USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,
Atlanta

Atlanta, Georgia, USA
October 10-14, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Linux Kernel Hash Table Behavior: Analysis and I mprovements

Chuck Lever, Sun-Netscape Alliance
<chuckl @net scape. con®

Linux Scalability Project
Center for Information Technology Integration
University of Michigan, Ann Arbor

linux-scalability@iti.umch.edu
http://wwv. citi.um ch.edu/projects/linux-scalability

Abstract

The Linux kernel stores high-usage data objects such as pages, buffers,
and inodes in data structures known as hash tables. In this report we
analyze existing static hash tables to study the benefits of dynamically
sized hash tables. We find significant performance boosts with careful
analysis and tuning of these critical kernel data structures.

1. Introduction

Hash tables are a venerable and well-understood data
structure often used for high-performance applications
because of their excellent average lookup time. Linux, an
open-source Posix-compliant operating system, relies on
hash tables to manage pages, buffers, inodes, and other
kernel-level data objects.

As we show, Linux performance depends on the effi-
ciency and scalability of these data structures. On a small
machine with 32M of physical RAM, a page cache hash
table with 2048 buckets is large enough to hold all possi-
ble cache pages in chains shorter than three. However, a
hash table this small cannot hold all possible pages on a
larger machine with, say, 512M of physicad RAM while
maintaining short chains to keep lookup times quick.
Keeping hash chains short is even more important on
modern CPUs because of the effects of CPU cache pollu-
tion on overall system performance. Lookups on longer
chains can expel useful data from CPU caches. The best
compromise between fast lookup times on large-memory
hardware and less wasted space on small machines is

This document was written as part of the Linux Scalability Project. The
work described in this paper was supported via generous grants from
the Sun-Netscape Alliance, Intel, Dell, and IBM.

This document is Copyright © 2000 by AOL-Netscape, Inc. Trade-
marked material referenced in this document is copyright by its re-
spective owner.

dynamically sizing hash tables as part of system start-up.
The kernel can adjust the size of these hash tables de-
pending on the conditions of the hardware at system boot
time.

Hash tables depend on good average case behavior to
perform well. Average case behavior relies on the actual
input data more often than we like to admit, especially
when using simple shift-add hash functions. In addition,
hash functions chosen for statically allocated hash tables
may be inappropriate for tables that can vary in size. Sta-
tistical examination of specific hash functions used in
combination with specific real world data can expose
opportunities for performance improvement.

It is also important to understand why hash tables are
employed in preference to a more sophisticated data
structure, such as a tree. Insertion into a hash table is
O(2) if hashed objects are maintained in last-in first-out
(LiFO) order in each bucket. A tree insertion or deletion is
O(log n). Object deletion and hash table lookup opera-
tions are often O(n/m) (where n is the number of objects
in the table and m is the number of buckets), which ap-
proaches O(1) when the hash function spreads hashed
objects evenly through the hash table and there are more
hash buckets than objects to be stored. Finally, if design-
ers are careful about hash table architecture, they can
keep the average lookup time for both successful and
unsuccessful lookups low (i.e. less than O(log n)) by

using a large hash table and a hash function that thor-
oughly randomizes the key.

We want to know if larger or dynamically sized hash ta-
bles improve system performance, and if they do, by how
much. In this report we analyze several critical hash ta
bles in the Linux kernel, and describe minor tuning
changes that can improve Linux performance by a con-
siderable margin. We also show that current hash func-
tions in the Linux kernel are, in general, appropriate for
use with dynamically sized hash tables. The remainder of
this report is organized as follows. Section 2 outlines our
methodology. In Section 3, we separately examine four
critical kernel hash tables and show how modifications to
each hash table affect overall system performance. Sec-
tion 4 reports results of combining the findings of Sec-
tion 3. We discuss hash function theory as it applies on
modern CPU architectures in Section 5, and Section 6
concludes the report.

2. M ethodology

Our goal isto improve system throughput. Therefore, the
final measure of performance improvement is benchmark
throughput. However, there are a number of other metrics
we can use to determine the “goodness’ of a hash func-
tion with a given set of real-life input keys. In this sec-
tion, we describe our benchmark procedures and the ad-
ditional metrics we use to determine hash function good-
ness.

We use the SPEC SDM benchmark suite to drive our
tests [7]. SDM emulates a multi-tasking software devel-
opment workload with a fixed script of commands typi-
caly used by software developers, such as cc, ed,
nrof f, and spel I . We model offered load by varying
the number of simulated users, i.e., concurrent instances
of the script that run during the benchmark. The through-
put values generated by the benchmark are in units of
“scripts per hour.” Each value is calculated by measuring
the elapsed time for a given benchmark run, then dividing
by the number of concurrent scripts running during the
benchmark run. The elapsed time is measured in hun-
dredths of a second.

We benchmark two hardware bases:

1. A D€l PowerEdge 6300/450 with 512M of RAM
and a single Seagate 18G LVD SCSI hard drive.
This machine uses four 450Mhz Xeon Pentium ||
processors, each with 512K of L2 cache.

2. A two processor custom-built system with 128M
of RAM and a pair of 2G Quantum Fireball hard
drives. This machine uses 200Mhz Pentium Pro

CPUs with a 256K external L2 cache for each
CPU, supported by the Intel i440FX chipset.

At the time of these tests, these machines were loaded
with the Red Hat 5.2 distribution using a 2.2.5 Linux
kernel built with eges 1.1.1, and using glibc 2.0 as in-
stalled with Red Hat.

The dua Pentium Pro workloads vary from sixteen to
sixty-four concurrent scripts. The sixteen-script workload
fits entirely in RAM and is CPU bound. The sixty-four-
script workload does not fit into RAM, thus it is bound
by swap and file 1/0O. The four-way system ran up to 128
scripts before exhausting the system file descriptor limit
because plain 2.2.5 kernels used in this report do not con-
tain large f dset support. All of the 128 script bench-
mark fit easily into its 512M of physical memory, so this
workload is designed to show how well the hash tables
scale on large-memory systems when unconstrained by
1/0 and paging bottlenecks.

On our dua Pentium Pro, both disks are used for bench-
mark data and swap partitions. The swap partitions are of
equal priority and size. The benchmark data is stored on
file systems mounted with the “noatime” and “nosync”
options for best performance. Likewise, on the four-way,
the benchmark file system is mounted with the “noatime”
and “nosync” options, and only one swap partition is
used.

Hash performance depends directly on the laws of prob-
ability, so we are most interested in the statistical behav-
ior of the hash (i.e. its “goodness’). First, we generate
hash table bucket size distribution histograms with spe-
cial kernel instrumentation. Thistells us:

e What portion of total table buckets are unused,

» Whether a high percentage of hashed objects are
contained in small buckets,

» Theworst-case (largest) bucket size, and

* Whether bucket sizes are normally distributed. A
normal distribution indicates that the hash function
spreads obj ects evenly among the hash buckets, al-
lowing the hash table to approach its best average
behavior.

Second, we measure the average number of objects
searched per bucket during lookup operations. This is a
somewhat more general measure than elapsed time or
instruction count because it applies equally to any hard-
ware architecture. We count the average number of suc-
cessful lookups separately from the average number of
unsuccessful lookups because an unsuccessful lookup
requires on average twice as many key comparisons.
These search averages are one of the best indications of

average bucket size and a direct measure of hash per-
formance. Lowering them means better average hash
performance.

Finally, we are interested in how long it takes to compute
the hash function. This value is estimated given atable of
memory and CPU cycle times, estimating memory foot-
print and access rate, cache miss rate, and guessing at
how well the instructions to compute the hash function
will be scheduled by the CPU. We estimate these based
on Hennessey and Patterson [4].

3. Four critical hash tables

In this section we investigate the response to our tuning
efforts of four critical kernel hash tables. These tables
included the buffer cache, page cache, dentry cache, and
inode cache hash tables.

3.1 Page cache

The Linux page cache contains in-core file data while the
data isin use by processes running on the system. It can
also contain data that has no backing storage, such as
data in anonymous maps. The page cache hash table in
the plain 2.2.5 kernel comprises 2048 buckets, and uses
the following hash function from in-
clude/linux/pagemap.h:

#define PAGE_HASH BITS 11

#def i ne
PAGE_HASH SI ZE (1 << PAGE_HASH BI TS)

static inline unsigned | ong
_page_hashfn(struct inode * inode,
unsi gned | ong of fset)

{
#define i (((unsigned | ong) inode)/
(sizeof (struct inode) &
~ (sizeof (struct inode) - 1)))
#define o (offset >> PAGE_SHI FT)
#define s(x) ((x)+((x)>>PAGE_HASH BI TS))

return s(i+o) & (PAGE_HASH SI ZE-1);

#undef i
#undef o
#undef s

The hash function key is made up of two arguments: the
i node and the of f set . The i node argument is a mem-
ory address of the in-core inode that contains the data
mapped into the requested page. The of f set argument
is a memory address of the requested page relative to a
virtual address space. The result of the function is an
index into the page cache hash table.

This simple shift-add hash function is surprisingly effec-
tive due to the pre-existing randomness of the i node
address and of f set arguments. Our tests reveal that
bucket size remains acceptable as PAGE_HASH BI TS is
varied from 11 to 16.

Normally, the of f set argument is page-aigned, but
when the page cache is doubling as the swap cache, the
of fset argument can contain important index-
randomizing information in the lower bits. Stephen
Tweedie suggests that adding of f set again, unshifted,
before computing s() , would improve bucket size distri-
bution problems caused when hashing swap cache pages
[1]. Our tests show that adding the unshifted value of
of f set reduces bucket size distribution anomalies at a
dlight but measurable across-the-board performance cost.

kernel table size 16 scripts 32 scripts 48 scripts 64 scripts total elapsed
(buckets)

reference 2048 1864.7 s=3.77 | 1800.8 s=8.51 | 1739.9s=3.61 | 1644.6 50 min 25 sec
s=29.35

13-hit 8192 1875.8s=5.59 | 1834.0s=3.71 | 1765.5s=3.01 | 1683.3 49 min 43 sec
s=17.39

14-hit 16384 1877.2s=5.35 | 1830.8s=3.81 | 1770.5s3.84 | 1694.3 49 min 35 sec
s=41.42

15-hit 32768 1875.4 1832.4s=3.97 | 1770.3s=3.97 | 1691.2 49 min 36 sec
s=10.72 s=20.05

offset 16384 1880.0s=2.78 | 1843.7 17745s=4.30 | 1685.4 49 min 40 sec
s=14.65 5=33.46

mult 16384 1876.4 s=6.45 | 1836.8s=6.45 | 1773.7 s=5.20 | 1691.7 49 min 29 sec
s=25.32

rbtree N/A 1874.9 s=6.57 | 1817.0s=5.59 | 1755.3s=3.01 | 1670.8 50 min 3 sec

s=17.26

Table 1. Benchmark throughput comparison of different hash functionsin the page cache hash table. This table comparesthe
performance of several Linux kernels using differently tuned hash tablesin the page cache. Total benchmark elapsed time showsthe
multiplicative hash function improves performance the most.

table size, average throughput | average throughput, maximum elapsed time
in buckets minus first run throughput
2048 4282.8 s=29.96 4295.2 s=11.10 4313.0 12 min 57 sec
8192 4387.35=23.10 4398.5 s=5.88 4407.5 12 min 40 sec
32768 4405.3 s=5.59 4407.4 s=4.14 4413.8 12 min 49 sec

Table 2. Benchmark throughput comparison of different hash table sizes in the page cache hash table. This table shows
benchmark performance of our tweaked kernels on large memory hardware. This test shows how performance changes when the
data structure is heavily populated, and the system is not swapping.

Table 1 shows relative throughput results for kernels built
with hash table tuning modifications. The “reference”
kernel is a plain 2.2.5 kernel with a 4000 entry process
table. The “13-bit,” “14-bit” and “15-bit” kernels are
plain 2.2.5 kernel with a 4000 entry process table and a
13, 14, and 15-hit (8192, 16384, and 32768 buckets) page
cache hash table. The “offset” kernd is just like the “14-
bit” kernel, but whose page cache hash function looks
like this:
return s(i+o+offset) & (PAGE_HASH SIZE-1);

The “mult” kernel is the “14-bit” kernel with a multipli-
cative hash function instead of the plain additive one:

return ((((unsigned |long)inode + offset) *
2654435761UL) >> \
(32 - PAGE_HASH BITS)) &
(PAGE_HASH_SI ZE-1);

See the section on multiplicative hashing for more about
how we derived this function.

Finaly, the “rbtree” kernel was derived from a clean
2.2.5 kernel with a special patch applied, extracted from
Andrea Arcangeli’s 2.2.5-arcal0 patch. This patch im-
plements the page cache with per-inode red-black trees, a
form of balanced binary tree, instead of a hash table [3].

We run each workload seven times, and take the results
from the middle five runs. Theresultsin Table 1 are aver-
ages and standard deviations for the middle five bench-
mark runs for each workload. The timing result is the
total length of al the runs for that kernel, including the
two runs out of seven that were ignored in the average
calculations. Each set of runs for a given kernel is
benchmarked on a freshly rebooted system. These are
obtained on our dual Pentium Pro using sixteen, thirty-
two, forty-eight, and sixty-four concurrent script work-
loads to show how performance changes between CPU
bound and 1/O bound workloads. We aso want to push
the system into swap to see how performance changes
when the page cache is used as a swap cache.

According to our own kernel program counter profiling
results, defining PAGE_HASH BI TS as 13 hits is enough
to take fi nd_page() out of the top kernel CPU users
during most heavy VM loads on large-memory machines.
However, increasing it further can help reduce the real

elapsed time required for an average lookup, improving
system performance even more. As one might expect,
increasing the hash table size had little effect on smaller
workloads. To show the effects of increased table size on
a high-end machine, we ran 128 script benchmarks on
our four-way 512M Dell PowerEdge. The kernels used in
this test are otherwise unchanged reference kernels com-
piled with 4000 process dots. The results are averages of
five runs on each kernel.

The gains in inter-run variance are significant for larger
memory machines. It is also clear that overall perform-
ance improves for tables larger than 8192 buckets, al-
though not to the same degree that it improves for atable
size increase of 2048 to 8192 buckets.

The “rbtree” kernel performs better than the “reference’
kernel. It also scores very well in inter-run variance. A
big advantage of this implementation is that it is more
space efficient, especialy on small machines, as it
doesn’'t require contiguous pages for a hash table. We
predicted the “offset” kernel to perform better when the
system was swapping, but it appears to perform worse
than both the “mult” and the “14-bit” kernel on the
heaviest workload. Finally, the “mult” kernel appears to
have the smoothest overall results, and the shortest over-
al elapsed time.

Because of the overal goodness of the existing hash
function, the biggest gain occurs when the page cache
hash table size is increased. This has performance bene-
fits for machines of al memory sizes; as hash table size
increases, more pages are hashed into buckets that con-
tain only asingle page, decreasing average lookup time.

Increasing the page cache hash table’s bucket count even
further continues to improve performance, especially for
large memory machines. However, for use on generic
hardware, 13 bits accounts for 8 pages worth of hash
table, which is probably the practical upper limit for
small memory machines.

In the 2.2.16 kernel, the page cache hash table is dynami-
cally sized during system start-up. A hash table size is
selected based on the physical memory size of the hard-
ware; table size is the total number of pages available in
the system multiplied by the size of a pointer. For exam-

ple, 64 megabytes of RAM trandate to 16384 buckets on
hardware that supports 4-byte pointers.

Of course, the number of pages that can be allocated con-
tiguously for the table limits its size. Hence the hash
function mask and bit shift value are computed based on
the actual size of the hash table. The mask in our exam-
pleis 16383, or Ox3fff, one less than the number of buck-
ets in the table. The shift value is 15, the number of bits
in 16384.

The computed size for thistable is unnecessarily large. In
general, this formula provides a bucket for every page on
the system on smaller machines. Performance on a 64M
system is likely limited by many other factors, including
memory fragmentation resulting from contiguous kernel
data structures. According to our measurement of 2.2.5
kernels, a hash table a half or even a quarter of that size
can still perform well, and would save memory and lower
address space fragmentation.

3.2 Buffer cache

Linux holds dirty data blocks about to be written to disk
in its buffer cache. The buffer cache hash table in the
plain 2.2.5 kernel comprises 32768 buckets, and uses this
hash function from fs/buffer.c:

#defi ne HASHDEV(dev)
#defi ne _hashfn(dev, bl ock) \

(((unsi gned) (HASHDEV(dev) bl ock)) &\
bh_hash_mask)

((unsigned int) (dev))

This function adds no randomness to either argument,
simply xor-ing them together, and truncating the result.

Histogram 1 was obtained during several heavy runs of
our benchmark suite on the dual Pentium Pro hardware
configuration. Each histogram divides its output into sev-
eral columns. First, the “buckets’ column reports the
observed number of buckets in the hash table containing
“size” objects; there are 1037 buckets observed to con-
tain asingle buffer in this example. The “buffers’ column
reports how many buffers are found in buckets of that
size, aproduct of the size and observed bucket count. The
“sum-pct” column is the cumulative percentage of buffers
contained in buckets of that size and smaller. In other
words, in Histogram 1, 28% of al buffers in the hash
table are stored in buckets containing 8 or fewer buffers,
and 42% of all buffers were stored in buckets containing
15 or fewer buffers. The number of empty buckets in the
hash table is the value reported in the “buckets’ column
for size 0.

The average bucket size for 37,000+ buffers stored in a
16384 bucket table should be about 3 (that is, O(n/m),
where n is the number of objects contained in the hash
table, and m is the number of hash buckets). The largest
bucket contains 116 buffers, almost 2 orders of magni-
tude more than the expected average, even though the
hash table is less than twenty-six percent utilized (16384
total buckets minus 12047 empty buckets, divided by
16384 total buckets gives us 0.26471). At one point dur-
ing the benchmark, the author observed buckets contain-
ing more than 340 buffers.

Apr 27 17:17:51 pill box kernel: Buffer cache total |ookups: 296481 (hit rate: 54%
Apr 27 17:17:51 pillbox kernel: hash table size is 16384 buckets
Apr 27 17:17:51 pillbox kernel: hash table contains 37256 objects
Apr 27 17:17:51 pill box kernel: |argest bucket contains 116 buffers
Apr 27 17:17:51 pillbox kernel: find_buffer() iterations/Ilookup: 2155/ 1000
Apr 27 17:17:51 pillbox kernel: hash table histogram

Apr 27 17:17:51 pill box kernel: size buckets buffers sumpct
Apr 27 17:17:51 pillbox kernel: 0 12047 0 0

Apr 27 17:17:51 pillbox kernel: 1 1037 1037 2

Apr 27 17:17:51 pill box kernel: 2 381 762 4

Apr 27 17:17:51 pillbox kernel: 3 295 885 7

Apr 27 17:17:51 pillbox kernel: 4 325 1300 10

Apr 27 17:17:51 pill box kernel: 5 399 1995 16

Apr 27 17:17:51 pillbox kernel: 6 188 1128 19

Apr 27 17:17:51 pillbox kernel: 7 303 2121 24

Apr 27 17:17:51 pill box kernel: 8 160 1280 28

Apr 27 17:17:51 pillbox kernel: 9 169 1521 32

Apr 27 17:17:51 pillbox kernel: 10 224 2240 38

Apr 27 17:17:51 pill box kernel: 11 64 704 40

Apr 27 17:17:51 pillbox kernel: 12 49 588 41

Apr 27 17:17:51 pillbox kernel: 13 15 195 42

Apr 27 17:17:51 pill box kernel: 14 3 42 42

Apr 27 17:17:51 pillbox kernel: 15 4 60 42

Apr 27 17:17:51 pillbox kernel: >15 721 21398 100

Histogram 1. Full buffer cache using the old hash function. This histogram demonstrates how poorly the Linux buffer cache
spreads buffers across the buffer cache hash table. Most of the buffers are stored in hash buckets that contain more than 15 other

buffers. This slows benchmark throughput markedly.

kernel table size average avg throughput, maximum elapsed time
throughput minus first run throughput
reference 32768 4282.8 s=29.96 4295.2 s=11.10 4313.0 12 min 57 sec
mult, shift 16 32768 4369.35=19.35 4376.4 s=14.53 4393.2 12 min 45 sec
mult, shift 11 32768 4380.8 s=12.09 4382.8 s=11.21 4394.0 12 min 50 sec
shift-add 32768 4388.9 s=21.90 4397.2s=11.70 4415.5 12 min 31 sec
mult, shift 11 16384 4350.5 s=99.75 4394.6 s=15.59 4417.2 12 min 41 sec
mult, shift 17 16384 4343.7 s=61.17 4369.9 s=17.39 4390.2 12 min 46 sec
shift-add 16384 4390.2 s=22.55 4399.6 s=8.52 4408.3 12 min 37 sec
mult, shift 18 8192 4328.9 s=16.61 4333.7 s=15.05 4349.6 12 min 41 sec
shift-add 8192 4362.5 s=13.37 4362.8 s=14.90 4382.3 12 min 45 sec

Table 3. Benchmark throughput comparison of different hash functionsin the buffer cache hash table. We report the results
of benchmarking several new buffer cache hash functions in this table. Using a sophisticated multiplicative hash function appearsto

boost overall system throughput the most.

After the benchmark is over, most of the buffers still re-
side in large buckets (see Histogram 2). Eighty-five per-
cent of the buffers in this cache are contained in buckets
with more than 15 buffersin them, even though there are
16167 empty buckets—an effective bucket utilization of
less than two percent!

Clearly, a better hash function is needed for the buffer
cache hash table. The following table compares bench-
mark throughput results from the reference kernel (un-
modified 2.2.5 kernel with 4000 process slots, as above)
to results obtained after replacing the buffer cache hash
function with several different hash functions. Hereisour
multiplicative hash function:

#defi ne _hashfn(dev, bl ock) ((((block) * \

2654435761UL) >> SH FT) &\
bh_hash_nask)

We tested variations of this function (SHI FT value is
fixed at 11, or varies depending on the table size). We
aso tried a shift-add hash function to see if the multipli-
cative hash was really best. The shift-add function comes
from Peter Steiner, and uses a shift and subtract ((block
<< 7) - block) to effectively multiply by a Mersenne
prime (block * 127) [1]. Multiplication by a Mersenne
prime is easy to calculate, as it reduces to a subtraction
and a shift operation.

#define _hashfn(dev, bl ock) \
(((block << 7) - block + (block >> 10) \
+ (block >> 18)) &\
bh_hash_mask)

This series of tests consists of five runs of 128 concurrent
scripts on the four-way Dell PowerEdge system. We re-
port an average result for all five runs, and an average
result without the first run. The five-run average and the
total elapsed time show how good or bad the first run,

Apr 27 17:30:49 pill box kernel: Buffer cache total |ookups: 3548568 (hit rate: 78%
Apr 27 17:30:49 pillbox kernel: hash table size is 16384 buckets
Apr 27 17:30:49 pillbox kernel: hash table contains 2644 objects
Apr 27 17:30:49 pillbox kernel: [|argest bucket contains 80 buffers
Apr 27 17:30:49 pillbox kernel: find_buffer() iterations/Iookup: 1379/1000
Apr 27 17:30:49 pillbox kernel: hash table histogram

Apr 27 17:30:49 pill box kernel: size buckets buffers sumpct
Apr 27 17:30:49 pillbox kernel: 0 16167 0 0

Apr 27 17:30:49 pillbox kernel: 1 110 110 4

Apr 27 17:30:49 pill box kernel: 2 10 20 4

Apr 27 17:30:49 pillbox kernel: 3 3 9 5

Apr 27 17:30:49 pillbox kernel: 4 1 4 5

Apr 27 17:30:49 pill box kernel: 5 0 0 5

Apr 27 17:30:49 pillbox kernel: 6 3 18 6

Apr 27 17:30:49 pillbox kernel: 7 1 7 6

Apr 27 17:30:49 pill box kernel: 8 6 48 8

Apr 27 17:30:49 pillbox kernel: 9 2 18 8

Apr 27 17:30:49 pillbox kernel: 10 1 10 9

Apr 27 17:30:49 pill box kernel: 11 2 22 10

Apr 27 17:30:49 pillbox kernel: 12 3 36 11

Apr 27 17:30:49 pillbox kernel: 13 3 39 12

Apr 27 17:30:49 pill box kernel: 14 3 42 14

Apr 27 17:30:49 pillbox kernel: 15 1 15 15

Apr 27 17:30:49 pillbox kernel: >15 68 2246 100

Histogram 2. Buffer cache using the old hash function, after benchmark is complete. This histogram shows that, even after
the benchmark completes, most buffers in the cache remain in hash buckets containing more than 15 other buffers. Addition-
aly, 3,000+ buffers stored in about 220 buckets, although more than 16,000 empty buckets remain. Over time, buffers tend to

congregate in large buckets, and system performance suffers.

which warms the system caches after a reboot, can be.
The four-run average indicates steady-state operation of
the buffer cache.

On a Pentium |1 with 512K of L2 cache, the shift-add
hash shows a higher average throughput than the multi-
plicative variants. On CPUs with less pipelining, the race
is somewhat closer, probably because the shift-add func-
tion, when performed serialy, can sometimes take as
long as multiplication. However, the shift-add function
also has the lowest variance in this test, and the highest
first-run throughput, making it a clear choice for use as
the buffer cache hash function.

We aso tested with smaller hash table sizes to demon-
strate that buffer cache throughput can be maintained
using fewer buckets. Our test results bear this out; in fact,
often these functions appear to work better with fewer
buckets. Reducing the size of the buffer cache hash table
saves more than a dozen contiguous pages (in the exist-
ing kernel, this hash table already consumes a contiguous
32 pages).

Histogram 3 shows what a preferred bucket size distribu-
tion histogram looks like. These runs were made with the
mult-11 hash function and a 16384-bucket hash table.
This histogram snapshot was made at approximately the
same points during the benchmark as the examples
above. After the benchmark completes, the hash table
returns to a nominal state. We can also see that the meas-
ured iterations per loop average is an order of magnitude
less than with the original hash function.

We'd like to underscore some of the good statistical
properties demonstrated in Histogram 3. First, the bucket

size distributions shown in this histogram approach the
shape of a normal distribution, suggesting that the hash
function is doing a good job of randomizing the keys.
The maximum height of the distribution occurs for buck-
ets of size 3 (our expected average), which is about n/m,
where n is the number of stored objects, and m is the
number of buckets. A perfect distribution centers on the
expected average, and has very short tails on either side,
only one or two buckets. While the distribution in Histo-
gram 3 is somewhat skewed, observations of tables that
are even more full show that the curve becomes less
skewed as it fills; that is, as the expected average grows
away from zero, the shape of the size distribution more
closely approximates the normal distribution. In all cases
we've observed, the tail of the skew is fairly short, and
there appear to be few degenerations of the hash (where
one or more very large buckets appear).

Second, in both Histogram 3 and 4, about 68% of all
buffers contained in the hash table are stored in buckets
containing the expected average number of buffers or
less. The expected standard deviation is sixty-eight per-
cent of all samples. Lastly, the number of empty buckets
in the first example above is only 12.4%, meaning more
than 87% of all bucketsin the table are used.

The 2.2.16 kernel sports a new buffer cache hash func-
tion. The new hash function is a fairly complex shift-add
function that is intended to randomize the fairly regular
values of device numbers and block vaues. It is difficult
to arrive at a function that is statistically good for the
buffer cache, because block number regularity varies
with the geometry and size of disk drives.

Apr 27 18:14:50 pill box kernel: Buffer cache total |ookups: 287696 (hit rate: 54%
Apr 27 18:14:50 pillbox kernel: hash table size is 16384 buckets
Apr 27 18:14:50 pillbox kernel: hash table contains 37261 objects
Apr 27 18:14:50 pill box kernel: [|argest bucket contains 11 buffers
Apr 27 18:14:50 pillbox kernel: find_buffer() iterations/I|ookup: 242/1000
Apr 27 18:14:50 pillbox kernel: hash table histogram

Apr 27 18:14:50 pill box kernel: size buckets buffers sumpct
Apr 27 18:14:50 pill box kernel: 0 2034 0 0

Apr 27 18:14:50 pillbox kernel: 1 3317 3317 8

Apr 27 18:14:50 pill box kernel: 2 4034 8068 30

Apr 27 18:14:50 pillbox kernel: 3 3833 11499 61

Apr 27 18:14:50 pillbox kernel: 4 2082 8328 83

Apr 27 18:14:50 pill box kernel: 5 712 3560 93

Apr 27 18:14:50 pillbox kernel: 6 222 1332 96

Apr 27 18:14:50 pillbox kernel: 7 78 546 98

Apr 27 18:14:50 pill box kernel: 8 46 368 99

Apr 27 18:14:50 pillbox kernel: 9 19 171 99

Apr 27 18:14:50 pillbox kernel: 10 5 50 99

Apr 27 18:14:50 pill box kernel: 11 2 22 100

Apr 27 18:14:50 pillbox kernel: 12 0 0 100

Apr 27 18:14:50 pill box kernel: 13 0 0 100

Apr 27 18:14:50 pill box kernel: 14 0 0 100

Apr 27 18:14:50 pill box kernel: 15 0 0 100

Apr 27 18:14:50 pillbox kernel: >15 0 0 100

Histogram 3. Full buffer cache using the mult-11 hash function. This histogram of buffer cache hash bucket sizes shows
marked improvement. Most buffers reside in small buckets, thus most buffersin the buffer cache can be found after checking

fewer than two or three other buffersin the same bucket.

Apr 27 18:27:19 pill box kernel: Buffer cache total |ookups: 3530977 (hit rate: 78%
Apr 27 18:27:19 pillbox kernel: hash table size is 16384 buckets
Apr 27 18:27:19 pillbox kernel: hash table contains 2717 objects
Apr 27 18:27:19 pillbox kernel: |argest bucket contains 6 buffers
Apr 27 18:27:19 pillbox kernel: find_buffer() iterations/Ilookup: 215/1000
Apr 27 18:27:19 pillbox kernel: hash table histogram

Apr 27 18:27:19 pillbox kernel: size buckets buffers sumpct
Apr 27 18:27:19 pillbox kernel: 0 14302 0 0
Apr 27 18:27:19 pillbox kernel: 1 1555 1555 57
Apr 27 18:27:19 pillbox kernel: 2 442 884 89
Apr 27 18:27:19 pillbox kernel: 3 73 219 97
Apr 27 18:27:19 pillbox kernel: 4 5 20 98
Apr 27 18:27:19 pillbox kernel: 5 3 15 99
Apr 27 18:27:19 pillbox kernel: 6 4 24 100
Apr 27 18:27:19 pillbox kernel: 7 0 0 100
Apr 27 18:27:19 pillbox kernel: 8 0 0 100
Apr 27 18:27:19 pillbox kernel: 9 0 0 100
Apr 27 18:27:19 pillbox kernel: 10 0 0 100
Apr 27 18:27:19 pillbox kernel: 11 0 0 100
Apr 27 18:27:19 pillbox kernel: 12 0 0 100
Apr 27 18:27:19 pillbox kernel: 13 0 0 100
Apr 27 18:27:19 pillbox kernel: 14 0 0 100
Apr 27 18:27:19 pillbox kernel: 15 0 0 100
Apr 27 18:27:19 pillbox kernel: >15 0 0 100

Histogram 4. Buffer cache using the mult-11 hash function, after the benchmark is complete. The reader can compare this his-
togram with the earlier one that reports the buffer cache bucket size distribution after the benchmark has completed. As buffers are
removed from the buffer cache, the bucket size distribution remains good when using the multiplicative hash function.

The size of the buffer cache hash table is also computed
dynamically during system start-up. Like the page cache
hash table, the buffer cache hash table size is computed
relative to the memory size of the host hardware. On a
system with 64 megabytes of RAM, the computed hash
table is 64K buckets. The hash function mask and bit
shift values are computed like the same values for the
page cache hash function.

Again, the computed size for this table is unnecessarily
large. Each bucket requires two pointers because the
buckets in this hash table are doubly-linked lists, so a
64K bucket table requires 256K of contiguous memory.
The buffer cache hash table size is much too large for
small memory configuration, and it doesn’t grow much
as memory size increases past 128M.

Our measurements show that, assuming the new hash
function is reasonable, a much smaller table will still
provide acceptable performance. A large table size is
especialy unnecessary in 2.4 and later kernels because
write performance is not as dependent on the size of the
buffer cache.

A comment near the table size computation logic notes
that the table should be large enough to keep f sync()
fast. This is a poor measure of table size, because it is
well-known that f sync() is inefficiently implemented.
A more reasonable way to help f sync() performanceis
to re-implement file syncing using a more efficient algo-
rithm.

3.3 Dentry cache

The Linux 2.2 kernel has a directory entry cache, or den-
try cache, that is designed to speed up file system per-
formance by mapping file pathnames directly to the in-
core address of the i node struct associated with the file.
The plain 2.2.5 kernel uses a hash table with 1024 buck-
ets to manage the dentry cache. A simple shift-add hash
function is employed:

#define D_HASHBI TS 10
#defi ne D_HASHSI ZE (1UL << D HASHBI TS)
#def i ne D_HASHVASK (D_HASHSI ZE- 1)

static inline struct |ist_head * d_hash(
struct dentry * parent,
unsi gned | ong hash)

hash += (unsigned | ong) parent;
hash = hash #
(hash >> D HASHBI TS) *
(hash >> D _HASHBI TS*2) ;
return dentry_hashtable +
(hash & D _HASHVASK) ;

}

The arguments for this function are the address of the
parent directory’s dentry structure, and a hash value ob-
tained by a simplified CRC algorithm on the target en-
try’s name. This function appears to work fairly well, but
we want to improve it nonetheless.

Andrea Arcangeli suggests that shrinking the dcache
more aggressively might reduce the number of objectsin
the table enough to help improve dcache hash |ookup
times [1]. We test this idea by adding a couple of lines
from his 2.2.5-arcal0 patch: In fd/dcache.c, function
shrink_dcache_menory(), we replace
prune_dcache(f ound) with:

kernel average throughput elapsed time
reference 4282.8 s=29.96 12 min 57 sec
12 bit 4361.3s=11.15 12 min 36 sec
mult 4346.0 s=20.87 12 min 52 sec
14 bit 4368.3 s= 20.41 12 min 54 sec

Table 4. Benchmark throughput comparison of different hash functionsin the dcache cache hash table. Thistable shows that
increasing the hash table size in the dentry cache has significant benefits for system throughput, decreasing benchmark elapsed time
by 15 seconds. Other changes decrease elapsed time by only a few seconds.

prune_dcache(dentry_stat.nr_unused /
(priority+1))

and in kswapd (the kernel’s swapper daemon), we move
the shrink_dcache_menory() cal in
do_try to free_pages() closeto thetop of the loop
so that it will be invoked more often.

In Table 4, we show results from several different ker-
nels. First, results from the reference 2.2.5 kernel are
repeated from previous tables, then a kernel that is like
the reference kernel, except the dcache hash table is in-
creased to 16384 buckets, and the xor operations are re-
placed with addition when computing the hash function.
The “shrink” kernel is a 2.2.5 kernel like the “14-hit”
kernel except that it more aggressively shrinks the
dcache, as explained above. The “mult” kernels use a
multiplicative hash function similar to the buffer cache
hash function, instead of the existing dcache hash func-
tion:
static inline struct list_head * d_hash(

struct dent ry * par ent,

unsi gned | ong hash)

{

hash += (unsigned | ong) parent;
hash = (hash * 2654435761UL) >> SHI FT;
return dentry_hashtable +

(hash & D_HASHVASK) ;

}

where SHI FT is either 11 or 17. The “shrink+mult” ker-
nels combine the effects of both multiplicative hashing
and shrinking the dcache.

The results are averages from five benchmark runs of 128
concurrent scripts on the four-way Dell PowerEdge. The
timing results are the elapsed time for all five runs on
each kernel.

Some may argue that shrinking the dcache unnecessarily
might lower the overall effectiveness of the cache, but we
believe that shrinking the cache more aggressively will
help, rather than hurt, overall system performance be-
cause a smaller cache allows faster lookups and causes
less CPU cache pollution. In combination with an appro-
priate multiplicative hash function, such as the one used
in the “shrink+mult 11" kernel, elapsed time and average
throughput stays high enough to make it the fastest kernel
benchmarked in this series.

The size of the dentry cache hash table in the 2.2.16 ker-
nel is dynamically determined during system start-up.
Like the previous two tables we examined, the hash table
size is computed as a multiple of a system’s physical
memory size. On our imaginary 64-megabyte system, the
dentry cache hash table contains 8192 buckets, and re-
quires a 14-hit hash function shift value. This provides
excellent performance without consuming excessive
amounts of memory. There is also plenty of room to scale
this table as memory size increases.

The dentry cache hash function in 2.2.16 computes an
intermediate value modulus the hardware’s L1 cache
size. It is not clear whether this extra step improves the
distribution of the hash function, since this filters noise
that is already removed by the hash mask.

Dcache pruning appears no more aggressive in the 2.2.16
kernel than in earlier kernels. Some modifications to the
swapper may improve the probability that
shrink_dcache_nenory() isinvoked, however.

3.4 Inode cache

The dentry cache, described above, provides a fast way
of mapping directory entriesto inodes. Kernel developers
expected the dentry cache to reduce the need for an effi-
cient inode cache. Thus, when the dentry cache was im-
plemented, the inode cache hash table was reduced to
256 buckets (8 bit hash). As we shall see, this has had a
more profound impact on system performance than ex-
pected.

The inode cache hash function is a shift-add function
similar to the dentry cache hash function.

#def i ne HASH BI TS 8
#def i ne HASH_SI ZE (1UL << HASH BITS)
#def i ne HASH_MASK (HASH_SI ZE- 1)

static inline unsigned | ong hash(
struct super_bl ock *sb,
unsi gned | ong i_ino)
{
unsigned long tnp = i_ino |
(unsigned | ong) sb;
tmp = tnmp + (tnp >> HASH BITS) +
(tnp >> HASH BI TS*2);
return tnp & HASH_MASK;

kernel average throughput maximum throughput elapsed time
reference 4282.8 s=29.96 4313.0 12 min 57 sec
14 bit 4375.2 s=25.92 4397.4 12 min 42 sec
mult, shift 11 4368.7 s=62.65 4406.2 12 min 39 sec
mult, shift 17 4375.9 s=10.40 4389.0 12 min 40 sec
shrink 4368.7 s=33.36 4390.7 12 min 40 sec
shrink + mult 11 4380.4 s=13.53 4396.5 12 min 35 sec
shrink + mult 17 4368.5 s=16.21 4383.6 12 min 42 sec

Table 5. Benchmark throughput comparison of different hash functionsin the inode cache hash table. Increasing the size of
the inode cache hash table has clear performance benefits, as this table shows. Replacing the hash function in this cache actually

hurts performance.

Histogram 5 shows why this table is too small. The hash
chains are extremely long. In addition, the hit rate shows
that most lookups are unsuccessful, meaning that almost
every lookup request has to traverse the entire bucket.
The average number of iterations per lookup is amost
40!

Even though there are an order of magnitude fewer look-
ups in the inode cache than there are in the other caches,
this cache is still clearly a performance bottleneck. To
demonstrate this, we ran tests on four different hash func-
tions. Our reference kernel results (from Table 1) reap-
pear in Table 5 for convenience. The “12-bit” kernel is
the same as the reference kernel except that the hash ta-
ble size has been increased to 4096 buckets. The “mult”
kernel has 4096 inode cache hash table buckets as well,
and uses the multiplicative hash function introduced
above. The “14-hit” kernel is the same as the reference
kernel except that the hash table size has been increased
to 16384 buckets.

The 12-bit hash table is the clear winner. Increasing the
hash table size further helps performance dlightly, but
also increases inter-run variance to such an extent that
total elapsed time is longer than for the “12-bit” kernel.
Adding multiplicative hashing doesn’t help much here
because the table is already full, and well balanced.

There is no difference between the 2.2.5 inode cache
hash table implementation and the implementation that
appears in the 2.2.16 kernel. Simply making this hash
table larger by afactor of four would be an effective per-
formance and scalability improvement for 2.2.16. The
inode cache hash table size is dynamically computed in
2.4 kernels during system start-up. The 2.4 kernel’s inode
cache can grow considerably larger than earlier versions,
thus it requires a scalable hash table.

Apr 27 17:23:31 pillbox kernel: Inode cache total |ookups: 189321 (hit rate: 3%
Apr 27 17:23:31 pillbox kernel: hash table size is 256 buckets
Apr 27 17:23:31 pill box kernel: hash table contains 9785 objects
Apr 27 17:23:31 pillbox kernel: |argest bucket contains 54 inodes
Apr 27 17:23:31 pillbox kernel: find_inode() iterations/|ookup: 38978/ 1000
Apr 27 17:23:31 pillbox kernel: hash table histogram

Apr 27 17:23:31 pillbox kernel: size buckets i nodes sum pct
Apr 27 17:23:31 pill box kernel: 0 0 0 0
Apr 27 17:23:31 pill box kernel: 1 0 0 0
Apr 27 17:23:31 pillbox kernel: 2 0 0 0
Apr 27 17:23:31 pill box kernel: 3 0 0 0
Apr 27 17:23:31 pill box kernel: 4 0 0 0
Apr 27 17:23:31 pillbox kernel: 5 0 0 0
Apr 27 17:23:31 pill box kernel: 6 0 0 0
Apr 27 17:23:31 pill box kernel: 7 0 0 0
Apr 27 17:23:31 pillbox kernel: 8 0 0 0
Apr 27 17:23:31 pill box kernel: 9 0 0 0
Apr 27 17:23:31 pill box kernel: 10 0 0 0
Apr 27 17:23:31 pillbox kernel: 11 0 0 0
Apr 27 17:23:31 pill box kernel: 12 0 0 0
Apr 27 17:23:31 pill box kernel: 13 0 0 0
Apr 27 17:23:31 pillbox kernel: 14 0 0 0
Apr 27 17:23:31 pill box kernel: 15 0 0 0
Apr 27 17:23:31 pill box kernel: >15 256 9785 100

Histogram 5. Full inode cache using the old hash function. This histogram shows what happens when too many objects are
stored in an undersized hash table. Every inode in this hash table resides in a bucket that contains, on average, 37 other objects.
Combined with the very low hit rate, this results in a significant negative performance impact.

4. Combination testing

In this section, we optimize all hash tables we've studied
so far, and benchmark the resulting kernels. Our bench-
marks are ten 128 script runs on the four-way Dell.

We selected optimizations among the best results shown
above, then tried them in combination. We find that there
are performance relationships among the various caches,
so we show the results for the best combinations that we
tried.

The “Reference” kernel is a stock 2.2.5 Linux kernel
with 4000 process dots:

e a32768 bucket buffer hash table with a one-to-
one hash function

e 22048 bucket page hash table with asimple
shift-add hash function

* a256 bucket inode hash table with asimple
shift-add hash function

e a1024 bucket dentry hash table with asimple
shift-add hash function

Kernel “A” isaplain 2.2.5 Linux kernel with 4000 proc-
ess slots and:

* a16384 bucket hash table using the multiply
and shift-by-11 hash function

e a8192 bucket page cache with the multiplica-
tive hash function described in the page cache
section

e 22048 bucket inode hash table using a dlightly
modified shift-add hash function

* a8192 bucket dcache hash table with addition
instead of XOR in its hash function.

Kernel “B” isaplain 2.2.5 Linux kernel with 4000 proc-
ess dots and:

* a16384 bucket buffer hash table with Peter
Steiner’ s shift-add hash function

* a8192 bucket page cache with the multiplica-
tive hash function described in the page cache

e a2048 bucket inode hash table using a dightly
modified shift-add hash function

e a8192 bucket dcache hash table with addition
instead of XOR in its hash function.

Kernel “C” isaplain 2.2.5 Linux kernel with 4000 proc-
ess dots and:

e a16384 bucket hash table using the multiply
and shift-by-11 hash function

* a8192 bucket page cache with the reference
kernel’s hash function

e a2048 bucket inode hash table using a dightly
modified shift-add hash function

e a8192 bucket dcache hash table with addition
instead of XOR in its hash function.

Kernel “D” isaplain 2.2.5 Linux kernel with 4000 proc-
ess dotsand:

e a16384 bucket has table using the multiply and
shift-by-11 hash function

* a8192 bucket page cache with the offset hash
function described above

e a2048 bucket inode hash table using a dightly
modified shift-add hash function

e a8192 bucket dcache hash table with addition
instead of XOR in its hash function

Examining Table 6, we'd like to select a combination
that reduces inter-run variance and elapsed time, as well
as maximizes throughput and minimizes hash table
memory footprint. While kernel “C” offers the highest
maximum throughput, its inter-run variance is also larg-
est. On the other hand, kernel “D” has the second highest
average throughput, the shortest elapsed time, and the
best inter-run variance. This seems like a reasonable
compromise.

section
kernel average throughput maximum throughput elapsed time
Reference 4300.7 s=15.73 4321.1 26 min 41 sec
Kernel A 4582.9 s=12.55 4592.8 25 min 24 sec
Kernel B 4577.9516.22 4602.0 25 min 18 sec
Kernel C 4596.2 s=22.30 4619.5 25 min 18 sec
Kernel D 4591.3 5=10.98 4608.9 25 min 15 sec

Table 6. Benchmark throughput comparison of multiple kernel hash optimizations. Combining improvements in each of the
four caches we studied results in an elapsed time improvement of amost a minute and a half.

5. Multiplicative hashing

Hash function alternatives include:
» Using an untransformed key
* Modulus hashing
« Multiplicative hashing

+ Using an inexpensive but sub-optimal shift-add
hash function

« Using a“correct” shift-add hash function

e Using a hash function driven by one or more
random tables

» Architecture-specific hash functions (e.g. multi-
plication on fast, modern processors, and some-
thing else on older processors)

Multiplicative hashing is a form of modulus hashing that
is less expensive because the results are often as good but
a multiplication operation is used instead of a division
operation. Multiplicative hashing is controversial because
of the expense of multiplication instructions on some
hardware types. For example, on 68030 CPUs, popular in
old Sun and Macintosh computers, multiplication re-
quires up to 44 CPU cycles for a 32-bit multiplication,
whereas a memory load only requires an extra 2 cycles
per instruction [8]. On a hardware architecture like the
68030 that has little caching, fast load times compared to
CPU operations, and expensive multiplication, a multi-
plicative hash might be inferior even if it cuts the average
number of loop iterations per lookup request by a factor
of four or more.

However, it turns out that several of the alternatives are
just as expensive, or even more expensive, than multipli-
cative hashing. Random table-driven hash functions re-
quire several table lookups, and several shifts, logical
AND operations, and additions. An e-mail message from
the linux-kernel mailing list explains the problem; see
Appendix A.

On our example 68030, shifting requires between 4 and
10 cycles, and addition operations aren’t free either. If the
instructions that implement the hash function are many,
they will likely cause instruction cache contention that
will be worse for performance than a multiplication op-
eration. In general, a proper shift-add hash function is
almost as expensive in CPU cycles as a multiplicative
hash. On a modern superscalar processor, shifting and
addition operations can occur in paralel aslong as there
are no address generation interlocks (AGIs). An AGI oc-
curs when the results of one operation are required to
form an address in a later operation that might otherwise

have been parallelized by superscalar CPU hardware [6,
9]. AGIs are much more likely for a table-driven hash
function.

Multiplicative hash functions are often very concise. The
hash functions we tried above, for example, compile to
three instructions on ia32, comprising 15 bytes. Included
in the 15 bytes are al the constants involved in the calcu-
lation, leaving only the key itself to be loaded as data. In
other words, the whole hash function fits into a single
line in the CPU’s ingtruction cache on contemporary
hardware. The shift-add hash functions are generally
lengthy, requiring several cache lines to contain, multiple
loads of the key, and register allocation contention.

The question becomes, finally, how many CPU cycles
should be spent by the hash function to get a reasonable
bucket size distribution? In most practical situations, a
simple shift-add function suffices. However, one should
aways test with actual data before deciding on a hash
function implementation. Hashing on block numbers, as
the Linux buffer cache does, turns out to require a par-
ticularly good hash function, as disk block numbers ex-
hibit a great deal of regularity.

5.1A Little Theory

Our multiplicative hash functions were derived from
Knuth, p. 513ff [5]. The theory posits that machine mul-
tiplication by a large number that is likely to cause over-
flow is the same as finding the modulus by a different
number. We won't repeat Knuth here, but suffice it to say
that choosing such a number is complicated. In brief, our
choice is based on finding a prime that is in golden ratio
to the machine's word size (2 to the 32nd in our case).
Primality isn’t strictly necessary, but it adds certain desir-
able qualities to the hash function. See Knuth for a dis-
cussion of these desirable qualities.

We selected 2,654,435,761 as our multiplier. It is prime,
and its value divided by 2 to the 32 is a very good ap-
proximation of the golden ratio [2, 10].

J5-1

— J0.6180339887

265!443#25761 J0.6180339868

To obtain the best effects of this “divison” we need to
choose the correct shift value. This is usualy the word
size, in bits, minus the hash table size, in bits. This shifts
the most significant bits of the result of the “division”
down to where they can act as the hash table index, pre-
serving the greatest effects of the golden ratio. Some-
times experimentation reveals a better shift value for a
given set of input data, however.

6. Conclusions and Future Work

Careful selection and optimization of kernel hash tables
can boost performance considerably, and improve inter-
run variance as well, maximizing system throughput.
Selecting a good hash function and benchmarking its
effectiveness can be tedious, however. Usually, the most
notable performance optimization comes from increasing
the size of a hash table. In this report, we have shown
that larger and/or dynamically sized hash tables are es-
sential for Linux kernel performance and scalability.
Adding dynamic hash table sizing is a simple way to get
a five to 20% performance improvement, depending on
how much physical memory is available on a system.

To extend this study, the cache instrumentation patch
should be re-written to use a file in /proc instead of writ-
ing to system console log, and should be integrated into
the stock kernel as a “Kernel Hacking” configuration
option. The tuning patch should be benchmarked on 64-
bit hardware to see if another constant must be chosen
there. A benchmark run on older architectures, such as
MC68000, should determine if these changes would seri-
oudly degrade performance on older machines.

We could also investigate the performance difference
between in-lining the page cache management routines
(which eliminates the subroutine call overhead) and leav-
ing them as stand-alone routines (which means they have
a smaller L1 cache footprint). A separate swap cache
hash function might also optimize the separate uses of
the page cache hash tables.

Additionally, there are still open questions about why
shrinking the dentry cache more aggressively can help
performance. A study could focus on the cost of a dentry
cache miss versus the cost of a page fault or buffer cache
miss. Discovering alternative ways of triggering a dentry
cache prune operation, or aternate ways of calculating
the prune priority, may also be interesting.

Finally, there is still opportunity to analyze even more
carefully the real keys and hash functions in use in sev-
era of the tables we've analyzed here, as well as several
tables we didn’t visit in this report, such as the ui d and
pi d hash tables, and the vima data structures.

For more information on modifications and kernel in-
strumentation described in this report, see the Linux
Scalability Project web site:

http://wwmv. citi.um ch. edu/ projects/Iinux-
scal ability

7. Acknowledgements

The author gratefully acknowledges the input and contri-
butions of the following persons. Peter Steiner, Andrea
Arcangeli, lain McClatchie, Paul F. Dietz, Janos Farkas,
Dr. Horst von Brand, and Stephen C. Tweedie, aswell as
the many others who contributed directly and indirectly
to the work described in this report. Special thanks go to
Dr. Charles Antonelli and Prof. Gary Tyson for provid-
ing the hardware benchmarked in this report. Thanks also
to the reviewers for their input.

References
1. linux-kernel mailing list archives

2. CRC Sandard Mathematical Tables, 25th Edition, Wil-
liam H. Beyer, Ed., CRC Press, Inc., 1978.

3. T.H.Cormen, C. E. Leiserson, and R. L. Rivest, Introduc-
tion to Algorithms, MIT Press, 1990.

4. D.A. Patterson and J. L. Hennessy, Computer Architec-
ture: A Quantitative Approach, 2™ Edition, Morgan Kauf-
mann, 1996.

5. D. E. Knuth, The Art of Computer Programming, Volume
3: Sorting and Searching, 2" Ed., Addison-Wesley, 1998.

6. M. L. Schmit, Pentium(tm) Processor Optimization Tools,
Academic Press, Inc., 1995.

7. Standard Performance Evaluation Corporation, System
Development Multitask Benchmark SPEC, 1991

8. MC68030 User’s Manual, Volume 2, Motorola, Incorpo-
rated, 1998.

9. Pentium Il processor reference manuals, Intel Corporation.

10. TheLargest Known Primes,
www. ut m edu/ research/ prines/ | argest. htnl,
1998.

Appendix A: E-mail

Date: Thu, 15 Apr 1999 15:01:54 -0700
From lain McC atchie

To: Paul F. Dietz

Cc: |inux-kernel @ger.rutgers. edu
Subj ect: Re: nore on hash functions

I got a few suggestions about how to use multiple | ookups with a
single table. Al the suggestions make the hash function itself
slower, and attenpt to fix an issue -- hash distribution — that
doesn't appear to be a problem | thought | should explain why
the table | ookup function is slow

A multiplication has a scheduling latency of either 5 or 9 cycles on a
P6. Four nenory accesses take four cycles on that same P6. So the core
operations for the two hash function are actually very simlar in delay,
and the table | ookup appears to have a slight edge. The difference is
in the overhead

A multiplicative hash, at mninmum requires the |oading of a constant,
a multiplication, and a shift. Egcs actually transforns some constant
mul tiplications into a sequence of shifts and adds which may have
shorter |atency, but essentially, the shift (and nothing else) goes in
series with the multiplication and as a result the hash function has
very little latency overhead

A tabl e | ookup hash spends quite a | ot of tine unpacking the bytes
fromthe key, and furthernore uses a |load slot to unpack each byte
This makes for 8 load slots, which take 1 cycle each. Even if

fully parallelized with unpacking, we end up with a fair bit of

| atency. Worse yet, egcs runs out of registers and ends up shifting
the key value in place on the stack tw ce, which gobbles two | oad and
two store slots

Bottomline: CPUs really suck at bit-shuffling and even byte-shuffling.
If there is sone clever way to code the byte unpacking in the table

| ookup hash function, perhaps using the x86's trick register file,

it might end up faster than the nultiplicative hash

-lain

