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Abstract

Many replacement and prefetching policies have re-
cently been proposed for bu�er cache management.
However, many real operating systems, including
GNU/Linux, generally use the simple Least Recently
Used (LRU) replacement policy with prefetching be-
ing employed in special situations such as when sequen-
tiality is detected. In this paper, we propose the SA-
W 2R scheme that integrates bu�er management and
prefetching, where prefetching is done constantly in ag-
gressive fashion. The scheme is simple to implement
making it a feasible solution in real systems. In its ba-
sic form, for bu�er replacement, it uses the LRU policy.
However, its modular design allows for any replacement
policy to be incorporated into the scheme. For prefetch-
ing, it uses the LRU-One Block Lookahead (LRU-OBL)
approach, eliminating any extra burden that is gener-
ally necessary in other prefetching approaches. Imple-
mentation studies based on the GNU/Linux kernel ver-
sion 2.2.14 show that the SA-W 2

R performs better than
the current version of GNU/Linux with a maximum in-
creases of 23 % for the workloads considered.

1 Introduction

Considerable research for optimizing the use of bu�er
caches in both replacement and prefetching aspects
have been undertaken. This paper proposes yet an-
other scheme, but which has sailent features such as
simple prefetching and modular integration of replace-
ment and prefetching. These features lead to a scheme
that is easily implementable, and which leads to per-
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formance improvements compared to previously known
schemes.

In the following, we �rst discuss the state-of-the-art
in bu�er cache replacement and prefetching, and then
point out their limitations, which is the motivation be-
hind the development of the proposed scheme.

1.1 Previous Research in Bu�er Cache
Management

Many replacement policies for improving the per-
formance of bu�er cache management have been pro-
posed. Policies such as the Least Recently Used (LRU),
Least Frequently Used (LFU), LRU-K [11], 2Q [6],
Frequency-Based Replacement (FBR) [14], and Least
Recently/Frequently Used (LRFU) [8] are examples.

All these replacement policies were developed inde-
pendent of prefetching. Recent developments in bu�er
management policies has lead to the investigation of in-
corporating prefetching to the replacement policies. It
has been shown that for some workloads incorporating
prefetching can result in considerable improvement in
the performance of bu�er management [15, 16].

Research in incorporating prefetching can be cate-
gorized into three groups. The �rst group of poli-
cies maintain a history of past behavior of the appli-
cations [5, 7, 9]. This speculative approach, however,
may result in performance degradation due to inaccu-
rate prefetching and history maintenance overhead.

The second category of policies obtain hints from ap-
plications themselves prior to execution or during exe-
cution [2, 3, 4, 10, 13, 17]. Currently, these approaches
appear promising as it has been shown that hints may



be obtainable for speci�c applications with minor over-
head, though their feasibility in real systems still needs
to be tested.

The �nal approach does not require any information
neither from the application nor from observations of
past behavior. The LRU-OBL (One Block Lookahead)
scheme [15, 16] (and its variant of prefetching multiple
blocks at once) is the only scheme known to date using
this approach. This scheme simply prefetches the logi-
cal next block of the currently referenced block if it is
not resident in cache. It has been shown that through
this simple scheme, improvements of up to 80% in the
hit rate was possible for some workloads [16]. To the
best of our knowledge, this approach is the only prefetch
technique used in real systems due to its simplicity and
e�ectiveness.

1.2 Bu�er Cache Management in
GNU/Linux

GNU/Linux adopts the LRU scheme for bu�er cache
management. In GNU/Linux, the bread() function han-
dles the block requests. If the requested block exists in
the hash table, that is, the bu�er cache, it returns the
block pointer. Otherwise, it makes a request for a disk
I/O.

The breada() function is provided as a primitive for
prefetching in GNU/Linux. This function is simply
a variant of the LRU-OBL scheme in that it reads
blocks adjacent to the requested block. However, in the
GNU/Linux kernel version 2.2.14, the breada() function
is seldom used. To the best of our knowledge, prefetch-
ing is issued only at two places. One is for reading
directories in the ISO 9660 �le system and the other is
for the kernel thread that synchronizes the spare disk
with the active disk array in RAID reconstruction.

1.3 The Remainder of the Paper

The rest of the paper is organized as follows. In
the next section, we provide the motivation behind this
work. In Section 3, the SA-W 2R scheme, which is the
bu�er cache management scheme proposed in this pa-
per, is presented. Simulation and implementation ex-
perimental studies are presented in Section 4 and 5, re-
spectively. Finally, Section 6 concludes with a summary
and directions for further research.

2 Motivation

In this section, we discuss the motivation behind the
development of the SA-W 2

R scheme that is presented
in the next section. To this end, we �rst describe the
Weighing-Waiting Room (W 2R) scheme. This scheme
provides the framework for an eÆcient integration of
bu�er replacement and prefetching that is simple and
e�ective. However, its limitation restricts it from being
deployed in real systems hence, providing the basis for
the development of the SA-W 2

R scheme.

2.1 The W 2
R Scheme

The Weighing-Waiting Room (W 2
R) scheme parti-

tions the bu�er cache into two rooms, that is, the
Weighing Room and the Waiting Room as shown in
Figure 1. The name is derived from the fact that we
use the weight analogy in describing the management
of the bu�er cache. In general, the block to be replaced
by the incoming block is the block that is considered to
be the least likely to be re-referenced. This likelihood
can be represented as a weight. Each block is given a
weight, and the heavier block is considered more likely
to be re-referenced. Then, in general, the lightest block
is replaced by the incoming block as it is considered to
be the least likely to be referenced again.

The Weighing Room, in the W 2R scheme, is where
the weights of the blocks are contested, and rank is
formed among the blocks. Only blocks that have been
referenced have weights associated with them. In bu�er
replacement policies such as the LRU or 2Q, the whole
bu�er is simply the Weighing Room as only blocks that
have been referenced are brought into the bu�er.

The Waiting Room is where the prefetched blocks
reside. Prefetching is done exactly like the LRU-OBL
scheme, where the logical next block of the currently
accessed block is prefetched when it is not residing
in cache. They remain in this part of the bu�er and
wait until they obtain permission to be weighed with
the other blocks. This permission is obtained when
and only when the block has actually been referenced.
Until this time, the prefetched blocks are weightless.
Again, blocks obtain weight only when referenced as
their weight cannot be determined until they have been
referenced.

Note some of the features of this scheme. First, re-
placement (through the Weighing Room) and prefetch-
ing (through the Waiting Room) are integrated into the
whole scheme, yet modularity is ensured. New replace-
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Figure 1: Structure of the W 2
R scheme.

ment policies are constantly being developed. As new
replacement policies that have practical signi�cance are
developed, these policies can directly be incorporated
into the W 2

R scheme, simply by replacing the imple-
mentation in the Weighing Room. This is unlike the
LRU-OBL scheme that provide no means of doing this.

Second, by partitioning the bu�er into a Weighing
Room and a Waiting Room, prefetched blocks, which
have not yet proven their worth, cannot replace a block
in the Weighing Room, which has proven its value by
being referenced. Figure 2 quanti�es a de�ciency in the
LRU-OBL approach. This �gure shows that in some
situations over 60% of prefetched blocks may never be
used when using the LRU-OBL scheme. Hence, in LRU-
OBL, a prefetched block can hold on to valuable real
estate without ever being referenced. This problem is
alleviated in the W 2R scheme as blocks that are not
referenced after being prefetched are not promoted to
the Weighing Room. Hence, a prefetched block that is
never referenced cannot replace a block that has some
weight (that is, in the Weighing Room). That is to say,
the wrong block may be prefetched into the bu�er, but
it will not replace a block that has proven its worth by
having been referenced.

Third, note that a prefetched block enters the Weigh-
ing Room only after it is referenced. Hence, the
prefetched block does not directly replace a block that is
referenced prior to the prefetched block. The block be-
ing promoted to the Weighing Room is promoted right
when it is needed, and never before.

2.2 Motivation for SA-W 2
R

Although the bene�ts of the W 2R scheme seem to be
attractive, as it stands, there is a serious problem that
needs to be resolved in order for it to be deployable
in real systems. The obvious and diÆcult problem is
how to partition a �xed-size bu�er cache into the two
rooms. By introducing the Waiting Room, we are in ef-
fect, reducing the size of the Weighing Room compared
to conventional bu�er management policies. Hence, we

Figure 2: Percentage of prefetched blocks, using the
LRU-OBL scheme, that are never referenced for the
Sprite, DB2, and OLTP traces.

want to keep the Waiting Room small. However, once
a block is prefetched we would like to hold it in the
Waiting Room just enough so that it is eventually ref-
erenced. That is, if the Waiting Room is too small a
prefetched block may be evicted too early to be of any
help to the system. A judicious selection of the room
size is necessary for eÆcient management of the bu�er.
This problem is addressed in the SA-W 2R scheme.

3 Self-Adjusting W 2
R

The optimal partition ratio between the Weighing
Room and the Waiting Room will vary according to
the system environment and workload. To reiterate
the point mentioned above, we want to keep the Wait-
ing Room small so that the deterioration in perfor-
mance due to the reduced Weighing Room size is lim-
ited, but we want to keep it big enough so that the
prefetched blocks are used, instead of being evicted from
the Waiting Room. Hence, the partitioning should ac-
commodate the workload characteristics such that the
performance bene�ts obtained by increasing the Wait-
ing Room outweighs the loss incurred by the reduced
Weighing Room. For all practical purposes, this should
be determined on-line and must be done with minimal
overhead. The Self-Adjusting W 2

R (SA-W 2
R) scheme

attempts to do both.

The SA-W 2
R adjusts the partitioning between the

Weighing and Waiting Rooms via a two-step pro-
cess, namely, interval-based and fault-based adjustment
steps as shown in Figure 3. We discuss the two steps in



Figure 3: The SA-W 2R Scheme.

the following subsections.

3.1 Interval-based Adjustment

The Waiting Room, as the name implies, is where
the prefetched blocks wait to be referenced. In other
words, the role of the Waiting Room is to maintain the
prefetched blocks until they are actually referenced. Re-
call that prefetched blocks are weightless, hence they are
managed in a FIFO queue; the newly prefetched block
is put at the rear (position 1) of the queue, which pushes
the block at the head (position n) of the queue out of the
FIFO queue, where n is the size of the Waiting Room.
Let us de�ne the position in the FIFO queue at which a
block is actually referenced to be the reference interval
of that block. If the block is evicted from the Waiting
Room without being referenced, then the reference in-
terval of that block is 1. This reference interval will
vary from workload to workload, and in adjusting the
room sizes the adjustment should be such that the ma-
jority of the blocks have reference intervals less or equal
to n for as small an n as possible. Hence, given a certain
n value, if the reference intervals of blocks are getting
smaller and smaller, then n should also be adjusted to
become smaller, so that the loss in the Weighing Room
can be minimized. On the other hand, if the reference
intervals of blocks are getting larger and getting close
to or surpasses n, then n should be increased, so as to
increase the bene�ts of the Waiting Room.

The SA-W 2
R scheme tunes the Waiting Room size

by maintaining the reference interval values of the last
k blocks that are referenced in the Waiting Room. (To
minimize bookkeeping overhead, we set k to 3.) Using
this information, we observe the trend of the reference
intervals as shown in Figure 4. If the reference inter-
val of the last k blocks show an increasing trend, then
the Waiting Room is increased to accommodate the ref-
erence interval increase. Similarly, if the reference in-
tervals show a decreasing trend, the Waiting Room is
decreased. If the reference intervals of the last k blocks
do not show any regularity, the Waiting Room size re-
mains unchanged.

Figure 4: Interval-based Adjustment.

3.2 Fault-based Adjustment

Interval-based adjustments cannot be ideal as it ad-
justs the Waiting Room size based only on observations
made in the Waiting Room. Adjustments of the two
rooms can also be made based on hints provided by
misses that occur upon a block reference. Consider the
following situation. Block i is referenced, but it is not in
the bu�er, hence a miss occurs. Since we are prefetch-
ing the logical next block, we can deduce considerable
information based on the availability of blocks i�1 and
i + 1 in the bu�er cache. For example, if we �nd that
block i � 1 is in the Weighing Room and that block i

is in disk, then we know that block i was evicted from
the bu�er cache as block i would have been prefetched
with block i� 1.

The SA-W 2
R scheme exploits these fault-based in-

formation for adjusting the room sizes. It considers the
situation when a request for block i is a miss. When a
miss occurs on block i, nine possible situations can arise
depending on the location of blocks i, i � 1, and i + 1
as shown in Table 1. Since a miss occurred on block i,
it is in disk. At this point, blocks i� 1 and i+1 can be
in the Weighing Room, the Waiting Room, or the disk.
Table 1 also shows the adjustments that are made for
each of the nine cases.

Let us now consider how these adjustment recom-
mendations came about. Let us start with cases 1 and
3, which have in common block i � 1 in the Weighing
Room. (Case 2 also falls into this category, but we will
consider this case separately later.) The fact that block
i� 1 is in the Weighing Room tells us that block i had
once been in the Waiting Room before being evicted. It
may also have been in the Weighing Room before be-
ing evicted, but the fact that block i + 1 is not in the
Waiting Room makes it likely that block i was in the
Waiting Room before being evicted. (Note that we are



Table 1: Nine situations in relation to the locations of blocks i, i� 1, i+ 1 when a miss for block i occurs.

Cases Weighing Room Waiting Room Disk Adjustment Made

case 1 i-1, i+1 i Increase Waiting Room
case 2 i-1 i+1 i Increase Weighing Room
case 3 i-1 i, i+1 Increase Waiting Room
case 4 i+1 i-1 i No Adjustment
case 5 i-1, i+1 i Increase Weighing Room
case 6 i-1 i, i+1 No Adjustment
case 7 i+1 i-1, i No Adjustment
case 8 i+1 i-1, i Increase Weighing Room
case 9 i-1, i, i+1 No Adjustment

referring to likely scenarios that could have occurred
and are not guaranteeing such scenarios.) Hence, we
conjecture that block i was evicted before being refer-
enced because the Waiting Room was too small. So, we
increase the Waiting Room size.

Now consider cases 5 and 8. This is the opposite
of the previous situation. The fact that block i + 1 is
in the Waiting Room tells us that block i was in the
Weighing Room. This means that the Weighing Room
had to evict a block that was to be referenced soon in
the future, meaning that the Weighing Room was too
small. Hence, adjustments to increase the Weighing
Room size is made.

Let us now consider case 2. Case 2 satis�es both of
the two previous scenarios, that is, block i� 1 is found
in the Weighing Room and block i + 1 is found in the
Waiting Room. Note, however, that the implications
are di�erent. While having block i � 1 in the Weigh-
ing Room only suggests that block i could have been
evicted from the Waiting Room, having block i + 1 in
the Waiting Room tells us that block i must have been
in the Weighing Room when it was evicted. Hence, the
Weighing Room is increased in this situation.

For cases 4, 6, 7, and 9, no solid relation can be de-
duced. For example, take case 4. The fact that block
i+1 is in the Weighing Room suggests that block i+2
could be in the Waiting Room, but nothing in relation
to block i can be deduced. Likewise, the fact that block
i� 1 is in the Waiting Room suggests that block i� 2
may still be in the Weighing Room, but again, nothing
in relation to block i may be deduced. Hence, for these
cases no adjustments are made.

Based on these situations and their adjustments, the
SA-W 2

R scheme adjusts the partitioning of the bu�er
cache between the Weighing and Waiting Rooms.

3.3 Adaptability of the SA-W 2
R Scheme

Figure 5 shows how the SA-W 2
R adapts to the chang-

ing workload of the system when the cache size is 3000
for the DB2 and Sprite 3C53 traces that will be ex-
plained in the next section. The dark line that looks
like the upper boundary of the �gure shows the Wait-
ing Room size at each time point. Each dot within the
\boundary" represents the access point of a block, that
is, the reference interval within the Waiting Room at
each time point. For the DB2 trace, the streaky lines
going up within the boundary is showing that the refer-
ence interval is increasing, while the streaky lines going
down shows that the reference interval is decreasing.
The �gure shows that SA-W 2

R is adjusting the Wait-
ing Room as needed.

Figure 5(b) is actually more interesting. Note that
the size of the Waiting Room is much smaller compared
to the DB2 trace. This is because there is much more se-
quentiality in this trace. When references are sequential
there is no need to increase the Waiting Room. In fact,
if the workload is totally sequential, a Waiting Room
size of one is suÆcient. Hence, for this trace, the SA-
W 2R scheme is keeping the Waiting Room size small.
The seemingly horizontal lines in the �gure show that a
majority of the blocks are being referenced at a partic-
ular point in the Waiting Room, that is, the reference
interval is constant. The lowest horizontal line repre-
sents total sequentiality, while horizontal lines above
this line show that the reference interval grows, but re-
mains constant over time. The Waiting Room size is
adjusted to re
ect this change.



(a) DB2 (b) Sprite 3C53

Figure 5: Adaptability of the SA-W 2R scheme for DB2 and Sprite 3C53 traces when the cache size is 3000.

4 Simulation Experiments

In this section, we discuss the trace driven simula-
tion experiments conducted to evaluate the SA-W 2

R

scheme. A description of the traces that were used is
given in the next subsection. In the subsequent subsec-
tion, we report and discuss the results of these experi-
ments.

4.1 The Simulator and Traces

The simulator developed to evaluate the schemes is
programmed in C++. The basic component in this sim-
ulator is the bu�er cache module which takes the traces
as input. The bu�er cache module checks if the block
number is in the bu�er. If it is a hit, appropriate ac-
tion, which is dependent on the policy used, is taken.
Otherwise, a block fetch request action to the disk is
emulated. The block size, size of the bu�er, and the
policy used for managing the bu�er are controllable pa-
rameters.

A wide range of traces are used to drive the simulator
to show the robustness of the SA-W 2R scheme. Specif-
ically, database traces, the Sprite traces, traces of real
application programs, and synthetic traces that show
Zip�an distribution are used. Detailed descriptions of
these traces are given below.

Database traces: Two traces, namely, DB2 and
OLTP, obtained from database systems were used.
These traces are identical to the traces used in
the papers by Johnson and Shasha [6] and by
O'Neil and others [11]. The DB2 trace is ob-
tained from running a DB2 commercial application
and contains 500,000 block requests to 75,514 dis-
tinct blocks. Obtained from the On-Line Transac-
tion Processing System, the OLTP trace contains
records of block requests to a CODASYL database
for a window of one hour. It contains a total of
914,145 requests to 186,880 distinct blocks.

Sprite traces: Sprite traces are traces obtained from
4 �le servers and 40 clients running the Sprite dis-
tributed �le system [12]. This �le system environ-
ment had roughly 30 users who were consistent
users with an additional 40 some users who used
the system occasionally. Traces were obtained for
eight separate periods of 24 or 48 hours. These
traces are considered to represent scienti�c work-
loads as most of the users were operating system re-
searchers, computer architecture researchers, VLSI
circuit designers, parallel processing researchers,
etc. Of these traces, the traces that are used in
our experiments are traces taken on the 2nd and
3rd periods. The trace that we denote as Sprite
2C39, which is client 39 of the 2nd period, con-
sists of a total of 141,233 block accesses to 19,990
distinct blocks, while the trace that we refer to
as Sprite 3C53, which is client 53 of the 3rd pe-
riod, consists of a total of 239,748 block accesses



to 49,277 distinct blocks. Though these two traces
were taken from the same system, they themselves
are quite di�erent in their characteristics. Accord-
ing to Baker and others [1], the traces in the 2nd
period represent general scienti�c access patterns,
while for the 3rd period the workload consisted
largely of accesses to very large �les making it dif-
ferent from the general workload of the 2nd period.

Application traces: These set of traces, obtained
from executing real application programs, are those
used in a previous study [3]. The length of these
traces are very short compared to the database and
Sprite traces ranging from roughly four thousand
to thirty-�ve thousand block accesses. Speci�c de-
tails regarding the characteristics of these applica-
tions are given below.

cpp: Cpp is the GNU C-compatible compiler pre-
processor. The kernel source was used as in-
put with the size of header �les and C-source
�les of about 1MB and 10MB, respectively.

link: Link is the Unix link-editor. This applica-
tion is used to build the FreeBSD kernel from
about 2.5MB of object �les.

ld: Ld is the trace of a linking editor. It has ran-
dom accesses for both reads and writes. There
is no reuse of data, but since the size of a
read request is not always 8K, there are oc-
casional reuses at the block level. (A block is
8K bytes.)

XDataSlice: XDataSlice is obtained from a 3D
volume rendering software working on a 220�
220�220 data volume, rendering 22 slices with
stride 10, along the X axis, then Y axis, then
Z axis. This trace accesses blocks in a �le
with regular strides. There is no reuse of data
when rendering along one axis, but moderate
reuse is done between rendering along di�er-
ent axes.

Zip�an traces: The Zip�an traces are synthetic traces
correspondent with a Zip�an distribution of refer-
ence frequencies. The Zip�an distribution of refer-
ence frequencies is where the probability for refer-
encing a page with block number less than or equal

to i is ( i

N
)
loga

logb with constants a and b between 0
and 1. The notion of constants a, b, and N is that
fraction a of the references accesses fraction b of the
N blocks. We generated two types of distributions
referred to as Zip�anA and Zip�anB. The Zip�anA
trace contains 500,000 references to 75,514 distinct
blocks with a = 0:8, b = 0:2 and a = 0:7, b = 0:3.
Zip�anB contains 914,145 requests to 186,880 dis-
tinct blocks with constants a and b the same as that

of the Zip�anA trace. The Zip�an distribution and
their respective constants were taken as they are
known to be a good representation of database ref-
erence patterns [11]. The number of requests and
distinct blocks were selected to be the same as the
DB2 and OLTP traces, respectively.

4.2 Results

Figure 6 shows the hit rates for the synthetic work-
load that shows Zip�an distribution. These workloads
are interesting because no sequentiality is found, and
we believe this represents one extreme end of reference
characteristics. The results using the Zip�anA trace,
shown in Figure 6, show that the LRU-OBL scheme is
certainly not the choice. (The results are similar for the
Zip�anB traces.) It performs even worse than the tra-
ditional LRU replacement policy. SA-W 2R shows con-
sistently better performance than both the LRU and
LRU-OBL.

Now, also consider how the schemes deal with purely
sequential references, which is the other extreme end of
reference characteristics. The LRU replacement policy
will incur misses on every reference to a new block re-
sulting in zero hit rate, while for both the LRU-OBL
and the SA-W 2R schemes, the hit rate will approach
100% as every logical next block will be prefetched. The
results of the two extreme reference characteristics show
that the SA-W 2R is a versatile scheme.

Figures 7, 8, and 9 show the hit rates for the SA-W 2
R

scheme compared with other schemes for real work-
loads. Regarding the �gures, �rst note that the scales
are all di�erent. Also, for all these �gures that do not
show the hit rates for LRU and/or OPT (the optimal
replacement) policies, they are not shown because their
margin of di�erence from the LRU-OBL and SA-W 2R

is so large that it makes the lines indecipherable. Hence,
we omitted the LRU and/or OPT lines for these cases.

Overall, the performance of the SA-W 2R scheme per-
forms better than all the others. An interesting obser-
vation of these results is that the LRU-OBL scheme is
superior to the OPT policy. Except for the extreme case
where there is only minimum or no sequentiality, the
LRU-OBL policy is a good general scheme that could
be used for general bu�er cache management, and not
just limited to sequential reference patterns. Of course,
one has to consider how the hit rate performance mea-
sure translates to other measures such as response time
in real systems. Extra queueing delays incurred by
prefetching may limit the performance bene�ts observ-
able by the user. However, with the advent of RAID
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Figure 6: The hit rates of the SA-W 2
R scheme for the Zip�anA traces.
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Figure 7: The hit rates of the SA-W 2R scheme for the DB2 and OLTP traces.
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Figure 8: The hit rates of the SA-W 2
R scheme for the Sprite traces.
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Figure 9: The hit rates of SA-W 2R scheme for real application traces.

systems and better caching techniques, delays due to
this type of queueing should not have aggravated in
u-
ence on the performance. Hence, hit rates should be a
good re
ection of the actual performance seen by the
user for these schemes.

The SA-W 2
R is an even better scheme than the LRU-

OBL performing consistently better than the LRU-
OBL for all situations including the extreme cases men-
tioned previously. The maximum performance di�er-
ence comes from the XDataSlice application where the
SA-W 2R has a hit rate that is over 11 percentage points
higher than the LRU-OBL scheme. Overall, the perfor-
mance improvement range somewhere around the 1 to 4
percentage point increase compared to the LRU-OBL.

5 Implementation Experiments

The SA-W 2R scheme was implemented on the
GNU/Linux kernel version 2.2.14 on a Pentimum III
430 MHz PC with 128 MB of memory. (At the time
of this implementation, the kernel version 2.2.14 was
the latest stable version.) For performance comparison
purposes, we also implemented the LRU-OBL scheme.
The applications used to evaluate the performance are
as follows.

gcc: Compile the GNU/Linux kernel version 2.2.14.

cp: Copy the whole GNU/Linux source code from
/usr/src/linux directory to another directory.

tar: Create/extract the tar �le for the GNU/Linux
source code.

gzip: Compress/uncompress the tar �le of the
GNU/Linux source code.



grep: Grep the string "linux" from the /usr/src/linux
directory.

sort: Sort 1,000,000 random data items.

5.1 Individual Application Performance

Table 2 shows the execution time of each application.
The results shown in the table are averages of three
executions of each application. Before each execution of
each application, the system was rebooted to eliminate
the e�ect of caching from the previous execution.

The results show that the SA-W 2
R scheme shows the

best performance compared to the original GNU/Linux
and LRU-OBL schemes. Speci�cally, the perfor-
mance improvements due to the proposed scheme range
between 5 to 23 percent compared to the original
GNU/Linux scheme.

Note also that the LRU-OBL scheme always per-
forms considerably better than the original GNU/Linux
scheme, though worse than the SA-W 2

R. This is be-
cause regular reference patterns such as sequential ref-
erences is a dominant characteristic of many of these
applications. Hence, it may be argued that this set
of applications, speci�cally, this characteristic, unfairly
favors the LRU-OBL and SA-W 2R schemes. To show
that the SA-W 2R scheme is a robust solution, we ex-
ecuted with each application a 'random' process that
randomly references blocks such that it disrupts regular
reference sequences such as sequential block references.
Those results are shown in Table 3.

The results in Table 3 show that when regular
reference behavior is disrupted LRU-OBL may per-
form worse than the original GNU/Linux management
scheme. It also shows, however, that the SA-W 2

R

scheme consistently performs better though its improve-
ment is now somewhat smaller. This shows that the SA-
W

2
R is quite robust in its management of the bu�er.

5.2 Concurrent Execution of Multiple Ap-
plications

Using the same methodology for the experiments, we
measured the performance of applications when multi-
ple applications were executed concurrently. Table 4
shows the applications that were executed concurrently
(Groups 1 to 3) and their respective execution times
using the di�erent bu�er management schemes.

As the concurrently executing applications in
uence
the bu�er and CPU resource allocation, the execution
times of the applications increase considerably. Again,
in all of the situations, the SA-W 2R scheme shows the
best performance. The improvements range from neg-
ligible (approximately 1% for gzip (compress) of Group
2) to an approximately 20% reduction (for the gzip (un-
compress) of Group 3) in execution time.

To measure the overhead of the bookkeeping and
management of information for adjusting the room
sizes, we added a CPU bound process that continuously
does simple add operations to each of the groups of ap-
plications. The results of these experiments are shown
in Table 5. Note that the e�ect of the CPU bound pro-
cess on the execution of each application depends on
the characteristics of the applications that are execut-
ing. For applications of Group 1, the increase in the
execution time is small, while for those of Group 2, the
increase is substantial. (This can be observed by com-
paring the execution times of Tables 4 and 5.) Note
though, that the increase in execution time of the CPU
bound process (for Groups 1 and 3) are quite small,
implying that the overhead for maintaining relevant in-
formation for dynamic room partitioning is quite small.

6 Conclusion and Future Works

In this paper, we proposed the SA-W 2
R scheme that

is in line with the LRU-OBL scheme, that is, a simple
and practical scheme that integrates prefetching and re-
placement policies. It is simple and practical, and yet it
is modular in that any replacement policy deemed ap-
propriate may be incorporated into the scheme. Sim-
plicity results in a scheme that is easy to implement,
hence practical.

An extensive implementation study was done, and ex-
perimental results show that the SA-W 2R shows better
performance compared to the original GNU/Linux and
LRU-OBL implementations.

Issues such as quantifying the bene�ts of the mod-
ularity of the Weighing Room or the e�ect of hint-
based prefetching on the SA-W 2R scheme are being
considered. Performance of prefetching is also strongly
in
uenced by the performance of the disk system as
well, and, thus, their interaction must be studied more
closely.



Table 2: Average execution time for applications using di�erent bu�er management schemes (in seconds).
Applications Original Linux LRU-OBL SA-W 2R

gcc 244 241 230
cp 59.40 53.31 48.71

tar (create) 61.02 59.87 55.31
tar (extract) 41.70 39.93 36.26

gzip (compress) 72.87 64.73 56.11
gzip (uncompress) 21.45 19.99 17.23

sort 47.32 45.14 42.57
grep 46.92 38.28 37.01

Table 3: Average execution time for applications with a 'random' process disrupting regular reference behavior
using di�erent bu�er management schemes (in seconds).

Applications Original Linux LRU-OBL SA-W 2R

gcc 394.15 393 387.24
cp 302.32 304.64 297.57

tar (create) 312 304.89 298.99
tar (extract) 46.55 49.22 43.58

gzip (compress) 76.93 69.17 66.12
gzip (uncompress) 22.47 22.34 20.84

sort 54.55 55.29 54.25
grep 294.08 277.59 272.65

Table 4: Average execution time for groups of applications executed concurrently (in seconds).
Applications Original Linux LRU-OBL SA-W 2

R

Group 1 cp 325.73 318.44 313.23
tar (create) 329.57 323.79 319.53

Group 2 gzip (compress) 95.67 98.26 94.35
sort 91.80 92.06 88.56

Group 3 tar (extract) 77.96 83 75.43
gzip (uncompress) 59.70 50.91 47.54

grep 130.42 127.42 122.55

Table 5: Average execution time of groups of applications executing concurrently with a CPU bound process (in
seconds).

Applications Original Linux LRU-OBL SA-W 2R

CPU bound process only 222 222 222
Group 1 cp 329.57 315.82 311.94

tar (create) 331.95 319.74 314.65
CPU bound process 235 235 236

Group 2 gzip (compress) 138.77 143.08 137.52
sort 138.74 141.71 137.17

CPU bound process 315.07 315.47 314.96
Group 3 tar (extract) 90.8 91.58 85.26

gzip (uncompress) 79.83 61.32 58.01
grep 146.02 138.91 129.57

CPU bound process 246.01 247.51 248.1
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