
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Developing Drivers and Extensions for XFree86-4.x

Dirk Hohndel

SuSE Linux AG

N�urnberg, Germany

hohndel@suse.de

Robin Cutshaw

Intercore

Atlanta, GA, USA

robin@intercore.com

Abstract

This paper gives an introduction to driver develop-
ment for XFree86-4.x. After a quick analysis of the
existing problems in the previous XFree86 design, it
describes the module loading architecture and the
key interfaces that a graphics hardware driver for
XFree86 must support.

1 Introduction

XFree86 has been the standard implementation of
the X Windows System [1] for PC Unix systems
for quite a while now; The XFree86 Project [2] was
started in 1992 and incorporated in 1994. From the
very beginning XFree86 was an open source project
(even though back then the term "open source"
wasn't widely used), still the �rst supported plat-
forms were proprietary commercial Unix implemen-
tations. Open source simply came as a natural con-
sequence of extending the X Window System. And
with the success of Linux, XFree86 became one of
the most often used implementations of the X Win-
dow System and to some extend the new driving
force behind the development of X11.

Having started soon after the oÆcial release of
X11R5 in 1991, XFree86 was in its design and source
layout based on the original X386 work by Thomas
Rll which was donated into X11R5 by SGCS.

This had many implications for the fundamental as-
sumptions upon which this design was based. One
of the more important (and more devastating) ones

was the fact that there was no real design docu-
ment. While Jim Gettys et al. in [3] describe the
fundamental design of X11, and while Elias Israel
and Erik Fortune in [4] explain the fundamental
X Server design, there is no document that de�nes
the design behind X386 and, subsequently, behind
XFree86 versions 1 through 3.

The device dependent X (ddx) code that handles
the programming of the hardware was always an
area where companies tried to maintain some intel-
lectual property outside the (open source) sample
implementation of X11. This was true both for com-
panies like SGCS as well as for the traditional Unix
vendors. Therefore, little progress in the ddx code
became part of the sample implementation

While X11R6 changed some of the source layout and
some of the structure of the device independent X
(dix) code, the design of the ddx was largely un-
touched. It was based on late-80s / early-90s design
decisions that, to make matters worse, were not doc-
umented.

So in oder to develop drivers for the older versions
of XFree86 one had to sit down and read the code.
And we are talking about quite a large amount of
code. The xfree86 ddx of XFree86-3.2, for example,
contains about 1000 source �les and roughly 350000
lines of code. For version 3.3.6 this increased to
about 1400 source �les with about 520000 lines of
code.

Early on David Wexelblat, one of the founders of
XFree86 and a member of the XFree86 Core Team
provided a sceleton driver [5], but even using that it
was still necessary to understand very subtle inter-

dependencies and many assumptions that the over-
all code made about the type of hardware used, in
order to successfully write new code for XFree86.

One of the more involved assumptions was that the
graphics board in a PC would be VGA compati-
ble. The code loading color maps, for example, re-
lied on the fact that the default way to do so on a
VGA board would work. This and other similar as-
sumptions of course turned out to be problematic as
new more advanced architectures for graphics card
started to become available.

But aside from the technical details of the driver
implementation, there were some logistical conse-
quences to the design as well. The hardware drivers
were part of the X server binary. This monolithic
architecture of XFree86 before version 4 forced (in
most cases, there were exceptions for some types of
extensions and for Xinput drivers) the release of a
complete server binary if a new driver (or an up-
dated version of a driver) was to be released. At
�rst glance this doesn't sound so bad. But the lo-
gistical problem stems from the fact that XFree86
supports more than a dozen OSs, including Linux,
FreeBSD, NetBSD, OpenBSD, Solaris, SCO, QNX
and even OS/2, to name a few. Several of these are
supported on multiple hardware architectures.

Releasing even a simple driver therefore implied to
get hold of all these platforms (or at least the more
popular ones), to create server binaries and installa-
tion instructions, and to provide those to the users.
And of course there's the added complexity if more
that one group is working on improvements (so if
you want the new extension from group A, e.g.,
VMware's new DGA version, and the new driver
from group B, e.g. SuSE's new Rage128 driver, then
you had to rely on these two groups talking to each
other and importing each other's new features).

2 Module Loading Architecture

With the advent of XFree86 version 4 some funda-
mental assumptions about extending its functional-
ity thankfully have changed. Metro Link has do-
nated a module loading architecture that XFree86
has enhanced and extended so that now there exists
a portable architecture to load object �les (and even
ar libraries) at run time into the address space of a
process.

Several di�ent object formats are supported in this
architecture. While a dlopen() based loader is in-
cluded, implementation issues with unresolved sym-
bols in modules make it very hard to use. The obvi-
ous advantage of a dlopen() based loader (full sup-
port in system debuggers) contrasts the down side of
implementation limitations and the non- portability
of the resulting modules.

The most often used �le format are ELF objects
as created, e.g., on a Linux system. Additionally,
a.out and COFF are supported as well. The host
operating system and its preferred object �le format
have no in
uence on the selection, the loader code
is fully selfcontained and needs no further support
from the host OS beyond standard libc interfaces.

The server binary (which obviously has to be in the
native executable �le format of the host OS) can
simply load modules at run time by calling

LoadModule(ModuleName, Path, SubDirs, Pattern,

OptionList, ModReq, &errmaj, &errmin)

This allows the server to load the given module,
�nding it according to the rules given in Pattern
in the SubDirs of Path. The options given in the
OptionList are passed to the setup function of the
module when the module is �rst initialized. The
loader framework can ensure that the required ABI
versions given in ModReq are met.

Which modules are loaded at run time is de�ned
through compiled in defaults (e.g., a bitmap font
renderer is mandatory to be loaded), through the
XF86Con�g �le and through dependencies among
the modules. The deferred symbol resolution strat-
egy allows to load modules that have dangling ref-
erences to other modules that will be loaded at a
later point in time. Additionally, modules can ref-
erence symbols that the main server binary exports
to them.

When a module is �rst loaded, before all symbol
references are ful�lled, the loader code searches for
a data element named <ModuleName>ModuleData
that contains the module version information (in-
cluding ABI versions that the module supports) and
references to a setup and teardown function. In the
next step the setup function is called with the op-
tions provided during the call to LoadModule().

At this phase only the symbols that are exported
from the main server binary and all in-module ref-

erences are resolved. The setup function therefore
needs to avoid calling functions that are provided
through other modules.

Once all modules are loaded, the remaining symbols
in the modules are resolved and the main program
can match addresses to symbols by looking them up
with FunctionPtr = LoaderSymbol(FunctionName).

3 Logistical considerations

This modular loading architecture allows to provide
just the modi�ed/new driver (or extension) module
instead of the full X server. The server can load this
new module at run time and utilize its new features.
The architecture provides an additional simpli�ca-
tion. Since the loader code does not rely on the
host OS in order to read and interpret object �les,
all the OSs on the same hardware architecture can
share the same type of modules as well. Releasing
a driver for a new card now is as easy as releas-
ing a single ".o" �le for the x86 architecture, and
maybe the same for other hardware platforms that
the device can be used on.

The installation of this new driver implies sim-
ply to copy it to a well known location (e.g.,
/usr/X11R6/lib/modules/drivers for graphics hard-
ware drivers) and, if this is a new driver, updating
the XF86Con�g �le accordingly.

The logistical problem now boils down to issues
of ABI versions in the loader code, the need for
exported symbols from the main server binary or
maybe the host system libc implementation, and of
course the issue of authentication of modules. Let's
quickly go through these one by one.

ABI version The application binary interface that
de�nes the loader architecture in XFree86
has a versioning scheme that allows (through
major.minor numbering) compatible and in-
compatible changes to di�erent parts of the
ABI. By de�ning the ABI version in the
XF86ModuleVersionInfo of a module the server
can determine if it is able to load and execute
the module.

Since di�erent classes of modules have di�erent
ABI classes it is possible to change the ABI
for one subset of the server without having to

modify unrelated modules. For example, video
drivers and font renderers have di�erent ABI
classes.

exported symbols The XFree86 ANSI C Emu-
lation ABI de�nes a set of entry points and
variables from the main server binary that can
be referenced from the module. This includes
many of the ANSI libc functions that are pro-
vided to the modules by means of special wrap-
per functions that allow portable access to host
libc routines. This is necessary to make driver
modules independent from special versions of
libc and to make modules protable between dif-
ferent OSs for the same architecture.

authentication of modules Modules contain in-
formation on the manufacturer and the ver-
sion of XFree86 against which they were built.
This is additional information for the end user
only, the relevant ABI versioning does not use
this information. In order to be able to de-
termine whether a module has been tampered
with, authentication code that gives a cryp-
tographic signature of the module (which can
then be compared against a vendor-provided
list of valid signatures) will be added.

At this point the code necessary to do this has
not been
eshed out in detail.

4 Writing a Driver

What remains is the technical problem of devel-
oping drivers and extensions for XFree86. This
still is a very di�cult task, but that as well has
become easier. After unpacking the XFree86
sources a detailed design document can be found at
xc/programs/Xserver/hw/xfree86/doc/DESIGN This
document covers the important details of the new
server design and provides step by step analysis of
the
ow of control in the server, the mandatory
interfaces that a driver needs to provide and the
optional driver functions. Furthermore the data
structures used in the drivers are de�ned and
explained, handling of bus resources and the helper
functions that the server provides for commonly
needed tasks in a driver.

While all the details are in this design document, a
quick overview of the necessary parts shall be given
here.

� a ModuleData variable as described above that
contains the necessary information to load and
initialize the module

static MODULESETUPPROTO(zzzSetup);

XF86ModuleData zzzModuleData =

{ &zzzVersRec, zzzSetup, NULL };

a sample version info would look like this

static XF86ModuleVersionInfo zzzVersRec =

{

"zzz",

MODULEVENDORSTRING,

MODINFOSTRING1,

MODINFOSTRING2,

XF86_VERSION_CURRENT,

ZZZ_MAJOR_VERSION,

ZZZ_MINOR_VERSION,

ZZZ_PATCHLEVEL,

ABI_CLASS_VIDEODRV,

ABI_VIDEODRV_VERSION,

MOD_CLASS_VIDEODRV,

{0,0,0,0}

};

The MODULEVENDORSTRING would usu-
ally be i "The XFree86 Project" or the corre-
sponding information for the vendor creating
this module. The two MODINFOSTRINGs are
magical values that identify allow to �nd the
VersionInfo in a module (for example for use
in a signing tool). Next comes the version of
XFree86 that this module was built again and
the version of the module itself. Then the ABI
class and version as well as the module class.
The �nal four integers are intended to hold the
digital signature of the module.

� a Setup() function is needed to integrate the
module into the XFree86 loader architecture.
This function follows the ABI speci�cation for
loadable modules and makes the module func-
tions and data available to the server.

static pointer

zzzSetup(pointer module, pointer opts,

int *errmaj, int *errmin)

The Setup() function needs to call
xf86AddDriver() in order to register the
module as a driver.

� an Identify() function that prints out some
identifying message is mandatory.

static void

ZZZIdentify(int flags)

{

xf86PrintChipsets(ZZZ_NAME,

"driver for ZZZ Tech chipsets",

ZZZChipsets);

}

� a Probe() function is needed that locates the
hardware that this driver supports (normally
some type of graphics device) and registers this
driver as driver for the resource. The Probe
should be as unintrusive as possible. It must
not modify any settings in the hardware and
should not touch any hardware except the de-
vices that are supported by this driver.

static Bool

ZZZProbe(DriverPtr drv, int flags)

for most current hardware the Probe() func-
tion can use information from the PCI data
to verify if a supported card is available. A
helper function xf86MatchPciInstances() is
available to make matching PCI devices easier.

� a PreInit() function collects all the informa-
tion that is necessary to determine the con-
�guration of the hardware and to prepare the
device for being used, without making any
changes to the device at this stage. Again this
function should be as unintrusive as possible.

static Bool

ZZZPreInit(ScrnInfoPtr pScrn, int flags)

Information that is �lled in here includes things
obtained from the XF86Con�g �le (e.g., the
Monitor info, the amount of video memory, if it
was given in the con�g �le), defaults for color
depth and bits per pixel (bpp), visual, gamma
correction, etc.

Additional, non-intrusive probing of hardware
is done for that type of information that has not
been given in the con�g �le (e.g., exact type of
chipset, amount of video memory, etc.).

Next the video modes given in the con�g �le
are validated against the restrictions that the
hardware puts on video modes.

Finally, this function loads the submodules nec-
essary for driving the hardware (e.g., the vgahw
module for VGA compatible cards) and the
framebu�er code.

� Save() and Restore() functions provide a
means to save and restore the complete video
state of the device. While these functions are
not mandatory they are a very useful abstrac-
tion of a commonly needed task.

static void

ZZZSave(ScrnInfoPtr pScrn)

static void

ZZZRestore(ScrnInfoPtr pScrn)

� a ModeInit() function is used to setup a new
video mode. This is again a recommended func-
tion but not part of the mandatory interfaces.

static Bool

ZZZModeInit(ScrnInfoPtr pScrn,

DisplayModePtr mode)

� a ScreenInit() function is needed to hook the
driver into the server and to setup the initial
video mode (using ModeInit()). This is (in the

ow of control) the �rst function that should
modify the device.

static Bool

ZZZScreenInit(int scrnIndex,

ScreenPtr pScreen,

int argc,

char **argv)

This functions need to initialize the de-
vice independent parts of the X server as
well. This includes informing setting up
the visual type (miSetVisualTypes()),
initializing the framebu�er (by calling the
framebu�er ScreenInit() function, e.g.
cfbScreenInit()), creating the initial color
map, etc.

� EnterVT() and LeaveVT() functions are
needed to allow switching to and from the X
server.

static Bool

ZZZEnterVT(int scrnIndex, int flags)

static void

ZZZLeaveVT(int scrnIndex, int flags)

� a SaveScreen() function is mandatory to
blank the screen.

static Bool

ZZZSaveScreen(ScreenPtr pScreen,

Bool unblank)

� a CloseScreen() function is used to reset the
device to its original state.

static Bool

ZZZCloseScreen(int scrnIndex,

ScreenPtr pScreen)

Once these functons are implemented and hooked
together, a non-accelerated driver for the device
is available and can be tested. Adding acceller-
ation to this driver (using the XFree86 Accel-
eration Architecture XAA) is relatively straight
forward and again well documented in the
XAA documentation which can be found at
xc/programs/Xserver/hw/xfree86/xaa/XAA.HOWTO

Summary and Conclusion

In summary, on the one hand, the documentation
of the new ddx (devive dependent X) design in
XFree86 has signi�cantly improved over the previ-
ously available material. On the other hand, the
structure and layering of the server itself has be-
come much more straight forward. Many of the
previously existing SVGA-isms have been removed,
many other implicit assumptions about the design
of the bus and the existence of one single graphics
card are gone as well.

Following the design document it is fairly straight
forward to implement a multi head capable driver
for almost any type of graphics device.

The DDK

The next major step forward will be the advent of a
real DDK, a real driver development kit. As of this
writing, this is not �nished, since we need to release
4.0 before we can focus on the DDK. But the design
of XFree86 4.0 is �nished, the initial release will
happen before this paper is going to print, and in
summer 2000 a release of a full DDK is planned.

So while this paper will have to skip the description
of the DDK, I should be able to talk about this
during my presentation at the conference.

5 Availability

You can get the XFree86 sources from our web site
http://www.XFree86.Org.

References

[1] http://www.x.org

[2] http://www.xfree86.org

[3] Jim Gettys, Philip L. Karlton, Scott McGregor,
The X Window System Version 11, DEC CRL
90/08.

[4] Elias Israel, Erik Fortune, The X Window Sys-

tem Server, Digital Press.

[5] in the XFree86-3.x sources:

xc/programs/Xserver/hw/xfree86/VGADriverDoc

