
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

LOBOS: (Linux OS Boots OS) Booting a kernel in 32-bit mode

Ron Minnich

August 14, 2000

Advanced Computing Lab, Los Alamos National Labs,
Los Alamos, New Mexico

Abstract

LOBOS (Linux Os Boots OS) is a system call that allows
a running Linux kernel to boot a new kernel, without leav-
ing 32-bit protected mode and, in particular, without using
the BIOS in any way. This capability in turn allows Linux
to be used as a network bootstrap program and even as a
BIOS, both of which we are working on now. In this pa-
per we discuss how LOBOS works, how we use it, and
how LOBOS makes Linux usable as a BIOS, replacing
the proprietary PC BIOSes we have today.1. LOBOS
has been used by two other groups as a reference imple-
mentation for their Linux-boots-Linux system calls. One
of these other implementations, bootimg, may become a
part of the 2.4 kernel.

1 Introduction

At the ACL we have built Linux clusters of 64 nodes, and
most recently have built a larger cluster of 128 nodes.
While we currently use the ’magic floppy’ approach for
loading and reloading cluster nodes, we know that this ap-
proach will not scale to even 256 nodes – it takes far too
much time and effort to put floppies into 256 nodes and
make sure they boot properly. We have also found that
we need to have absolute control at boot-time of what the
node does, even if we are not reloading or initializing the
node. We might have half the cluster running a different
version of Linux with a different root file system at differ-
ent times. We might even let jobs in a queueing system

1It’s a mere coincidence that many other things in New Mexico are
called LOBOS too.

indicate which kernel they needed to run, and part of the
work of starting a job on a set of cluster nodes might be
booting those nodes with the proper kernel.

To support our needs we have decided we will use a
netboot-style initialization for both normal operation as
well as loading and reloading the cluster nodes. Each time
the node is booted we can control which kernel to run,
how to get the kernel (over the network or on the disk),
and what root partition to use, either local or via NFS,
even though in many cases the operating system is booted
from the local disk, and the root flie system is chosen from
one partition of the local disk.

In this paper we will describe our approach to netboot,
which is to use Linux as the bootstrap instead of a special
bootstrap program. We first provide an overview of how
netboot has been done in the past, how it is being done
now in the Windows/PC world, and the problems with the
current PC approaches. We close with a disussion of how
we might extend our work and use Linux as the BIOS,
and hence save a few steps and a lot of time in the booting
process.

2 Netboot overview

Netbooting has been around in the workstation world for
many years, with perhaps the most capable systems being
offered by Sun Microsystems. On a Sun system (or, nowa-
days, any system that runs OpenBoot firmware such as a
Power Macintosh), one can simply type ’boot net’ and the
PROM-based bootstrap code is able to:

1. Initialize the network interface

2. Send out broadcast or point-to-point IP packets to lo-
cate a tftp server

3. Load a secondary bootstrap from the tftp server

1

The secondary bootstrap in turn is capable of mounting
NFS partitions, disk partitions, and so on to locate and
load the actual kernel to boot. Net booting on Suns has
been used for almost 15 years. The protocols are open and
there are many open source tftp servers that can support
Sun clients for netboot.

In the PC world the situation is not nearly as good.
Even today, few PC BIOSes are capable of supporting a
netboot option. Even if the BIOS understands netboot, the
user often has to procure a PROM for the network card,
which of course only works on that one card, and only if
the card vendor has provided PROM software. Both the
BIOS and the network card PROM are 16-bit 8086 code.
As a result, 8086 mode operation is more important than
ever. We would like to see 8086 emulation gradually grow
less important and eventually disappear, but the netboot
standards being promulgated by Intel and Microsoft are
leading us the other way.

A further problem is the nature of the standards for net-
boot. The network card boot model has to conform to a
standard interface (NDIS2, a 16-bit Windows model) de-
signed by Microsoft. Intel is working out the BIOS API
as well as the network protocols.

As a result of these two trends, PC netboot is going
to be 16-bit code cleaving to a network card APIdefined
by Windows, using an Intel-defined BIOS API and Intel-
defined protocols. Much of this code is proprietary, and
using the BIOS for netboot will require us to continue re-
lying on an 8086 assembler. We end up more dependent
on 16-bit code running on an emulation of a 20-year-old
processor, all of which is proprietary. This is not progress.

2.1 Our requirements for netboot

Given this undesirable situtation we decided to give the
problem another look, taking nothing for granted. Our
goals are simple: we want to load something onto the
CPU that in turn can load boot parameters over the net-
work interface, find out what to do, and then load a kernel.
Whatever it is has to be Open Source – we are no longer
interested in burning proprietary binaries into PROMs.

We have a few other goals:

1. We don’t like assembly code. Also, we have no de-
sire to put a lot of effort into x86 assembly and then
repeat our effort with, e.g., Alpha assembly. There-
fore, any code we write will be C or better, unless it
is impossible to escape assembly.

2. We don’t like code that only works for a particular
Ethernet card. There are a number of packages for
netboot available but their usefulness is strictly lim-
ited to a small number of cards. We want to support
any network card that Linux supports.

3. We don’t see any point in reinventing the wheel. If
there is code available that supports lots of network
cards, file systems, disk types, and boot protocols,
why start from scratch?

4. We don’t want to count on the features of any one
motherboard. If a motherboard supports netboot,
that’s no real help, since we don’t expect to use that
motherboard forever.

5. We want standard protocols, such as NFS, bootp, and
so on.

3 The New Netboot

We realized that the requirements for our netboot could
be met in one of two ways: we could write a new netboot
program from scratch, or we could build a netboot using
a minimal Linux kernel. Although there is an apparent
advantage to writing our own program from scratch, ex-
perience shows that it is not a real advantage. The Sun
netboot code has to support many of the same capabili-
ties as a full-blown operating system: it has to be able
to do NFS mounts, mount disk partitions, and so on. At
the same time, there are many types of file systems it can
not use, such as msdos or AFS. Finally, there is no huge
savings in space: the network bootstrap is 128 Kbytes. A
minimal Linux kernel is 300K. Given the current cost of
storage, the difference is insignificant. We decided to go
with a minimal Linux kernel for our bootstrap.

3.1 How the new Netboot works

The new netboot works as follows. The netboot code is
actually a tiny Linux kernel. It doesn’t have much – ba-
sically disk, filesystem, network and NFS code. In the
current version it does not even need to be able to run
user-mode programs – it never exits kernel mode. All it
has to do is the following:

1. Boot (eventually from NVRAM, for now from
floppy, CDROM, or hard drive)

2

2. Contact BOOTP server and get parameters for this
machine

3. Mount a remote file system via NFS or AFS; or
mount the disk or floppy or CDROM.

4. Overlay the currently running kernel with the new
file.

Items 1-3 exist in current Linux. The only thing missing
is the ability to overlay the kernel with a new kernel. In a
sense we need exec for the kernel. The steps required to
support this operation are:

1. In kernel mode, open the file and read it into memory.
This step is done in kernel mode so that we need not
depend on starting /etc/init and having a user pro-
gram read the file in. In other words, a kernel can
boot a new kernel without even starting any user-
mode programs. The file must be read into mem-
ory but not into any area of memory occupied by the
existing kernel – the existing kernel has to keep run-
ning, so overlaying the current kernel code as the file
is read in is out of the question. Overlaying the run-
ning kernel is thelast step.

2. Move critical kernel structures into a safe place.
These structures must be moved out of the way when
the new kernel is copied over the running kernel. So
far these structures include Virtual Memory (VM)
support structures such as page tables and, on the
Pentium, the Global Descriptor Table (GDT); and the
parameters used by the kernel when it boots to locate
the root partition, as well as any arguments passed to
the kernel from the boot command line. These struc-
tures will soon also include the log buffer, so that
kernelprintk messages are not lost on reboot.

3. Turn off interrupts. This is the point of no return,
so any error checking should have been done by this
point.

4. Switch the VM hardware over to the new page tables
(and GDT, on the Pentium).

5. Copy the final bootstrap code to a safe place where
it will not be overlayed by the new kernel code. The
final bootstrap code is simple: it performs a copy of
the kernel to the standard location (0x100000), over-
laying the currently running kernel.

.long SYMBOL_NAME(sys_ni_syscall) /*
streams1 */

.long SYMBOL_NAME(sys_ni_syscall) /*
streams2 */

.long SYMBOL_NAME(sys_vfork) /* 190 */

.long SYMBOL_NAME(sys_lobos) /* 191 */

Figure 1: Additional system call entry for lobos at 191 in
the 2.2.13 kernel

6. Jump to the final bootstrap code. The final bootstrap
code copies the new kernel into the right place and
jumps to it.

We call this “kernel exec”LOBOS, for Linux Os Boots
OS. In the next section we discuss its operation in more
detail.

3.2 LOBOS implementation

The LOBOS implementation consists of five major pieces,
resulting in the addition of 300 or so lines to the kernel.
A context diff to apply these changes to a 2.2.13 kernel is
available at www.acl.lanl.gov/˜rminnich. The basic pieces
are as follows:

1. Entry for the lobos system call in
arch/i386/kernel/entry.S

2. Some additions to the arch/i386/kernel/head.S to
make room for the ’safe areas’ for the GDT, page
tables, kernel startup parameters, and other informa-
tion

3. The code to read in the new file, in kernel/sys.c

4. The code to turn off interrupts, move the processor
page tables and GDT, and switch over to the new
page tables and GDT, in arch/i386/kernel/process.c

5. The code to copy the new kernel to the right place
and jump to it, in kernel/sys.c

We will go over each of these in turn.

3.2.1 System Call Entry Point

The system call entry point is simply an additional line to
arch/i386/kernel/entry.S, as shown in 1

3

/* here begins the support for a kernel rebooting a kernel.
Not all this stuff
* is used yet. Also, at some point, the logbuffer goes here
so that logs are
* preserved across reboots
*/
ENTRY(reboot_gdt)
.org 0x7000
ENTRY(reboot_pgdir)
.org 0x8000
ENTRY(reboot_code)
/* leave padding for later use, i.e. a log buffer that survives
reboot*/
.org 0x10000

.globl SYMBOL_NAME(reboot_gdt)

.globl SYMBOL_NAME(reboot_pgdir)

.globl SYMBOL_NAME(reboot_code)
/* end reboot stuff */

Figure 2: How the safe areas are declared in head.S

3.2.2 Safe Areas

The safe areas consist of a few additional pages at the
beginning of the kernel virtual address space. The lo-
bos bootstrap code knows not to touch these pages, and
they are not used in normal kernel operation. Hence this
memory represents a safe place to put data that will not be
changed by either lobos or the kernel. Currently the GDT,
reboot code, and kernel parameters are saved here. The
code for the safe areas is shown in 2. The reboot_pgdir
area is not currently used.

3.2.3 Reading in the file

The real meat of this system call is the work done to read
in a file and set the kernel up for reboot. This work oc-
curs in a few places. The first is the sys_lobos system
call, which we show in 3. This function is called with a
name. It first gets a copy of the file name via getname,
then performs a lookup on the file.

The function has to get access to a file, which is done
via thelookup_dentry call. We double check to make sure
there is a real inode associated with the dentry, although
this level of checking is probably unnecessary. The size of
the file is contained in the inode structure. We allocate that
amount of memory and, if the allocation succeeds, call
the kernelread_exec function to actually read the file into

/* get a dentry via lookup, then use the open_private func-
tion to open
* it, then use read_exec to read it.
*/
asmlinkage int sys_lobos(char *file)
{
char *name;
struct dentry *d;
name = getname(file);
printk("sys_bootfile: file ptr is %p\n", file);
if (! name)
return -EFAULT;

printk("the name is %s\n", name);
d = lookup_dentry(name, 0, 1 /* read only */);
if (d)
{
void *v;
int result;
int good = 1;
size_t count;
printk("good open, dentry is %p\n", d);
if (! d->d_inode)
good = 0;

if (! good) printk("NO INODE!\n");
if (good) {

count = d->d_inode->i_size;
printk("the size is %d\n", count);
printk("let’s try to mallo that much\n");
v = vmalloc(count);
if (v) {

result = read_exec(d, 0, v, count, 1);
printk("read result is %d\n", result);
if (result == count)
run_boot_file(v, count);

}
else printk("alloc failed\n");

}
}

else
printk("open failed, d is null\n");

return -EINVAL;
}

Figure 3: Top level of the sys_lobos system call

4

memory. Althoughread_exec is intended for reading in
executable files, it also serves perfectly for our purposes.

At this point much of the work is done. The final steps
are handled by the functionrun_boot_file, which is called
with a pointer to the kernel area and a size. This function
is shown in 4.

This function copies the final bootstrap,do_boot_file,
to the safe memory location. It callsos_restart to set up
the virtual memory structures (GDT and page tables on
the Pentium), and finally calls the final bootstrap code to
the do actual final step of copying the new kernel over the
current kernel. If anything fails, the current behaviour is
to hang forever, although obviously the correct long-term
behavior is to reset the machine.

3.2.4 Setting up the page tables and GDT

This work is done by theos_restart function. This func-
tion has to change the state of the virtual memory hard-
ware and by its very nature represents the most machine-
dependent code in LOBOS (the assembly code presented
above for reserving space and system call table entries
could just as easily be C code, and is in many kernels).

The main goal of this function is to move the GDT and
page tables out of the way, and to do it in a way that al-
lows the VM hardware to function until the new kernel
takes over and loads the hardware with the new kernel’s
GDT and page tables. Currently, the GDT is put in the
safe area, and the page tables are put in an area allocated
in high memory. We use the allocated memory for the
page tables as they can vary in size for different types of
processor. Pentium-compatible processors that support 4
MByte page table entries only need one page to address 4
Gbytes of memory; processors that only support 4 Kbyte
page table entries need much more space.

The steps here are as follows: store the current gdt into
curgdt, so we can find out where it is. Get the pointer to
the safe gdt, and copy the first page of the current gdt to
it. We only need a very small part of the GDT, but for
now we just grab the whole first page. Next we allocate a
new page table and copy the current page table to it. Note
that for now this code only works for machines with 4 MB
page table entries. Next we switch to the new GDT (the
sgdt instruction); and finally we switch to the new page
tables. At this point the kernel can be safely overwritten
by the final bootstrap. The only assembly code in this
function is for very low-level hardware support.

void run_boot_file(void *kernel, size_t count)
{
extern void os_restart(int);
extern char saved_bootparams[4096];
extern void *reboot_code;
int result;
unsigned long *test = kernel;
void *setup = 0, *kernelstart, *bootsector = 0;
size_t funcsize = ((unsigned long) end_boot_file) -
((unsigned long) do_boot_file);

void *v;
typedef int (*z)(void *v, size_t count, void *setup, void

*kernelstart,
void *bootsector, int testonly);

z bf;
cli();
kernelstart = __va(0x100000);
v = &reboot_code;
/* copy it out */
memcpy(v, do_boot_file, funcsize);
os_restart(0);
/* copy out saved_bootparams ..*/
printk("copying out ssaved_bootparams\n");
memcpy(__va(0x90000), saved_bootparams, 4096);
/* now call it */
printk("allocated %d bytes, now call %p\n", funcsize, v);
bf = v;
result = (*bf)(kernel, count, setup, kernelstart, bootsec-

tor, 0);
printk("RETURNED FROM do_boot_file: HANGING

FOREVER\n");
while(1);

}

Figure 4: The run_boot_file function.

5

void os_restart(int notused)
{
void *newgdt = 0;
extern char *reboot_gdt;
pgd_t *newpagedir = 0;
unsigned long cp;
void *gdtbase;
int gdtsize;
unsigned long l;
unsigned long curpagetable;
unsigned long x;
int i;
printk("os_restart ...\n");
curgdt[0] = curgdt[1] = 0;
__asm__ __volatile__ ("sgdt %0" : "=m" (curgdt));
newgdt = & reboot_gdt;
gdtsize = 4095;
memcpy(newgdt, gdtbase, gdtsize + 1);
/* build the new page dir that is out of the way ... */
newpagedir = get_pgd_slow();
if (! newpagedir) {

printk("newpagedir allocate failed\n");
return;

}
memcpy(newpagedir ,
swapper_pg_dir, sizeof(swapper_pg_dir))
l = (unsigned long) newgdt;
curgdt[1] = l >> 16;
curgdt[0] = ((l & 0xffff) << 16) | gdtsize;
cli();
__asm__ __volatile__ ("lgdt curgdt");
__asm__ __volatile__ ("ljmp $0x10,
$blahblah\nblahblah:nop\n");
__asm__ __volatile__(

"movl $0x18,%eax\n"
"movl %eax,%ds\n"
"movl %eax,%es\n"
"movl %eax,%fs\n"
"movl %eax,%gs\n"
"movl %eax,%ss\n"
);

SET_PAGE_DIR(current,newpagedir);
return;

}

Figure 5: os_restart code

void
do_boot_file(void *v, size_t count, void *kernelstart, int
testonly)
{
int i;
void (*f)(void) = kernelstart;
extern char *reboot_gdt, *get_options;
volatile unsigned char *src = (char *) v;
volatile unsigned char *dst = (char *) kernelstart;
unsigned long *l;

for(i = 0; i < count; i++, src++, dst++)
{
if ((dst >= &reboot_gdt) && (dst < &get_options)) {
continue;

}
if (testonly) {
}
else {

*dst = *src;
}

}
if (testonly)
return;

f();
}

Figure 6: Final bootstrap, do_boot_file

3.2.5 Final Bootstrap

The final bootstrap copies the new kernel over the old one,
skipping the safe areas.

This is a rather simple function, in essence a memcpy.
The one difference is that it does not overly the region
betweenrestart_gdt andget_options (the safe area) with
the new kernel. Once it has done the copy it calls the new
kernel.

3.3 Calling LOBOS from user mode

The program that uses the system call is shown in 7. The
program is quite minimal. It takes the name of the file and
calls the system call with that name as a parameter.

6

#include <stdio.h>
#include <errno.h>
#include <syscall.h>

#define __NR_bootfile 191

_syscall1(int, bootfile, char *, name);

int
main(int argc, char *argv[])
{
char *name = "test";
if (argc > 1)
name = argv[1];

printf("name is %p\n", name);
bootfile(name);

}

Figure 7: The bootfile program

3.4 The LOBOS command

Following the model of fastboot(1), we have created a
command called lobos. Lobos puts a binary, uncom-
pressed kernel image in /tmp, and creates a file called /lo-
bos. We have modified the reboot script so that if the /lo-
bos file exists, the bootfile program is invoked with the
uncompressed kernel image as the argument.

To reboot any kernel, the user can type the full kernel
path, or simply the intermediate part of the name, e.g. the
command’lobos linux-2.2.13’ will reboot the the kernel
/usr/src/linux-2.2.13/vmlinux.

4 Performance and usability.

Booting a kernel via LOBOS is much faster and easier
than the standard BIOS-based boot. There is no long wait
common with BIOS boots. The unnecessary memory test
and zero is a thing of the past, as is the wait for the many
unnecessary tasks that exist only to support DOS 1.0.

We now have a log buffer that survives reboots and that
has proven to be a major plus. We much prefer this style
of booting to the 16-bit BIOS-based style used on PCs to
date.

5 Related work

There are two other systems which allow Linux to boot
Linux: bootimg, from Werner Almesberger; and Two Ker-
nel Monte, from Scyld Computing. They differ in philos-
ophy from LOBOS in a few significant ways.

5.1 Bootimg

Bootimg allows a user-mode program to reboot the kernel
with a new image. The user program has to read the file
into memory, and then calls the bootimg system call. The
kernel code is responsible for parsing the header of the file
and unzipping the code.

Bootimg turns virtual memory (i.e. paging) off at some
point, but leaves i386-style segments on. Turning VM off
complicates a number of issues. Since the user buffer is in
virtual memory, bootimg must first copy it in to physically
contiguous kernel memory that can be addressed with VM
off. Also, in the future kernel components may not all
be in phsyically contiguous memory; we certainly do not
want to count on it. Finally, on systems such as Alpha,
turning off VM is tantamount to turning off all protection.
Given that even the lowest-level NVRAM software on the
Alpha runs with VM enabled, we are worried about any
approach that involves turning VM off.

Bootimg constitutes about 1100 lines of code, of which
at least 600 are architecture-dependent. There are only 40
or so lines of assembly. One issue is that bootimg does
define a number of structures (such as GDTs) that need to
maintained in synch with the kernel.

Bootimg can be used with the LinuxBIOS.

5.2 Two Kernel Monte

Two kernel monte (TKM) takes a very different approach
to the problem. TKM at some point turns off BOTH VM
(paging) AND i386-style segmentation. In order to avoid
copies and the requirement for a large area of physically
contiguous memory, TKM builds an internal virtual-to-
physical page map so that when VM is off, TKM can still
get to the new kernel image. Also, once real mode is off,
TKM can call the BIOS to reset hardware that may not
work properly after a reboot. TKM can not work with the
LinuxBIOS, since it depends on the BIOS for a critical
part of the reboot step.

7

5.3 Summary of the three systems

TKM is probably the most architecture-dependent of the
three, and LOBOS is probably the least architecture-
dependent. LOBOS is less than half the size of the others,
and has only a fraction as much assembly code. Bootimg
is the most polished in certain ways: it does the most thor-
ough permission checking and ramdisk support, for exam-
ple. TKM will probably work with just about any kind of
video hardware, since it calls the video bios to reset the
video card. TKM will probably never work with the Lin-
uxBIOS.

All three systems deal with the problem of VM in very
different ways. LOBOS keeps paging and segmentation
turned on, and relies on the presence of the “safe areas”
to maintain through the reboot process. LOBOS needs to
relocate the GDT and page tables once. Bootimg turns
VM off, and relies on the presence of physically con-
tiguous memory in kernel mode to get around the lack
of VM. Bootimg relocates the GDT four times during a
boot. TKM turns VM off and relies on its own virtual-to-
physical map to keep track of memory. TKM reloads the
GDT once. We feel most comfortable with keeping VM
turned on at all times, especially as we move to the Alpha,
where there is not support for segmentation.

TKM and Bootimg require an external program to load
the image. LOBOS does not; we supply such a program,
but a LOBOS-equipped kernel can, given a file name, boot
that file. When the LinuxBIOS boots from NVRAM, it
can further boot a different kernel (e.g. at the direction of
a DHCP server) without ever having to run a user-mode
program.

Only LOBOS allows the kernel log buffer to survive
across reboots. We have found this capability very useful,
since we no longer need to wait for klogd to clean up be-
fore rebooting. We are trying to reach a 3-second reboot
time, and the fewer processes we have to wait for when
we reboot, the better.

In terms of security, all three systems are no more (and
no less) secure than a standard reboot system call.

There is a final question: which of these systems will
make it as the “standard” in the Linux kernel? While
we prefer the LOBOS implementation, and especially
some of the LOBOS design decisions, we believe that the
standard system call for 2.4 will be bootimg. At some
point we will then need to revisit portability issues, since
bootimg depends very heavily (over 30% of the code, as
opposed to several tens of lines in LOBOS) on aspects of
i386 Linux that do not exist in other architectures.

For our own purposes we will probably continue using
LOBOS. The two determinants are the ability to boot a
new kernel entirely from the kernel, and the fact that the
log buffer is preserved across reboots. LOBOS has also
demonstrated portability across a wide range of kernels
due to its simplicity.

6 Next Steps

We are working on putting a LOBOS-enabled kernel into
the FLASH RAM on our Intel 440GX motherboards. We
are using code from the OpenBIOS project to bootstrap
our kernel into memory. The kernel we boot serves as
a true network bootstrap, in that it comes up and asks a
manager node what it should do, which may include sim-
ply booting from the disk. We report on the new BIOS
work in a companion paper.

Our work on LOBOS has been used by other re-
searchers. Werner Almesberger has developed bootimg,
which will probably appear in the 2.4 kernel. Researchers
at Scyld Computing had started a project similar to LO-
BOS but had gotten stuck; they were able to use our work
to finish their system, Two Kernel Monte.

7 Conclusions

LOBOS is a system call that allows a running kernel to
boot another kernel. Once a kernel is running it has no
need to use the BIOS to boot other kernels. This new ca-
pability allows us to use Linux kernels as a network boot-
strap, as opposed to using a special network bootstrap pro-
gram. It is also very easy to boot new kernels: we simply
type in ’lobos <kernel-name>’ and the new kernel is up
and running in less than a minute. We don’t really need
LILO any more.

LOBOS also makes it possible to replace the BIOS with
a Linux-based BIOS. The benefits to our work are clear:
the BIOS is the last great barrier to truly Open Source-
based clusters.The BIOS also represents a major stum-
bling block to managing large clusters, due to its primitive
structure and limited capabilities, as well as to its 16-bit
unprotected-mode origins. We feel that LOBOS repre-
sents a first step to freeing Linux users from the BIOS and
all its constraints.

LOBOS has to date been used as a reference by two
other groups to build working system calls with similar

8

capabilities. One of these system calls, bootimg, will
probably be a part of the standard 2.4 kernel.

9

