of code inserted into the kernel
source, actually a one-line change because we define
the hook using a C macro, an example of which is
shown below:

#define GKHOOK_2VAR_RO(h, p0, p1) asm volatile
(".global GKHook"h";
.global GKHook"h"_ret;
.global GKHook"h"_bp;
/* replace with nop;nop;nop; to activate */
GKHook"h": jmp GKHook"h"_bp;
leal %1,%%eax
push %%eax;
leal %0,% %eax;
push %%eax;
push $2;
/* replace with jmp GKHook"h"_dsp when active*/
Nop;nop;nop;nop;nop
GKHook"h"_ret: add $12,% %esp;
GKHook"h"_bp:;"
="m"(p0),"m"(p1):"%eax")

The hook begins with a jump to the end of the hook, in
its dormant state. The body of the hook contains space
for instructions to be added when the hook becomes
active. When a hook activates, the body of the hook is
populated with instructions to call the Generalised
Kernel Hook Interface (GKHI) module at the hook’s
dispatcher entry point and the initial jump instruction is
nullified by replacing it with NOP instructions. The
GKHI is responsible for activating hooks and makes
these modifications when another kernel module calls
the GKHI to request that a hook be enabled for its use.

This implementation requires that a minimal change be
made to the kernel: a hook be identified at each location
in the kernel source where external modules may wish
to gain control. But, it allows multiple modules to
access the same hook without further modification to
the kernel as we shall see when the GKHI is described
in more detail.

The GKHI provides four interfaces for kernel modules
to call in order to access or relinquish access to one or
more kernel hooks.

GHK _register:
This is used to identify a location (a hook exit) in a
kernel module that wishes to gain control at a given
hook. The caller passes a hook registration record to the
GKHI which contains the hook exit address and a flag
indicating the desired dispatching priority which may
be:

First in list of exists for this hook

Last in list of exits for this hook

Only exit for this hook

Unspecified.

A hook exit will not be dispatched until it is armed.

GHK_arm:

This allows one or more hook exits to be made
dispatchable. The kernel module calling this interface
will pass a list of chained hook registration records that
are to be armed. If for any of the hooks referenced this
is the first instance of the hook being used the GKHI
will activate the hook. So, it is not until a module needs
to use a hook will the additional code path be imposed
on the kernel at the hook location. Arming is carried out
in an atomic fashion, under SMP this requires other
processors to be temporarily suspended from
performing useful work. The impact, however, is
minimal, since arming amounts to activating the hook if
not already active and updating status maintained with
in the hook registration record for each hook exit being
armed. This is a CPU-bound operation on resident
memory.

GKH_disarm:

This has the opposite affect of GKH_arm: a list of hook
registration records is passed to the GKHI, which will
mark each one as no longer dispatchable. If any one of
these is the last to disarm for a given hook then the
GKHI will make the hook inactive by restoring the
original bypass jump instruction. Disarming is carried
out atomically.

GHK_deregister:

This has the opposite affect of GKH_register where
each hook exit in the list of exits requiring
de-registration will be removed from knowledge of the
GKHI.

When a hook is active and exits are armed, the
dispatcher routine will be called when the hook
executes. This routine is responsible for calling each of
the armed hook exits for that hook, in priority order. If
any exit returns a non-zero result no further exits are
dispatched on that invocation of the dispatcher. As part
of the registration of a hook exit, entry conditions may
be specified:

All CPUs are temporarily stopped
Interrupts are disabled

In addition, the exit may adjust the status flag in its
registration record so to disarm itself. This together
with the ability to specify entry conditions gives the exit
the an opportunity to be dispatched and disarmed as an
atomic entity.

Part of the definition of a hook is whether it will pass
any parameters to the hook exit and in addition whether
those parameters will be modifiable. In the example
given above the hook macro defines two read-only
parameters. But in addition to passing these parameters
we also pass a count of the number of parameters. In
this way a hook may be modified to have additional
parameters added. And the exit will know whether it is
compatible with the current hook definition. (By
convention we add new parameters to the end of this
list).

GKHI may be loaded at any time using insmod,
however no hooks can be activated until the GKHI is
loaded. It is possible for kernel modules to define hooks
within themselves, but using the regime described so far
would require that the kernel module containing the
hook be loaded before the GKHI. To achieve even
greater flexibility, the GKHI defines two further
interfaces:

GKH_identify:

This interface is called to notify the GKHI of a new
hook that has become available since it initialised.
Obviously exits cannot register for the new hook until it
has identified itself.

GKH_delete:
This interface is called to notify the GKHI the a hook is
not longer eligible for registration.

Where to obtain Dprobes:

Dprobes, including the GKHI, is available from
IBM’s Linux Technology Centre’s web page at:

http://oss.software.ibm.com/developerworks/openso
urce/linux/projects/dprobes

The development team comprises:

Richard J Moore (Dprobes Project Lead) -

richardj _moore@uk.ibm.com

Bharata B Rao - rbharata@in.ibm.com

Subodh Soni - ssubodh@in.ibm.com

Maneesh Soni - smaneesh@in.ibm.com

Vamsi Krishna Sangavarapu - rlvamsi@in.ibm.com
Suparna Bhattacharya - bsuparna@in.ibm.com

Notes and references:

[1]Dprobes website:
http://oss.software.ibm.com/developerworks/opensourc
e/linux/projects/dprobes

[2]0S/2 is a trademark of International Business
Machines Corporation.

[3]Intel is a trademark of the Intel Corporation

[4]The dynamic probe object is a complex set of
structures, the principle being dp_module_struct. Each
of these is defined in dprobes.h

[5]S/390 is a trademark of International Business
Machines Corporation.

