USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,
Atlanta

Atlanta, Georgia, USA
October 10-14, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




GCC 3.0: The State of the Source

Mark Mitchell

Alexander Samuel

CodeSourcery, LLC

mark@codesourcery.com

samuel@codesourcery.com

August 24, 2000

1 Introduction

The GNU Compiler Collection (GCC) is the most
fundamental component of the GNU/Linux devel-
oper’s toolchest. GCC, like the Linux kernel and
the X windowing system, is a complex but impor-
tant part of the GNU/Linux operating system. In
fact, both the kernel and X are built with GCC, so,
to a large extent, the speed and correctness of the
entire system depends on GCC.

The next major release of GCC, GCC 3.0, will be
released sometime late this year. This release of
GCC will contain a number of features of consid-
erable import to the community. In addition, the
quality assurance processes for this release will be
more stringent than in any previous release. There-
fore, GCC 3.0 will likely be a more reliable compiler,
and will be more capable of supporting the needs of
an ever-expanding developer community, than pre-
vious releases of GCC.

Principal among the improvements will be a new,
stable, industry-standard C++ application binary
interface (ABI). This new C++ ABI will provide,
for the first time, an assurance that C++ programs
compiled with one version of G++ can be linked
with C++ libraries compiled with a different version
of G+, and, in fact, with libraries compiled with
other compilers.

In addition, GCC 3.0 will contain much improved
support for Java, a number of new optimizations
and bug fixes, improvements in compile-time per-
formance, and new infrastructure to support future
optimization and enhancement.

Because much of our work has focused on the C++
front-end, this paper will focus on C++-related
work. That orientation should not be construed as
implying that the other improvements in GCC 3.0

are less important. While a perhaps disproportion-
ate amount of this paper focuses on the C++ ABI,
we have attempted to describe, in somewhat less de-
tail, some of the other highlights of the upcoming
release.

2 General improvements

Significant efforts have been made during this re-
lease cycle to make GCC easier to maintain and
improve in the future. Although these infrastruc-
ture investments do not have immediate user-visible
benefits, their import cannot be overestimated. A
well-organized, well-designed compiler means better
compilers down the road.

2.1 Runtime support library

GCC provides certain support functions (like sup-
port for arithmetic on numbers with more bits than
are supported on the target hardware, and support
for exception-handling) in a special library, tradi-
tionally called libgcc.a. On non-GNU/Linux sys-
tems, this kind of compiler support functionality is
typically provided in the system C library. That is a
workable solution if the same vendor produces both
the C library and the compiler. When GCC runs
on non-GNU systems, however, there is no way to
control the contents of the C library, and GCC must
therefore provide its own runtime support library.

Unfortunately, 1ibgcc.a contains some global data.
It is important that there be only one copy of this
global data in a complete program. However, in ear-
lier versions of GCC, 1ibgcc. a was linked into every
shared library created by GCC. That could result in
multiple copies of the global data, and incompati-



ble support routines, in a complete executable, with
the result that linking together shared libraries com-
piled with different versions of GCC did not always
work.

In GCC 3.0, these problems will be solved by pro-
viding libgcc as a shared library. Libraries and ex-
ecutables will be linked against this shared library,
which should prevent the kinds of incompatibilities
described above.

2.2 Memory management

The memory management scheme used by the com-
piler itself was radically altered for the GCC 3.0
release. Memory allocated by the compiler is now
garbage collected; previous releases used a complex
system of memory pools. This change greatly re-
duced the number of memory-allocation bugs in the
compiler, and simplified the implementation of new
features.

Use of garbage collection, and other associated im-
provements associated with memory management,
have dramatically reduced the memory footprint of
the compiler in some cases. There have been im-
provements as great as 60% (from approximate 300
MB to approximately 100MB) when compiling some
C++ programs.

2.3 Parsing whole functions

In early 2000, we converted the C++ front-end to
produce a parse-tree for an entire function. (Previ-
ously, parse-trees were only available for individual
statements.) G4+ can now parse all of the code
for a function before committing to the code shape
for the function. This change has already lead to
significant developments. The C++ front-end takes
advantage of this representation to perform function
inlining at a higher level, which allows more func-
tions to be inlined with less memory usage. Future
optimizations will take advantage of the fact that
the parse tree for the complete function is avail-
able. For example, the “scatter-gather” optimiza-
tion whereby a structure with several scalar mem-
bers is treated simply as a collection of scalars can
be implemented using the new representation.

Furthermore, the availability of a parsed represen-
tation of the entire program makes possible entirely

new tools. A research group at Stanford is making
use of the new representation to perform domain-
specific error checking; they have, for example, de-
tected bugs in the Linux kernel that could result in
deadlocks. This analysis is only possible because the
compiler is able to provide the error-checking tool
with a representation of the entire program.

In addition, SGI was able to connect the G++ front-
end to their TA64 back-end with relative ease by
taking advantage of the new representation. They
simply translated G++’s high-level representation
for the program into a format understood by the
SGI optimizers. In the future, it is likely that source
browsers and other similar tools will also take ad-
vantage of these features. In fact, there has even
been discussion of providing a plug-in interface that
would allow the insertion of domain-specific opti-
mization passes.

In the near future, we will convert the C front-end
to use the same representation as the C++ front-
end, which will yield all of the improvements listed
above for C as well as C++.

2.4 Using the flow graph

Richard Henderson and others have made dramatic
improvements to the optimization framework used
by GCC. In particular, Richard’s work allows GCC’s
optimization passes to access the flow graph for the
function in a convenient way. (The flow graph shows
where branches and loops can occur in the func-
tion.) Optimizations based on the flow graph are
so-called “global” optimizations. The use of these
techniques will allow the compiler to perform much
more comprehensive optimizations than was previ-
ously possible.

GCC contains some experimental code to translate
to and from single static assignment (SSA) form.
SSA form is a means of representing the program
that allows the compiler to perform many optimiza-
tions more easily. A compiler that takes advantage
of SSA form can generate better code, and it can
generate that code faster. In the future, we hope
to convert many of GCC’s high-level optimization
passes to use this framework.



2.5 New optimizations

GCC 3.0 contains some powerful new optimizations.
A new basic block reordering pass reorders gener-
ated code to improve cache performance based on
either estimates of branch probabilities, or using
output from profiled execution of the code. New
exception-handling optimizations take advantage of
throw specifications to eliminate unneeded excep-
tion handlers.

Perhaps most importantly, GCC 3.0 will contain a
ground-up rewrite of the x86 back-end. Since so
many GNU/Linux users run on x86, improvements
in this area are clearly very important. The new
back end describes the architecture much more ac-
curately, and thereby allows GCC to generate con-
siderably better code. There are also new optimiza-
tions targeting AMD’s Athlon processor as well In-
tel’s Pentium II and Pentium III processors.

2.6 Java

GCC 3.0 will include the GCJ Java compiler and the
libgcj runtime support libraries. GCJ compiles Java
code directly to native code just as the C, C++,
and Fortran compilers do. In fact, GCJ uses the
same object layout for Java objects that is used by
GCC for C++ objects, so it is relatively easy to
write programs that consist partly of C++ code and
partly of Java code.

GCJ supports most Java language features present
in version 1.1 of the JDK. As of yet, the library
does not support many of the popular Java APIs
available from Sun, but work is underway on the
implementation of these APIs.

2.7 Bug tracking

The GCC project now makes use of the GNATS
bug-tracking tool. That tool has made it a lot
easier for users to report bug reports and for the
GCC maintainers to respond to them. Geoff Keat-
ing set up an automated regression-testing tool that
informs contributors when changes cause regressions
in the GCC test suite. Increased reliance these auto-
mated tools will make it easier to make high-quality
GCC releases.

3 C++ improvements

In recent releases of GCC, such as the GCC 2.95
release, GCC’s support for modern C++ program-
ming has increased dramatically. Our contribu-
tions have brought considerable improvements in
ANSI/ISO conformance, increased the robustness
of the compiler considerably, improved compile-
time performance, introduced new optimizations,
and improved error-reporting. The GCC 2.95 re-
lease was the first to compile complex expression-
template programs, such as programs using the
Blitz numerical programming library.

However, there has not been a stable C++ ABI. The
ABI includes decisions made by the compiler as to
how big objects will be, where data members will be
located within an object, and the interfaces to run-
time support functionality like exception-handling
and run-time type identification. If the ABI changes
between two versions of a compiler, then libraries
created with the first version of the compiler can-
not be linked with code compiled with the second
version, and vice versa.

Frequent changes in the ABI therefore prevent peo-
ple from distributing binary versions of C++ li-
braries. Distributors of free or open-source libraries
suffer since it is harder for users to easily download
the library. (Just because the source is available
does not mean that users want to actually compile
the source! The success of the various GNU/Linux
distributions is proof of this fact; users are happy
to be able to easily install the system without hav-
ing to compile everything themselves.) Proprietary
vendors suffer to an even greater degree; they do
not wish to distribute source code, and they cannot
easily provide object code that will work smoothly
with various versions of the compiler.

The C++ ABI has changed frequently between pre-
vious GCC releases for a variety of reasons. To
some extent, it has changed accidentally; changes
to the compiler can result in inadvertent changes to
the ABI. Until now, there have been no tests in the
GCC test-suite that specifically test the C++ ABI,
and for that reason it has been difficult to verify
that changes to the compiler did not alter the ABI.
The ABI has also changed out of necessity; as ad-
ditional features mandated by the ANSI/ISO C++
standard have been implemented, ABI changes have
been required in some cases.



The GCC maintainers have recognized the value in
a stable C++ ABI for some time, and had in fact
begun to work on implementing a new ABI. Fortu-
itously, a number of UNIX vendors and other inter-
ested parties joined forces to develop a C++ ABI
for Intel’s new TA-64 architecture. Their goal was
to enable programs compiled with one compiler to
link with libraries compiled with another compiler,
or even to run a program compiled for one TA-64 op-
erating system on another IA-64 operating system.
(For example, a program compiled for the Monterey
operating system being developed by IBM and SCO
could be run on GNU /Linux, provided that the nec-
essary support libraries on both systems adhere to
the specified ABI.)

We participated in the effort to formulate the TA64
C++ ABI, and have now completed implementa-
tions of the ABI in G++ and in other compilers.
Although the new ABI has only been formally spec-
ified for the TA-64 architecture, the ABI has been
generalized to handle other architectures as well,
since most of the design choices are equally applica-
ble. So GCC 3.0, and subsequent releases of GCC,
will use this same ABI on all architectures. The new
ABI should greatly increase the ability of vendors
to ship libraries that can be linked with versions of
GCC that are released after the library was created.

In fairness, it is likely that some bugs remain in the
GCC 3.0 ABI implementation. These bugs might
necessitate minor changes in the future, but we ex-
pect that any such changes will not impact most
programs, and should be resolved in the relatively
near future.

3.1 Benefits of the new ABI

The new ABI has many benefits in addition to the
stability that it will bring. In particular, the ABI
committee worked hard to reduce the performance
penalties long associated with some C++ features.
Some programmers have avoided C++ altogether
because of perceived performance problems. Oth-
ers have formulated coding standards that prohibit
the use of virtual functions, virtual base classes,
or exception-handling in order to maximize perfor-
mance. The committee took the implicit criticisms
seriously, and attempted to design an ABI that
would minimize the costs associated with these fea-
tures. Many of the design decisions were based on
existing practice in compilers available from EDG,

HP, IBM, SGI, Sun and other vendor. Therefore,
credit for these designs should be attributed not to
the committee, but to the original designers of these
optimizations.

Some of the changes in the new ABI are necessary
simply to ensure correctness. For example, C++
has complex rules involving how virtual function
calls should be dispatched during object construc-
tion and destruction. These rules could not be im-
plemented using the G++ ABI on Linux, with the
result that the GCC maintainers received frequent
bug reports about which nothing could be done.
The new ABI also contains a number of performance
improvements, including dramatically shorter man-
gled names, reduced memory usage, and faster vir-
tual function calls.

3.1.1 Mangled names

Many users reported mangled names of several kilo-
bytes; in most cases the new ABI will reduce the
length of these names to tens of characters. That
change will reduce the size of object files, and make
linking faster.

Much of the improvement stems from the obser-
vation that type signatures for template functions
(which typically have the longest mangled names),
often involve the same types. For example, the full
signature for for vector<vector<int> > is:

vector<
vector<int, std::allocator<int> >,
std::allocator<std::vector<int,
std::allocator<int> > > >
::vector(void)

Here, the templates vector and allocator are re-
peated several times. If the element type was itself
a template type, then there could be even more rep-
etition.

Using the old ABI, the mangled name for this con-
structor is the following 173-character string:

__Q23stdt6vector2ZQ23stdtbvector2Ziz
Q23stdt9allocator1ZiZQ23stdt9allocatorlZ
Q23stdt6vector2ZiZQ23stdt9allocator1ZiRC
Q23stdt9allocator1ZQ23stdtbvector2ZiZ
Q23stdt9allocatorilZi



Using the new ABI, this same function is mangled
as the more reasonable 39-character string:

_ZNSt6vectorIS_IiSaliEESalS1_EEC1ERKS2_

These compression techniques make for even greater
savings when using more complex templates, such
as those found in complex expression-template li-
braries. Part of the reason for the savings in this ex-
ample is that the new mangling scheme also contains
special abbreviations for some of the names in the
standard library, including std: :string. Since so
many functions take parameters that involve these
types, these abbreviations are very valuable.

3.1.2 Constructing virtual bases

The new ABI reduces the penalty for using virtual
bases in several ways. Consider a constructor for a
class that has virtual base classes. That constructor
must decide whether or not to call the constructor
for the virtual base subobject. The constructor for
the virtual base class should not be called more than
once for any single object. In the old ABI, the con-
structor took an additional parameter that told it
whether or not to construct the virtual base classes.
When a complete object was created, its construc-
tor was called with the parameter set to a non-zero
value. This value indicated that virtual base classes
should be constructed. When the constructor for
the complete object called base class constructors,
the extra parameter was set to zero to indicate that
constructors for virtual base classes should not be
run again.

Unfortunately, setting up the parameters, and then
checking their values, can take a substantial amount
of time. The new ABI defines two different entry
points for each constructor: one that constructs vir-
tual bases, and one that does not. These may be al-
ternate entry points into the same function, or they
may be entirely separate functions; the choice is up
to the compiler. Using alternate entry points, rather
than a parameter, to distinguish between the con-
structors eliminates the run-time overhead of pass-
ing and checking the parameters.

3.1.3 Laying out virtual bases

As another example of the sorts of improvements
provided by the new ABI, we consider the way in
which virtual base classes are laid out. Virtual base
classes present a problem in that their location, rel-
ative to the derived class that contains them, is not
known when the program is compiled. For example,
consider this fragment:

class V {

public:
virtual void f();
int i;

};

class D1 :
public:

double di;
};

virtual public V {

void £ (D1x d1) { d1->i = 3; }

The location of i, relative to d1, depends on the
dynamic type of the object pointed to by d1. That
this is the case stems from the fact that V is a virtual
base; there is only one copy of V even in multiple
classes in a hierarchy derived from V.

Traditionally, G++ (following the lead of the orig-
inal AT&T implementation of C++), handled vir-
tual bases by creating, in the derived class, a pointer
to the virtual base. When D1 is used as a base class,
it is laid out like the following C structure:

struct D1 {
double di;
V* vbase;

}
A complete object of type D1 looks like:

struct D1_Complete {
double di;

Vx vbase;

V v;

};

The v field is filled in with the address of the virtual
base v. So, the expression d1->i = 3 would have
been implemented as d1->vbase->i = 3.



Now, consider what happens if several classes de-
rived from V. For example, suppose we extend our
example with:

class D2 : virtual public V { double d2; };
class D : public D1, public D2 {};

The layout for a complete object of type D would
look like:

struct D_Complete {
D1 dilbase;
D2 d2base;
V vbase;

};

Note that both D1 and D2 contain pointers to V. Us-
ing this scheme, a complex hierarchy with many vir-
tual bases, a large percentage of the space consumed
by an object can end up devoted to pointers to vir-
tual bases. The old ABI squandered not only space
(because of all the pointers), but also time: initial-
izing all of the pointers makes object construction
and destruction unnecessarily costly.

In practice, hierarchies making use of virtual
bases almost always make use of virtual functions.
Therefore, each object already contains a “vtable
pointer”, i.e., a pointer to a virtual function ta-
ble. Dynamic dispatch is implemented using the
virtual function table; when the ith virtual func-
tion in a class is called, control is transferred to
the address given by the ith entry in the virtual
function table. In addition to the virtual function
addresses, the new ABI stores offsets from derived
classes to their virtual bases in the virtual function
table. This mechanism eliminates the need to store
pointers to virtual bases in the objects themselves,
thereby eliminating both the space penalty, and the
time penalty for initializing the objects.

3.2 C++ standard library

The implementation of the C++ standard library
that shipped with GCC 2.95.2 and previous releases
was woefully out-of-date. It provided no support
for wide characters or locales, did not place names
in the std namespace, did not support templatized
I/O streams, and contained numerous other defi-
ciencies.

Benjamin Kosnik and others have worked very hard
over the last several years on a ground-up rewrite
of the library. GCC 3.0 will be the first GCC re-
lease to use the new standard library, which is now
mostly complete. Already, the deficiencies men-
tioned above have been repaired, and users will find
that the new library conforms much more closely to
the ANSI/ISO C++ standard.

3.3 C/C++ preprocessor

GCC 3.0 will include a new implementation of the
C preprocessor, contributed by Zack Weinberg and
others. The new preprocessor is faster than the old
preprocessor. More importantly, the new preproces-
sor will allow direct integration with the compiler
front-ends themselves. Presently, GCC first creates
a temporary file containing the preprocessed source
file. The front-ends then process this preprocessed
file. The overhead of writing, and then reading, the
temporary file is considerable.

In addition, the process of tokenization is needlessly
duplicated between the preprocessor and the com-
piler front-ends. For example, when confronted with
the string £ (71) the preprocessor determines that
the token stream consists of an identifier, an opening
parenthesis, a numeric literal, and a closing paren-
thesis. The compiler must perform the same analy-
sis.

The new preprocessor will be able to connect di-
rectly to the compiler front-ends, without using an
intermediate file. In this way, the overhead of read-
ing and writing the file will be eliminated, as will the
redundant retokenization. In this way, the compile-
time performance of GCC should be improved sub-
stantially. Initial measurements show as much as a
10% speedup when compiling some programs with
the new preprocessor.

4 Future directions

The GCC community has already started talking
about what will happen after GCC 3.0. In addition
to the usual improvements, we are hoping to incor-
porate two new languages into the GNU Compiler
Collection: Pascal and ADA. Unifying the develop-
ment groups that have been working on these front-



ends with the core GCC development time should
make it much easier for users of Pascal and ADA to
obtain compilers that interoperate smoothly with
the rest of GCC. On the other hand, since there has
been little interest in Chill, it is possible that the
Chill front-end will be dropped from GCC at some
point in the future. The C and C++ front-ends
may be combined into a single front-end in order
to reduce code duplication and to make it easier to
achieve consistent semantics between C and C++.

There have been serious discussions about making
relatively major changes in the internal data struc-
tures used by GCC in order to offer new optimiza-
tion opportunities. Presently, GCC uses two major
representations of the source program: an abstract
syntax tree representation that is close to the source
language, and a register transfer language that is
close to the eventual generated machine code. Un-
fortunately, there is no convenient intermediate rep-
resentation: one which is simpler than the source
language, but that still abstracts away from the ma-
chine representation.

This “representation gap” makes it difficult to im-
plement many high-level optimizations in GCC. For
example, it is difficult to implement many loop op-
timizations. Some of the algorithms that are im-
plemented in GCC suffer both in implementation
complexity and in the quality of the generated code
by having to work on inconvenient representations
of the program. Therefore, it is likely that struc-
tural changes will be made to accommodate a new
representation.

5 Challenges

GCC has a lot going for it. It is a free, eas-
ily retargetable optimizing compiler supporting the
most important available compiled programming
languages. Unfortunately, there are some notable
weaknesses in GCC as well. Presently, GCC’s opti-
mization is not as good as that provided by some
commercial compilers. The error messages pro-
duced by GCC are not as helpful as they should
be. Despite major improvements, there are still
weaknesses in support for some language features
in C++, Java, and Fortran. The compile-time per-
formance of the compiler is not as good as that of
the best commercial compilers. The documentation
provided is not as good as it could be. There are

substantial weaknesses in the supporting tools, in-
cluding debuggers and profilers. Other important
tools, like incremental linkers, source browsers, and
integrated development environments, do not exist,
are not of commercial quality, or not are not freely
available. Quality assurance between releases has
not been sufficient to ensure that users can easily up-
grade from one version of the compiler to the next.

For these reasons, GCC will face threats in the fu-
ture from commercial compilers. The success of
GNU/Linux represents a new market for tools ven-
dors; already, for example, there are two propri-
etary compiler products available for GNU /Linux.
If these proprietary products are better than GCC,
then many developers will use them. Many compa-
nies will find the cost of these products worth the
price if they feel that these tools will enable faster,
easier development.

Therefore, the community should continue to invest
in GCC, by donating development effort, by pro-
viding hardware resources, and by funding future
improvements in GCC. That up-front investment
will ensure that GCC continues to improve, and
that it remain the best available compiler for the
GNU/Linux operating system.



