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Abstract 
 

The Linux kernel stores high-usage data objects such as pages, buffers, 
and inodes in data structures known as hash tables. In this report we 
analyze existing static hash tables to study the benefits of dynamically 
sized hash tables. We find significant performance boosts with careful 
analysis and tuning of these critical kernel data structures. 

 
 
 

 
1. Introduction 

Hash tables are a venerable and well-understood data 
structure often used for high-performance applications 
because of their excellent average lookup time. Linux, an 
open-source POSIX-compliant operating system, relies on 
hash tables to manage pages, buffers, inodes, and other 
kernel-level data objects. 

As we show, Linux performance depends on the effi-
ciency and scalability of these data structures. On a small 
machine with 32M of physical RAM, a page cache hash 
table with 2048 buckets is large enough to hold all possi-
ble cache pages in chains shorter than three. However, a 
hash table this small cannot hold all possible pages on a 
larger machine with, say, 512M of physical RAM while 
maintaining short chains to keep lookup times quick. 
Keeping hash chains short is even more important on 
modern CPUs because of the effects of CPU cache pollu-
tion on overall system performance. Lookups on longer 
chains can expel useful data from CPU caches. The best 
compromise between fast lookup times on large-memory 
hardware and less wasted space on small machines is 

dynamically sizing hash tables as part of system start-up. 
The kernel can adjust the size of these hash tables de-
pending on the conditions of the hardware at system boot 
time. 

Hash tables depend on good average case behavior to 
perform well. Average case behavior relies on the actual 
input data more often than we like to admit, especially 
when using simple shift-add hash functions. In addition, 
hash functions chosen for statically allocated hash tables 
may be inappropriate for tables that can vary in size. Sta-
tistical examination of specific hash functions used in 
combination with specific real world data can expose 
opportunities for performance improvement. 

It is also important to understand why hash tables are 
employed in preference to a more sophisticated data 
structure, such as a tree. Insertion into a hash table is 
O(1) if hashed objects are maintained in last-in first-out 
(LIFO) order in each bucket. A tree insertion or deletion is 
O(log n). Object deletion and hash table lookup opera-
tions are often O(n/m) (where n is the number of objects 
in the table and m is the number of buckets), which ap-
proaches O(1) when the hash function spreads hashed 
objects evenly through the hash table and there are more 
hash buckets than objects to be stored. Finally, if design-
ers are careful about hash table architecture, they can 
keep the average lookup time for both successful and 
unsuccessful lookups low (i.e. less than O(log n)) by 
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using a large hash table and a hash function that thor-
oughly randomizes the key. 

We want to know if larger or dynamically sized hash ta-
bles improve system performance, and if they do, by how 
much. In this report we analyze several critical hash ta-
bles in the Linux kernel, and describe minor tuning 
changes that can improve Linux performance by a con-
siderable margin. We also show that current hash func-
tions in the Linux kernel are, in general, appropriate for 
use with dynamically sized hash tables. The remainder of 
this report is organized as follows. Section 2 outlines our 
methodology. In Section 3, we separately examine four 
critical kernel hash tables and show how modifications to 
each hash table affect overall system performance. Sec-
tion 4 reports results of combining the findings of Sec-
tion 3. We discuss hash function theory as it applies on 
modern CPU architectures in Section 5, and Section 6 
concludes the report. 

2. Methodology  

Our goal is to improve system throughput. Therefore, the 
final measure of performance improvement is benchmark 
throughput. However, there are a number of other metrics 
we can use to determine the “goodness” of a hash func-
tion with a given set of real-life input keys. In this sec-
tion, we describe our benchmark procedures and the ad-
ditional metrics we use to determine hash function good-
ness. 

We use the SPEC SDM benchmark suite to drive our 
tests [7]. SDM emulates a multi-tasking software devel-
opment workload with a fixed script of commands typi-
cally used by software developers, such as cc, ed, 
nroff, and spell. We model offered load by varying 
the number of simulated users, i.e., concurrent instances 
of the script that run during the benchmark. The through-
put values generated by the benchmark are in units of 
“scripts per hour.” Each value is calculated by measuring 
the elapsed time for a given benchmark run, then dividing 
by the number of concurrent scripts running during the 
benchmark run. The elapsed time is measured in hun-
dredths of a second. 

We benchmark two hardware bases: 

1. A Dell PowerEdge 6300/450 with 512M of RAM 
and a single Seagate 18G LVD SCSI hard drive. 
This machine uses four 450Mhz Xeon Pentium II 
processors, each with 512K of L2 cache. 

2. A two processor custom-built system with 128M 
of RAM and a pair of 2G Quantum Fireball hard 
drives. This machine uses 200Mhz Pentium Pro 

CPUs with a 256K external L2 cache for each 
CPU, supported by the Intel i440FX chipset. 

At the time of these tests, these machines were loaded 
with the Red Hat 5.2 distribution using a 2.2.5 Linux 
kernel built with egcs 1.1.1, and using glibc 2.0 as in-
stalled with Red Hat. 

The dual Pentium Pro workloads vary from sixteen to 
sixty-four concurrent scripts. The sixteen-script workload 
fits entirely in RAM and is CPU bound. The sixty-four-
script workload does not fit into RAM, thus it is bound 
by swap and file I/O. The four-way system ran up to 128 
scripts before exhausting the system file descriptor limit 
because plain 2.2.5 kernels used in this report do not con-
tain large fdset support. All of the 128 script bench-
mark fit easily into its 512M of physical memory, so this 
workload is designed to show how well the hash tables 
scale on large-memory systems when unconstrained by 
I/O and paging bottlenecks. 

On our dual Pentium Pro, both disks are used for bench-
mark data and swap partitions. The swap partitions are of 
equal priority and size. The benchmark data is stored on 
file systems mounted with the “noatime” and “nosync” 
options for best performance. Likewise, on the four-way, 
the benchmark file system is mounted with the “noatime” 
and “nosync” options, and only one swap partition is 
used. 

Hash performance depends directly on the laws of prob-
ability, so we are most interested in the statistical behav-
ior of the hash (i.e. its “goodness”). First, we generate 
hash table bucket size distribution histograms with spe-
cial kernel instrumentation. This tells us: 

• What portion of total table buckets are unused, 

• Whether a high percentage of hashed objects are 
contained in small buckets, 

• The worst-case (largest) bucket size, and 

• Whether bucket sizes are normally distributed. A 
normal distribution indicates that the hash function 
spreads objects evenly among the hash buckets, al-
lowing the hash table to approach its best average 
behavior. 

Second, we measure the average number of objects 
searched per bucket during lookup operations. This is a 
somewhat more general measure than elapsed time or 
instruction count because it applies equally to any hard-
ware architecture. We count the average number of suc-
cessful lookups separately from the average number of 
unsuccessful lookups because an unsuccessful lookup 
requires on average twice as many key comparisons. 
These search averages are one of the best indications of 



 

 

average bucket size and a direct measure of hash per-
formance. Lowering them means better average hash 
performance. 

Finally, we are interested in how long it takes to compute 
the hash function. This value is estimated given a table of 
memory and CPU cycle times, estimating memory foot-
print and access rate, cache miss rate, and guessing at 
how well the instructions to compute the hash function 
will be scheduled by the CPU. We estimate these based 
on Hennessey and Patterson [4]. 

3. Four critical hash tables  
In this section we investigate the response to our tuning 
efforts of four critical kernel hash tables. These tables 
included the buffer cache, page cache, dentry cache, and 
inode cache hash tables.  

3.1 Page cache 

The Linux page cache contains in-core file data while the 
data is in use by processes running on the system. It can 
also contain data that has no backing storage, such as 
data in anonymous maps. The page cache hash table in 
the plain 2.2.5 kernel comprises 2048 buckets, and uses 
the following hash function from in-
clude/linux/pagemap.h: 

#define PAGE_HASH_BITS 11 
#define 
    PAGE_HASH_SIZE (1 << PAGE_HASH_BITS) 
 

static inline unsigned long 
    _page_hashfn(struct inode * inode, 
        unsigned long offset) 
{ 
#define i (((unsigned long) inode)/ 
        (sizeof(struct inode) & 
          ~ (sizeof(struct inode) - 1))) 
#define o (offset >> PAGE_SHIFT) 
#define s(x) ((x)+((x)>>PAGE_HASH_BITS)) 
 
        return s(i+o) & (PAGE_HASH_SIZE-1); 
 
#undef i 
#undef o 
#undef s 
} 
 

The hash function key is made up of two arguments: the 
inode and the offset. The inode argument is a mem-
ory address of the in-core inode that contains the data 
mapped into the requested page. The offset argument 
is a memory address of the requested page relative to a 
virtual address space. The result of the function is an 
index into the page cache hash table. 

This simple shift-add hash function is surprisingly effec-
tive due to the pre-existing randomness of the inode 
address and offset arguments. Our tests reveal that 
bucket size remains acceptable as PAGE_HASH_BITS is 
varied from 11 to 16. 

Normally, the offset argument is page-aligned, but 
when the page cache is doubling as the swap cache, the 
offset argument can contain important index-
randomizing information in the lower bits. Stephen 
Tweedie suggests that adding offset again, unshifted, 
before computing s(), would improve bucket size distri-
bution problems caused when hashing swap cache pages 
[1]. Our tests show that adding the unshifted value of 
offset reduces bucket size distribution anomalies at a 
slight but measurable across-the-board performance cost. 

kernel table size 
(buckets) 

16 scripts 32 scripts 48 scripts 64 scripts total elapsed 

reference 2048 1864.7 s=3.77 1800.8 s=8.51 1739.9 s=3.61 1644.6 
s=29.35 

50 min 25 sec 

13-bit 8192 1875.8 s=5.59 1834.0 s=3.71 1765.5 s=3.01 1683.3 
s=17.39 

49 min 43 sec 

14-bit 16384 1877.2 s=5.35 1830.8 s=3.81 1770.5 s=3.84 1694.3 
s=41.42 

49 min 35 sec 

15-bit 32768 1875.4 
s=10.72 

1832.4 s=3.97 1770.3 s=3.97 1691.2 
s=20.05 

49 min 36 sec 

offset 16384 1880.0 s=2.78 1843.7 
s=14.65 

1774.5 s=4.30 1685.4 
s=33.46 

49 min 40 sec 

mult 16384 1876.4 s=6.45 1836.8 s=6.45 1773.7 s=5.20 1691.7 
s=25.32 

49 min 29 sec 

rbtree N/A 1874.9 s=6.57 1817.0 s=5.59 1755.3 s=3.01 1670.8 
s=17.26 

50 min 3 sec 

Table 1. Benchmark throughput comparison of different hash functions in the page cache hash table. This table compares the 
performance of several Linux kernels using differently tuned hash tables in the page cache. Total benchmark elapsed time shows the 
multiplicative hash function improves performance the most. 



 

Table 1 shows relative throughput results for kernels built 
with hash table tuning modifications. The “reference” 
kernel is a plain 2.2.5 kernel with a 4000 entry process 
table. The “13-bit,” “14-bit,” and “15-bit” kernels are 
plain 2.2.5 kernel with a 4000 entry process table and a 
13, 14, and 15-bit (8192, 16384, and 32768 buckets) page 
cache hash table. The “offset” kernel is just like the “14-
bit” kernel, but whose page cache hash function looks 
like this: 

    return s(i+o+offset) & (PAGE_HASH_SIZE-1); 
 

The “mult” kernel is the “14-bit” kernel with a multipli-
cative hash function instead of the plain additive one: 

    return ((((unsigned long)inode + offset) * 
        2654435761UL) >> \ 
            (32 - PAGE_HASH_BITS)) & 
                (PAGE_HASH_SIZE-1); 
 

See the section on multiplicative hashing for more about 
how we derived this function.  

Finally, the “rbtree” kernel was derived from a clean 
2.2.5 kernel with a special patch applied, extracted from 
Andrea Arcangeli’s 2.2.5-arca10 patch. This patch im-
plements the page cache with per-inode red-black trees, a 
form of balanced binary tree, instead of a hash table [3]. 

We run each workload seven times, and take the results 
from the middle five runs. The results in Table 1 are aver-
ages and standard deviations for the middle five bench-
mark runs for each workload. The timing result is the 
total length of all the runs for that kernel, including the 
two runs out of seven that were ignored in the average 
calculations. Each set of runs for a given kernel is 
benchmarked on a freshly rebooted system. These are 
obtained on our dual Pentium Pro using sixteen, thirty-
two, forty-eight, and sixty-four concurrent script work-
loads to show how performance changes between CPU 
bound and I/O bound workloads. We also want to push 
the system into swap to see how performance changes 
when the page cache is used as a swap cache. 

According to our own kernel program counter profiling 
results, defining PAGE_HASH_BITS as 13 bits is enough 
to take find_page() out of the top kernel CPU users 
during most heavy VM loads on large-memory machines. 
However, increasing it further can help reduce the real 

elapsed time required for an average lookup, improving 
system performance even more. As one might expect, 
increasing the hash table size had little effect on smaller 
workloads. To show the effects of increased table size on 
a high-end machine, we ran 128 script benchmarks on 
our four-way 512M Dell PowerEdge. The kernels used in 
this test are otherwise unchanged reference kernels com-
piled with 4000 process slots. The results are averages of 
five runs on each kernel. 

The gains in inter-run variance are significant for larger 
memory machines. It is also clear that overall perform-
ance improves for tables larger than 8192 buckets, al-
though not to the same degree that it improves for a table 
size increase of 2048 to 8192 buckets. 

The “rbtree” kernel performs better than the “reference” 
kernel. It also scores very well in inter-run variance. A 
big advantage of this implementation is that it is more 
space efficient, especially on small machines, as it 
doesn’t require contiguous pages for a hash table. We 
predicted the “offset” kernel to perform better when the 
system was swapping, but it appears to perform worse 
than both the “mult” and the “14-bit” kernel on the 
heaviest workload. Finally, the “mult” kernel appears to 
have the smoothest overall results, and the shortest over-
all elapsed time. 

Because of the overall goodness of the existing hash 
function, the biggest gain occurs when the page cache 
hash table size is increased. This has performance bene-
fits for machines of all memory sizes; as hash table size 
increases, more pages are hashed into buckets that con-
tain only a single page, decreasing average lookup time. 

Increasing the page cache hash table’s bucket count even 
further continues to improve performance, especially for 
large memory machines. However, for use on generic 
hardware, 13 bits accounts for 8 pages worth of hash 
table, which is probably the practical upper limit for 
small memory machines. 

In the 2.2.16 kernel, the page cache hash table is dynami-
cally sized during system start-up. A hash table size is 
selected based on the physical memory size of the hard-
ware; table size is the total number of pages available in 
the system multiplied by the size of a pointer. For exam-

table size, 
in buckets 

average throughput average throughput, 
minus first run 

maximum 
throughput 

elapsed time 

2048 4282.8 s=29.96 4295.2 s=11.10 4313.0 12 min 57 sec 
8192 4387.3 s=23.10 4398.5 s=5.88 4407.5 12 min 40 sec 
32768 4405.3 s=5.59 4407.4 s=4.14 4413.8 12 min 49 sec 

Table 2. Benchmark throughput comparison of different hash table sizes in the page cache hash table. This table shows 
benchmark performance of our tweaked kernels on large memory hardware. This test shows how performance changes when the 
data structure is heavily populated, and the system is not swapping. 



 

 

ple, 64 megabytes of RAM translate to 16384 buckets on 
hardware that supports 4-byte pointers. 

Of course, the number of pages that can be allocated con-
tiguously for the table limits its size. Hence the hash 
function mask and bit shift value are computed based on 
the actual size of the hash table. The mask in our exam-
ple is 16383, or 0x3fff, one less than the number of buck-
ets in the table. The shift value is 15, the number of bits 
in 16384. 

The computed size for this table is unnecessarily large. In 
general, this formula provides a bucket for every page on 
the system on smaller machines. Performance on a 64M 
system is likely limited by many other factors, including 
memory fragmentation resulting from contiguous kernel 
data structures. According to our measurement of 2.2.5 
kernels, a hash table a half or even a quarter of that size 
can still perform well, and would save memory and lower 
address space fragmentation. 

3.2 Buffer cache 

Linux holds dirty data blocks about to be written to disk 
in its buffer cache. The buffer cache hash table in the 
plain 2.2.5 kernel comprises 32768 buckets, and uses this 
hash function from fs/buffer.c: 

#define HASHDEV(dev) ((unsigned int) (dev)) 
 
#define _hashfn(dev,block) \ 
 (((unsigned)(HASHDEV(dev)^block)) & \ 
  bh_hash_mask) 
 

This function adds no randomness to either argument, 
simply xor-ing them together, and truncating the result. 

Histogram 1 was obtained during several heavy runs of 
our benchmark suite on the dual Pentium Pro hardware 
configuration. Each histogram divides its output into sev-
eral columns. First, the “buckets” column reports the 
observed number of buckets in the hash table containing 
“size” objects; there are 1037 buckets observed to con-
tain a single buffer in this example. The “buffers” column 
reports how many buffers are found in buckets of that 
size, a product of the size and observed bucket count. The 
“sum-pct” column is the cumulative percentage of buffers 
contained in buckets of that size and smaller. In other 
words, in Histogram 1, 28% of all buffers in the hash 
table are stored in buckets containing 8 or fewer buffers, 
and 42% of all buffers were stored in buckets containing 
15 or fewer buffers. The number of empty buckets in the 
hash table is the value reported in the “buckets” column 
for size 0. 

The average bucket size for 37,000+ buffers stored in a 
16384 bucket table should be about 3 (that is, O(n/m), 
where n is the number of objects contained in the hash 
table, and m is the number of hash buckets). The largest 
bucket contains 116 buffers, almost 2 orders of magni-
tude more than the expected average, even though the 
hash table is less than twenty-six percent utilized (16384 
total buckets minus 12047 empty buckets, divided by 
16384 total buckets gives us 0.26471). At one point dur-
ing the benchmark, the author observed buckets contain-
ing more than 340 buffers. 

Apr 27 17:17:51 pillbox kernel: Buffer cache total lookups: 296481  (hit rate: 54%) 
Apr 27 17:17:51 pillbox kernel:  hash table size is 16384 buckets 
Apr 27 17:17:51 pillbox kernel:  hash table contains 37256 objects 
Apr 27 17:17:51 pillbox kernel:  largest bucket contains 116 buffers 
Apr 27 17:17:51 pillbox kernel:  find_buffer() iterations/lookup: 2155/1000 
Apr 27 17:17:51 pillbox kernel:  hash table histogram: 
Apr 27 17:17:51 pillbox kernel:   size  buckets  buffers  sum-pct 
Apr 27 17:17:51 pillbox kernel:     0    12047        0       0 
Apr 27 17:17:51 pillbox kernel:     1     1037     1037       2 
Apr 27 17:17:51 pillbox kernel:     2      381      762       4 
Apr 27 17:17:51 pillbox kernel:     3      295      885       7 
Apr 27 17:17:51 pillbox kernel:     4      325     1300      10 
Apr 27 17:17:51 pillbox kernel:     5      399     1995      16 
Apr 27 17:17:51 pillbox kernel:     6      188     1128      19 
Apr 27 17:17:51 pillbox kernel:     7      303     2121      24 
Apr 27 17:17:51 pillbox kernel:     8      160     1280      28 
Apr 27 17:17:51 pillbox kernel:     9      169     1521      32 
Apr 27 17:17:51 pillbox kernel:    10      224     2240      38 
Apr 27 17:17:51 pillbox kernel:    11       64      704      40 
Apr 27 17:17:51 pillbox kernel:    12       49      588      41 
Apr 27 17:17:51 pillbox kernel:    13       15      195      42 
Apr 27 17:17:51 pillbox kernel:    14        3       42      42 
Apr 27 17:17:51 pillbox kernel:    15        4       60      42 
Apr 27 17:17:51 pillbox kernel:   >15      721    21398     100 

Histogram 1. Full buffer cache using the old hash function. This histogram demonstrates how poorly the Linux buffer cache
spreads buffers across the buffer cache hash table. Most of the buffers are stored in hash buckets that contain more than 15 other
buffers. This slows benchmark throughput markedly. 



 

After the benchmark is over, most of the buffers still re-
side in large buckets (see Histogram 2). Eighty-five per-
cent of the buffers in this cache are contained in buckets 
with more than 15 buffers in them, even though there are 
16167 empty buckets—an effective bucket utilization of 
less than two percent! 

Clearly, a better hash function is needed for the buffer 
cache hash table. The following table compares bench-
mark throughput results from the reference kernel (un-
modified 2.2.5 kernel with 4000 process slots, as above) 
to results obtained after replacing the buffer cache hash 
function with several different hash functions. Here is our 
multiplicative hash function: 

#define _hashfn(dev,block) ((((block) * \ 
    2654435761UL) >> SHIFT) & \ 
        bh_hash_mask) 
 

We tested variations of this function (SHIFT value is 
fixed at 11, or varies depending on the table size). We 
also tried a shift-add hash function to see if the multipli-
cative hash was really best. The shift-add function comes 
from Peter Steiner, and uses a shift and subtract ((block 
<< 7) - block) to effectively multiply by a Mersenne 
prime (block * 127) [1]. Multiplication by a Mersenne 
prime is easy to calculate, as it reduces to a subtraction 
and a shift operation. 

#define _hashfn(dev,block) \ 
 (((block << 7) - block + (block >> 10) \ 
    + (block >> 18)) & \ 
        bh_hash_mask) 
 

This series of tests consists of five runs of 128 concurrent 
scripts on the four-way Dell PowerEdge system. We re-
port an average result for all five runs, and an average 
result without the first run. The five-run average and the 
total elapsed time show how good or bad the first run, 

kernel table size average 
throughput 

avg throughput, 
minus first run 

maximum 
throughput 

elapsed time 

reference 32768 4282.8 s=29.96 4295.2 s=11.10 4313.0 12 min 57 sec 
mult, shift 16 32768 4369.3 s=19.35 4376.4 s=14.53 4393.2 12 min 45 sec 
mult, shift 11 32768 4380.8 s=12.09 4382.8 s=11.21 4394.0 12 min 50 sec 
shift-add 32768 4388.9 s=21.90 4397.2 s=11.70 4415.5 12 min 31 sec 
mult, shift 11 16384 4350.5 s=99.75 4394.6 s=15.59 4417.2 12 min 41 sec 
mult, shift 17 16384 4343.7 s=61.17 4369.9 s=17.39 4390.2 12 min 46 sec 
shift-add 16384 4390.2 s=22.55 4399.6 s=8.52 4408.3 12 min 37 sec 
mult, shift 18 8192 4328.9 s=16.61 4333.7 s=15.05 4349.6 12 min 41 sec 
shift-add 8192 4362.5 s=13.37 4362.8 s=14.90 4382.3 12 min 45 sec 

Table 3. Benchmark throughput comparison of different hash functions in the buffer cache hash table. We report the results 
of benchmarking several new buffer cache hash functions in this table. Using a sophisticated multiplicative hash function appears to 
boost overall system throughput the most. 

Apr 27 17:30:49 pillbox kernel: Buffer cache total lookups: 3548568 (hit rate: 78%) 
Apr 27 17:30:49 pillbox kernel:  hash table size is 16384 buckets 
Apr 27 17:30:49 pillbox kernel:  hash table contains 2644 objects 
Apr 27 17:30:49 pillbox kernel:  largest bucket contains 80 buffers 
Apr 27 17:30:49 pillbox kernel:  find_buffer() iterations/lookup: 1379/1000 
Apr 27 17:30:49 pillbox kernel:  hash table histogram: 
Apr 27 17:30:49 pillbox kernel:   size  buckets  buffers  sum-pct 
Apr 27 17:30:49 pillbox kernel:     0    16167        0       0 
Apr 27 17:30:49 pillbox kernel:     1      110      110       4 
Apr 27 17:30:49 pillbox kernel:     2       10       20       4 
Apr 27 17:30:49 pillbox kernel:     3        3        9       5 
Apr 27 17:30:49 pillbox kernel:     4        1        4       5 
Apr 27 17:30:49 pillbox kernel:     5        0        0       5 
Apr 27 17:30:49 pillbox kernel:     6        3       18       6 
Apr 27 17:30:49 pillbox kernel:     7        1        7       6 
Apr 27 17:30:49 pillbox kernel:     8        6       48       8 
Apr 27 17:30:49 pillbox kernel:     9        2       18       8 
Apr 27 17:30:49 pillbox kernel:    10        1       10       9 
Apr 27 17:30:49 pillbox kernel:    11        2       22      10 
Apr 27 17:30:49 pillbox kernel:    12        3       36      11 
Apr 27 17:30:49 pillbox kernel:    13        3       39      12 
Apr 27 17:30:49 pillbox kernel:    14        3       42      14 
Apr 27 17:30:49 pillbox kernel:    15        1       15      15 
Apr 27 17:30:49 pillbox kernel:   >15       68     2246     100 

Histogram 2. Buffer cache using the old hash function, after benchmark is complete. This histogram shows that, even after
the benchmark completes, most buffers in the cache remain in hash buckets containing more than 15 other buffers. Addition-
ally, 3,000+ buffers stored in about 220 buckets, although more than 16,000 empty buckets remain. Over time, buffers tend to
congregate in large buckets, and system performance suffers. 



 

 

which warms the system caches after a reboot, can be. 
The four-run average indicates steady-state operation of 
the buffer cache. 

On a Pentium II with 512K of L2 cache, the shift-add 
hash shows a higher average throughput than the multi-
plicative variants. On CPUs with less pipelining, the race 
is somewhat closer, probably because the shift-add func-
tion, when performed serially, can sometimes take as 
long as multiplication. However, the shift-add function 
also has the lowest variance in this test, and the highest 
first-run throughput, making it a clear choice for use as 
the buffer cache hash function. 

We also tested with smaller hash table sizes to demon-
strate that buffer cache throughput can be maintained 
using fewer buckets. Our test results bear this out; in fact, 
often these functions appear to work better with fewer 
buckets. Reducing the size of the buffer cache hash table 
saves more than a dozen contiguous pages (in the exist-
ing kernel, this hash table already consumes a contiguous 
32 pages). 

Histogram 3 shows what a preferred bucket size distribu-
tion histogram looks like. These runs were made with the 
mult-11 hash function and a 16384-bucket hash table. 
This histogram snapshot was made at approximately the 
same points during the benchmark as the examples 
above. After the benchmark completes, the hash table 
returns to a nominal state. We can also see that the meas-
ured iterations per loop average is an order of magnitude 
less than with the original hash function. 

We’d like to underscore some of the good statistical 
properties demonstrated in Histogram 3. First, the bucket 

size distributions shown in this histogram approach the 
shape of a normal distribution, suggesting that the hash 
function is doing a good job of randomizing the keys. 
The maximum height of the distribution occurs for buck-
ets of size 3 (our expected average), which is about n/m, 
where n is the number of stored objects, and m is the 
number of buckets. A perfect distribution centers on the 
expected average, and has very short tails on either side, 
only one or two buckets. While the distribution in Histo-
gram 3 is somewhat skewed, observations of tables that 
are even more full show that the curve becomes less 
skewed as it fills; that is, as the expected average grows 
away from zero, the shape of the size distribution more 
closely approximates the normal distribution. In all cases 
we’ve observed, the tail of the skew is fairly short, and 
there appear to be few degenerations of the hash (where 
one or more very large buckets appear). 

Second, in both Histogram 3 and 4, about 68% of all 
buffers contained in the hash table are stored in buckets 
containing the expected average number of buffers or 
less. The expected standard deviation is sixty-eight per-
cent of all samples. Lastly, the number of empty buckets 
in the first example above is only 12.4%, meaning more 
than 87% of all buckets in the table are used. 

The 2.2.16 kernel sports a new buffer cache hash func-
tion. The new hash function is a fairly complex shift-add 
function that is intended to randomize the fairly regular 
values of device numbers and block values. It is difficult 
to arrive at a function that is statistically good for the 
buffer cache, because block number regularity varies 
with the geometry and size of disk drives. 

Apr 27 18:14:50 pillbox kernel: Buffer cache total lookups: 287696  (hit rate: 54%) 
Apr 27 18:14:50 pillbox kernel:  hash table size is 16384 buckets 
Apr 27 18:14:50 pillbox kernel:  hash table contains 37261 objects 
Apr 27 18:14:50 pillbox kernel:  largest bucket contains 11 buffers 
Apr 27 18:14:50 pillbox kernel:  find_buffer() iterations/lookup: 242/1000 
Apr 27 18:14:50 pillbox kernel:  hash table histogram: 
Apr 27 18:14:50 pillbox kernel:   size  buckets  buffers  sum-pct 
Apr 27 18:14:50 pillbox kernel:     0     2034        0       0 
Apr 27 18:14:50 pillbox kernel:     1     3317     3317       8 
Apr 27 18:14:50 pillbox kernel:     2     4034     8068      30 
Apr 27 18:14:50 pillbox kernel:     3     3833    11499      61 
Apr 27 18:14:50 pillbox kernel:     4     2082     8328      83 
Apr 27 18:14:50 pillbox kernel:     5      712     3560      93 
Apr 27 18:14:50 pillbox kernel:     6      222     1332      96 
Apr 27 18:14:50 pillbox kernel:     7       78      546      98 
Apr 27 18:14:50 pillbox kernel:     8       46      368      99 
Apr 27 18:14:50 pillbox kernel:     9       19      171      99 
Apr 27 18:14:50 pillbox kernel:    10        5       50      99 
Apr 27 18:14:50 pillbox kernel:    11        2       22     100 
Apr 27 18:14:50 pillbox kernel:    12        0        0     100 
Apr 27 18:14:50 pillbox kernel:    13        0        0     100 
Apr 27 18:14:50 pillbox kernel:    14        0        0     100 
Apr 27 18:14:50 pillbox kernel:    15        0        0     100 
Apr 27 18:14:50 pillbox kernel:   >15        0        0     100 

Histogram 3. Full buffer cache using the mult-11 hash function. This histogram of buffer cache hash bucket sizes shows 
marked improvement. Most buffers reside in small buckets, thus most buffers in the buffer cache can be found after checking 
fewer than two or three other buffers in the same bucket. 



 

The size of the buffer cache hash table is also computed 
dynamically during system start-up. Like the page cache 
hash table, the buffer cache hash table size is computed 
relative to the memory size of the host hardware. On a 
system with 64 megabytes of RAM, the computed hash 
table is 64K buckets. The hash function mask and bit 
shift values are computed like the same values for the 
page cache hash function. 

Again, the computed size for this table is unnecessarily 
large. Each bucket requires two pointers because the 
buckets in this hash table are doubly-linked lists, so a 
64K bucket table requires 256K of contiguous memory. 
The buffer cache hash table size is much too large for 
small memory configuration, and it doesn’t grow much 
as memory size increases past 128M. 

Our measurements show that, assuming the new hash 
function is reasonable, a much smaller table will still 
provide acceptable performance. A large table size is 
especially unnecessary in 2.4 and later kernels because 
write performance is not as dependent on the size of the 
buffer cache. 

A comment near the table size computation logic notes 
that the table should be large enough to keep fsync() 
fast. This is a poor measure of table size, because it is 
well-known that fsync() is inefficiently implemented. 
A more reasonable way to help fsync() performance is 
to re-implement file syncing using a more efficient algo-
rithm. 

3.3 Dentry cache  

The Linux 2.2 kernel has a directory entry cache, or den-
try cache, that is designed to speed up file system per-
formance by mapping file pathnames directly to the in-
core address of the inode struct associated with the file. 
The plain 2.2.5 kernel uses a hash table with 1024 buck-
ets to manage the dentry cache. A simple shift-add hash 
function is employed: 

#define D_HASHBITS     10 
#define D_HASHSIZE     (1UL << D_HASHBITS) 
#define D_HASHMASK     (D_HASHSIZE-1) 
 
static inline struct list_head * d_hash( 
    struct dentry * parent, 
        unsigned long hash) 
{ 
    hash += (unsigned long) parent; 
    hash = hash ^ 
        (hash >> D_HASHBITS) ^ 
        (hash >> D_HASHBITS*2); 
    return dentry_hashtable + 
        (hash & D_HASHMASK); 
} 
 

The arguments for this function are the address of the 
parent directory’s dentry structure, and a hash value ob-
tained by a simplified CRC algorithm on the target en-
try’s name. This function appears to work fairly well, but 
we want to improve it nonetheless. 

Andrea Arcangeli suggests that shrinking the dcache 
more aggressively might reduce the number of objects in 
the table enough to help improve dcache hash lookup 
times [1]. We test this idea by adding a couple of lines 
from his 2.2.5-arca10 patch: In fs/dcache.c, function 
shrink_dcache_memory(), we replace 
prune_dcache(found) with: 

Apr 27 18:27:19 pillbox kernel: Buffer cache total lookups: 3530977  (hit rate: 78%) 
Apr 27 18:27:19 pillbox kernel:  hash table size is 16384 buckets  
Apr 27 18:27:19 pillbox kernel:  hash table contains 2717 objects  
Apr 27 18:27:19 pillbox kernel:  largest bucket contains 6 buffers  
Apr 27 18:27:19 pillbox kernel:  find_buffer() iterations/lookup: 215/1000 
Apr 27 18:27:19 pillbox kernel:  hash table histogram: 
Apr 27 18:27:19 pillbox kernel:   size  buckets  buffers  sum-pct  
Apr 27 18:27:19 pillbox kernel:     0    14302        0       0 
Apr 27 18:27:19 pillbox kernel:     1     1555     1555      57       
Apr 27 18:27:19 pillbox kernel:     2      442      884      89       
Apr 27 18:27:19 pillbox kernel:     3       73      219      97       
Apr 27 18:27:19 pillbox kernel:     4        5       20      98       
Apr 27 18:27:19 pillbox kernel:     5        3       15      99       
Apr 27 18:27:19 pillbox kernel:     6        4       24     100      
Apr 27 18:27:19 pillbox kernel:     7        0        0     100      
Apr 27 18:27:19 pillbox kernel:     8        0        0     100      
Apr 27 18:27:19 pillbox kernel:     9        0        0     100      
Apr 27 18:27:19 pillbox kernel:    10        0        0     100      
Apr 27 18:27:19 pillbox kernel:    11        0        0     100      
Apr 27 18:27:19 pillbox kernel:    12        0        0     100      
Apr 27 18:27:19 pillbox kernel:    13        0        0     100      
Apr 27 18:27:19 pillbox kernel:    14        0        0     100      
Apr 27 18:27:19 pillbox kernel:    15        0        0     100      
Apr 27 18:27:19 pillbox kernel:   >15        0        0     100      

Histogram 4. Buffer cache using the mult-11 hash function, after the benchmark is complete. The reader can compare this his-
togram with the earlier one that reports the buffer cache bucket size distribution after the benchmark has completed. As buffers are
removed from the buffer cache, the bucket size distribution remains good when using the multiplicative hash function. 



 

 

    prune_dcache(dentry_stat.nr_unused / 
        (priority+1)); 
 

and in kswapd (the kernel’s swapper daemon), we move 
the shrink_dcache_memory() call in 
do_try_to_free_pages() close to the top of the loop 
so that it will be invoked more often. 

In Table 4, we show results from several different ker-
nels. First, results from the reference 2.2.5 kernel are 
repeated from previous tables, then a kernel that is like 
the reference kernel, except the dcache hash table is in-
creased to 16384 buckets, and the xor operations are re-
placed with addition when computing the hash function. 
The “shrink” kernel is a 2.2.5 kernel like the “14-bit” 
kernel except that it more aggressively shrinks the 
dcache, as explained above. The “mult” kernels use a 
multiplicative hash function similar to the buffer cache 
hash function, instead of the existing dcache hash func-
tion: 

static inline struct list_head * d_hash( 
    struct dentry * parent, 
    unsigned long hash) 
{ 
    hash += (unsigned long) parent; 
    hash = (hash * 2654435761UL) >> SHIFT; 
    return dentry_hashtable + 
        (hash & D_HASHMASK); 
} 
 

where SHIFT is either 11 or 17. The “shrink+mult” ker-
nels combine the effects of both multiplicative hashing 
and shrinking the dcache. 

The results are averages from five benchmark runs of 128 
concurrent scripts on the four-way Dell PowerEdge. The 
timing results are the elapsed time for all five runs on 
each kernel. 

Some may argue that shrinking the dcache unnecessarily 
might lower the overall effectiveness of the cache, but we 
believe that shrinking the cache more aggressively will 
help, rather than hurt, overall system performance be-
cause a smaller cache allows faster lookups and causes 
less CPU cache pollution. In combination with an appro-
priate multiplicative hash function, such as the one used 
in the “shrink+mult 11” kernel, elapsed time and average 
throughput stays high enough to make it the fastest kernel 
benchmarked in this series. 

The size of the dentry cache hash table in the 2.2.16 ker-
nel is dynamically determined during system start-up. 
Like the previous two tables we examined, the hash table 
size is computed as a multiple of a system’s physical 
memory size. On our imaginary 64-megabyte system, the 
dentry cache hash table contains 8192 buckets, and re-
quires a 14-bit hash function shift value. This provides 
excellent performance without consuming excessive 
amounts of memory. There is also plenty of room to scale 
this table as memory size increases. 

The dentry cache hash function in 2.2.16 computes an 
intermediate value modulus the hardware’s L1 cache 
size. It is not clear whether this extra step improves the 
distribution of the hash function, since this filters noise 
that is already removed by the hash mask. 

Dcache pruning appears no more aggressive in the 2.2.16 
kernel than in earlier kernels. Some modifications to the 
swapper may improve the probability that 
shrink_dcache_memory() is invoked, however. 

3.4 Inode cache 

The dentry cache, described above, provides a fast way 
of mapping directory entries to inodes. Kernel developers 
expected the dentry cache to reduce the need for an effi-
cient inode cache. Thus, when the dentry cache was im-
plemented, the inode cache hash table was reduced to 
256 buckets (8 bit hash). As we shall see, this has had a 
more profound impact on system performance than ex-
pected. 

The inode cache hash function is a shift-add function 
similar to the dentry cache hash function. 

#define HASH_BITS       8 
#define HASH_SIZE       (1UL << HASH_BITS) 
#define HASH_MASK       (HASH_SIZE-1) 
 
static inline unsigned long hash( 
    struct super_block *sb, 
    unsigned long i_ino) 
{ 
    unsigned long tmp = i_ino | 
        (unsigned long) sb; 
    tmp = tmp + (tmp >> HASH_BITS) + 
        (tmp >> HASH_BITS*2); 
    return tmp & HASH_MASK; 
} 
 

kernel average throughput elapsed time 
reference 4282.8 s=29.96 12 min 57 sec 
12 bit 4361.3 s= 11.15 12 min 36 sec 
mult 4346.0 s=20.87 12 min 52 sec 
14 bit 4368.3 s= 20.41 12 min 54 sec 

Table 4. Benchmark throughput comparison of different hash functions in the dcache cache hash table. This table shows that 
increasing the hash table size in the dentry cache has significant benefits for system throughput, decreasing benchmark elapsed time 
by 15 seconds. Other changes decrease elapsed time by only a few seconds. 



 

Histogram 5 shows why this table is too small. The hash 
chains are extremely long. In addition, the hit rate shows 
that most lookups are unsuccessful, meaning that almost 
every lookup request has to traverse the entire bucket. 
The average number of iterations per lookup is almost 
40! 

Even though there are an order of magnitude fewer look-
ups in the inode cache than there are in the other caches, 
this cache is still clearly a performance bottleneck. To 
demonstrate this, we ran tests on four different hash func-
tions. Our reference kernel results (from Table 1) reap-
pear in Table 5 for convenience. The “12-bit” kernel is 
the same as the reference kernel except that the hash ta-
ble size has been increased to 4096 buckets. The “mult” 
kernel has 4096 inode cache hash table buckets as well, 
and uses the multiplicative hash function introduced 
above. The “14-bit” kernel is the same as the reference 
kernel except that the hash table size has been increased 
to 16384 buckets. 

The 12-bit hash table is the clear winner. Increasing the 
hash table size further helps performance slightly, but 
also increases inter-run variance to such an extent that 
total elapsed time is longer than for the “12-bit” kernel. 
Adding multiplicative hashing doesn’t help much here 
because the table is already full, and well balanced. 

There is no difference between the 2.2.5 inode cache 
hash table implementation and the implementation that 
appears in the 2.2.16 kernel. Simply making this hash 
table larger by a factor of four would be an effective per-
formance and scalability improvement for 2.2.16. The 
inode cache hash table size is dynamically computed in 
2.4 kernels during system start-up. The 2.4 kernel’s inode 
cache can grow considerably larger than earlier versions, 
thus it requires a scalable hash table. 

kernel average throughput maximum throughput elapsed time 
reference 4282.8 s=29.96 4313.0 12 min 57 sec 
14 bit 4375.2 s=25.92 4397.4  12 min 42 sec 
mult, shift 11 4368.7 s=62.65 4406.2 12 min 39 sec 
mult, shift 17 4375.9 s=10.40 4389.0 12 min 40 sec 
shrink 4368.7 s=33.36 4390.7 12 min 40 sec 
shrink + mult 11 4380.4 s=13.53 4396.5 12 min 35 sec 
shrink + mult 17 4368.5 s=16.21 4383.6 12 min 42 sec 

Table 5. Benchmark throughput comparison of different hash functions in the inode cache hash table. Increasing the size of 
the inode cache hash table has clear performance benefits, as this table shows. Replacing the hash function in this cache actually 
hurts performance. 

Apr 27 17:23:31 pillbox kernel: Inode cache total lookups: 189321  (hit rate: 3%) 
Apr 27 17:23:31 pillbox kernel:  hash table size is 256 buckets 
Apr 27 17:23:31 pillbox kernel:  hash table contains 9785 objects 
Apr 27 17:23:31 pillbox kernel:  largest bucket contains 54 inodes 
Apr 27 17:23:31 pillbox kernel:  find_inode() iterations/lookup: 38978/1000 
Apr 27 17:23:31 pillbox kernel:  hash table histogram: 
Apr 27 17:23:31 pillbox kernel:   size  buckets    inodes sum-pct 
Apr 27 17:23:31 pillbox kernel:     0        0        0       0 
Apr 27 17:23:31 pillbox kernel:     1        0        0       0 
Apr 27 17:23:31 pillbox kernel:     2        0        0       0 
Apr 27 17:23:31 pillbox kernel:     3        0        0       0 
Apr 27 17:23:31 pillbox kernel:     4        0        0       0 
Apr 27 17:23:31 pillbox kernel:     5        0        0       0 
Apr 27 17:23:31 pillbox kernel:     6        0        0       0 
Apr 27 17:23:31 pillbox kernel:     7        0        0       0 
Apr 27 17:23:31 pillbox kernel:     8        0        0       0 
Apr 27 17:23:31 pillbox kernel:     9        0        0       0 
Apr 27 17:23:31 pillbox kernel:    10        0        0       0 
Apr 27 17:23:31 pillbox kernel:    11        0        0       0 
Apr 27 17:23:31 pillbox kernel:    12        0        0       0 
Apr 27 17:23:31 pillbox kernel:    13        0        0       0 
Apr 27 17:23:31 pillbox kernel:    14        0        0       0 
Apr 27 17:23:31 pillbox kernel:    15        0        0       0 
Apr 27 17:23:31 pillbox kernel:   >15      256     9785     100 

Histogram 5. Full inode cache using the old hash function. This histogram shows what happens when too many objects are
stored in an undersized hash table. Every inode in this hash table resides in a bucket that contains, on average, 37 other objects.
Combined with the very low hit rate, this results in a significant negative performance impact. 



 

 

4. Combination testing  

In this section, we optimize all hash tables we’ve studied 
so far, and benchmark the resulting kernels. Our bench-
marks are ten 128 script runs on the four-way Dell. 

We selected optimizations among the best results shown 
above, then tried them in combination. We find that there 
are performance relationships among the various caches, 
so we show the results for the best combinations that we 
tried. 

The “Reference” kernel is a stock 2.2.5 Linux kernel 
with 4000 process slots:  

• a 32768 bucket buffer hash table with a one-to-
one hash function 

• a 2048 bucket page hash table with a simple 
shift-add hash function 

• a 256 bucket inode hash table with a simple 
shift-add hash function 

• a 1024 bucket dentry hash table with a simple 
shift-add hash function 

Kernel “A” is a plain 2.2.5 Linux kernel with 4000 proc-
ess slots and: 

• a 16384 bucket hash table using the multiply 
and shift-by-11 hash function 

• a 8192 bucket page cache with the multiplica-
tive hash function described in the page cache 
section 

• a 2048 bucket inode hash table using a slightly 
modified shift-add hash function 

• a 8192 bucket dcache hash table with addition 
instead of XOR in its hash function. 

Kernel “B” is a plain 2.2.5 Linux kernel with 4000 proc-
ess slots and: 

• a 16384 bucket buffer hash table with Peter 
Steiner’s shift-add hash function 

• a 8192 bucket page cache with the multiplica-
tive hash function described in the page cache 
section 

• a 2048 bucket inode hash table using a slightly 
modified shift-add hash function  

• a 8192 bucket dcache hash table with addition 
instead of XOR in its hash function. 

Kernel “C” is a plain 2.2.5 Linux kernel with 4000 proc-
ess slots and:  

• a 16384 bucket hash table using the multiply 
and shift-by-11 hash function 

• a 8192 bucket page cache with the reference 
kernel’s hash function 

• a 2048 bucket inode hash table using a slightly 
modified shift-add hash function  

• a 8192 bucket dcache hash table with addition 
instead of XOR in its hash function. 

Kernel “D” is a plain 2.2.5 Linux kernel with 4000 proc-
ess slots and:  

• a 16384 bucket has table using the multiply and 
shift-by-11 hash function 

• a 8192 bucket page cache with the offset hash 
function described above 

• a 2048 bucket inode hash table using a slightly 
modified shift-add hash function  

• a 8192 bucket dcache hash table with addition 
instead of XOR in its hash function 

Examining Table 6, we’d like to select a combination 
that reduces inter-run variance and elapsed time, as well 
as maximizes throughput and minimizes hash table 
memory footprint. While kernel “C” offers the highest 
maximum throughput, its inter-run variance is also larg-
est. On the other hand, kernel “D” has the second highest 
average throughput, the shortest elapsed time, and the 
best inter-run variance. This seems like a reasonable 
compromise. 

kernel average throughput maximum throughput elapsed time 
Reference 4300.7 s=15.73 4321.1 26 min 41 sec 
Kernel A 4582.9 s=12.55 4592.8 25 min 24 sec 
Kernel B 4577.9 s=16.22 4602.0 25 min 18 sec 
Kernel C 4596.2 s=22.30 4619.5 25 min 18 sec 
Kernel D 4591.3 s=10.98 4608.9 25 min 15 sec 

Table 6. Benchmark throughput comparison of multiple kernel hash optimizations. Combining improvements in each of the 
four caches we studied results in an elapsed time improvement of almost a minute and a half. 



 

5. Multiplicative hashing 

Hash function alternatives include:  

• Using an untransformed key  

• Modulus hashing  

• Multiplicative hashing  

• Using an inexpensive but sub-optimal shift-add 
hash function  

• Using a “correct” shift-add hash function  

• Using a hash function driven by one or more 
random tables 

• Architecture-specific hash functions (e.g. multi-
plication on fast, modern processors, and some-
thing else on older processors) 

Multiplicative hashing is a form of modulus hashing that 
is less expensive because the results are often as good but 
a multiplication operation is used instead of a division 
operation. Multiplicative hashing is controversial because 
of the expense of multiplication instructions on some 
hardware types. For example, on 68030 CPUs, popular in 
old Sun and Macintosh computers, multiplication re-
quires up to 44 CPU cycles for a 32-bit multiplication, 
whereas a memory load only requires an extra 2 cycles 
per instruction [8]. On a hardware architecture like the 
68030 that has little caching, fast load times compared to 
CPU operations, and expensive multiplication, a multi-
plicative hash might be inferior even if it cuts the average 
number of loop iterations per lookup request by a factor 
of four or more. 

However, it turns out that several of the alternatives are 
just as expensive, or even more expensive, than multipli-
cative hashing. Random table-driven hash functions re-
quire several table lookups, and several shifts, logical 
AND operations, and additions. An e-mail message from 
the linux-kernel mailing list explains the problem; see 
Appendix A. 

On our example 68030, shifting requires between 4 and 
10 cycles, and addition operations aren’t free either. If the 
instructions that implement the hash function are many, 
they will likely cause instruction cache contention that 
will be worse for performance than a multiplication op-
eration. In general, a proper shift-add hash function is 
almost as expensive in CPU cycles as a multiplicative 
hash. On a modern superscalar processor, shifting and 
addition operations can occur in parallel as long as there 
are no address generation interlocks (AGIs). An AGI oc-
curs when the results of one operation are required to 
form an address in a later operation that might otherwise 

have been parallelized by superscalar CPU hardware [6, 
9]. AGIs are much more likely for a table-driven hash 
function. 

Multiplicative hash functions are often very concise. The 
hash functions we tried above, for example, compile to 
three instructions on ia32, comprising 15 bytes. Included 
in the 15 bytes are all the constants involved in the calcu-
lation, leaving only the key itself to be loaded as data. In 
other words, the whole hash function fits into a single 
line in the CPU’s instruction cache on contemporary 
hardware. The shift-add hash functions are generally 
lengthy, requiring several cache lines to contain, multiple 
loads of the key, and register allocation contention. 

The question becomes, finally, how many CPU cycles 
should be spent by the hash function to get a reasonable 
bucket size distribution? In most practical situations, a 
simple shift-add function suffices. However, one should 
always test with actual data before deciding on a hash 
function implementation. Hashing on block numbers, as 
the Linux buffer cache does, turns out to require a par-
ticularly good hash function, as disk block numbers ex-
hibit a great deal of regularity. 

5.1 A Little Theory 

Our multiplicative hash functions were derived from 
Knuth, p. 513ff [5]. The theory posits that machine mul-
tiplication by a large number that is likely to cause over-
flow is the same as finding the modulus by a different 
number. We won’t repeat Knuth here, but suffice it to say 
that choosing such a number is complicated. In brief, our 
choice is based on finding a prime that is in golden ratio 
to the machine’s word size (2 to the 32nd in our case). 
Primality isn’t strictly necessary, but it adds certain desir-
able qualities to the hash function. See Knuth for a dis-
cussion of these desirable qualities. 

We selected 2,654,435,761 as our multiplier. It is prime, 
and its value divided by 2 to the 32nd is a very good ap-
proximation of the golden ratio [2, 10]. 

6180339887.0
2

15 ≅−
 

6180339868.0
2

2654435761
32

≅  

To obtain the best effects of this “division” we need to 
choose the correct shift value. This is usually the word 
size, in bits, minus the hash table size, in bits. This shifts 
the most significant bits of the result of the “division” 
down to where they can act as the hash table index, pre-
serving the greatest effects of the golden ratio. Some-
times experimentation reveals a better shift value for a 
given set of input data, however. 



 

 

6. Conclusions and Future Work 
Careful selection and optimization of kernel hash tables 
can boost performance considerably, and improve inter-
run variance as well, maximizing system throughput. 
Selecting a good hash function and benchmarking its 
effectiveness can be tedious, however. Usually, the most 
notable performance optimization comes from increasing 
the size of a hash table. In this report, we have shown 
that larger and/or dynamically sized hash tables are es-
sential for Linux kernel performance and scalability. 
Adding dynamic hash table sizing is a simple way to get 
a five to 20% performance improvement, depending on 
how much physical memory is available on a system. 

To extend this study, the cache instrumentation patch 
should be re-written to use a file in /proc instead of writ-
ing to system console log, and should be integrated into 
the stock kernel as a “Kernel Hacking” configuration 
option. The tuning patch should be benchmarked on 64-
bit hardware to see if another constant must be chosen 
there. A benchmark run on older architectures, such as 
MC68000, should determine if these changes would seri-
ously degrade performance on older machines. 

We could also investigate the performance difference 
between in-lining the page cache management routines 
(which eliminates the subroutine call overhead) and leav-
ing them as stand-alone routines (which means they have 
a smaller L1 cache footprint). A separate swap cache 
hash function might also optimize the separate uses of 
the page cache hash tables. 

Additionally, there are still open questions about why 
shrinking the dentry cache more aggressively can help 
performance. A study could focus on the cost of a dentry 
cache miss versus the cost of a page fault or buffer cache 
miss. Discovering alternative ways of triggering a dentry 
cache prune operation, or alternate ways of calculating 
the prune priority, may also be interesting. 

Finally, there is still opportunity to analyze even more 
carefully the real keys and hash functions in use in sev-
eral of the tables we’ve analyzed here, as well as several 
tables we didn’t visit in this report, such as the uid and 
pid hash tables, and the vma data structures. 

For more information on modifications and kernel in-
strumentation described in this report, see the Linux 
Scalability Project web site: 

http://www.citi.umich.edu/projects/linux-

scalability 
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Appendix A: E-mail 

Date: Thu, 15 Apr 1999 15:01:54 -0700 
From: Iain McClatchie  
To: Paul F. Dietz  
Cc: linux-kernel@vger.rutgers.edu 
Subject: Re: more on hash functions 
 
I got a few suggestions about how to use multiple lookups with a 
single table.  All the suggestions make the hash function itself 
slower, and attempt to fix an issue -- hash distribution – that 
doesn't appear to be a problem.  I thought I should explain why 
the table lookup function is slow. 
 
A multiplication has a scheduling latency of either 5 or 9 cycles on a 
P6.  Four memory accesses take four cycles on that same P6.  So the core 
operations for the two hash function are actually very similar in delay, 
and the table lookup appears to have a slight edge.  The difference is 
in the overhead. 
 
A multiplicative hash, at minimum, requires the loading of a constant, 
a multiplication, and a shift.  Egcs actually transforms some constant 
multiplications into a sequence of shifts and adds which may have 
shorter latency, but essentially, the shift (and nothing else) goes in 
series with the multiplication and as a result the hash function has 
very little latency overhead. 
 
A table lookup hash spends quite a lot of time unpacking the bytes 
from the key, and furthermore uses a load slot to unpack each byte. 
This makes for 8 load slots, which take 1 cycle each.  Even if 
fully parallelized with unpacking, we end up with a fair bit of 
latency.  Worse yet, egcs runs out of registers and ends up shifting 
the key value in place on the stack twice, which gobbles two load and 
two store slots. 
 
Bottom line: CPUs really suck at bit-shuffling and even byte-shuffling. 
If there is some clever way to code the byte unpacking in the table 
lookup hash function, perhaps using the x86's trick register file, 
it might end up faster than the multiplicative hash. 
 
-Iain 


