USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,
Atlanta

Atlanta, Georgia, USA
October 10-14, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




A user-mode port of the Linux kernel

Jeff Dike

Abstract

The Linux kernel has been ported so that it runs on
itself, in a set of Linux processes. The result is a us-
er space virtual machine using simulated hardware
constructed from services provided by the host ker-
nel. A Linux virtual machine is capable of running
nearly all of the applications and services available
on the host architecture. This paper describes the
capabilities of a user-mode virtual machine, the de-
sign and implementation of the port, some of the
applications that it lends itself to, and some of the
work that remains to be done.

1 Overview

1.1 Description of functionality

The user-mode kernel is a port of the Linux kernel
to the Linux system call interface rather than to
a hardware interface. The code that implements
this is under the arch interface. So, this kernel is
a full Linux kernel, lacking only hardware-specific
code such as drivers.

It runs the same user space as the native kernel.
Processes run natively until they need to enter the
kernel. There is no emulation of user space code.

Processes running inside it see a self-contained envi-
ronment. They have no access to any host resources
other than those explicitly provided to the virtual
machine.

1.2 Device support

All devices seen by the user-mode kernel are virtual
from the point of view of the host. They are con-
structed from software abstractions provided by the

host. The following types of devices are provided:

Consoles The main console is whatever terminal
the kernel was invoked in. In addition, virtual
consoles are supported. By default, they exe-
cute an xterm when opened. Optionally, they
can just allocate a pseudo-terminal which the
user can connect to with a terminal program
such as minicom or kermit.

Block devices The block device driver operates
within a file on the host. Normally, this is a file
containing a filesystem or swap space. Howev-
er, any file on the host that is seekable is suit-
able. So, devices on the host can be accessed
through their device files.

Serial lines The serial line driver allocates a
pseudo-terminal. Users wanting to connect to
the virtual machine via a serial line can do so by
connecting to the appropriate pseudo-terminal
with a terminal program.

Network devices There are two network device
drivers. The old network driver communicates
with the host networking system through a slip
device that it creates in the host. The virtual
machine’s side of the connection is a pseudo-
terminal in the host which appears as a net-
work device inside. There is also a newer net-
work driver which uses an external daemon to
pass Ethernet frames between virtual machines.
This daemon can also attach this virtual net-
work to the host’s physical Ethernet by way of
an ethertap device. With an appropriate pack-
et forwarding policy in the daemon, the virtual
Ethernet can be transparently merged with the
physical Ethernet, totally isolated from it, or
anything in between.



2 Design and implementation

2.1 Overview

The final and most important piece of hardware that
needs to be implemented virtually is the processor
itself, including memory management, process man-
agement, and fault support. The kernel’s arch inter-
face is dedicated to this purpose, and essentially all
of this port’s code, except for the drivers, is under
that interface.

A basic design decision is that this port will directly
run the host’s unmodified user space. If processes
are going to run exactly the same way in a virtu-
al machine as in the host, then their system calls
need to be intercepted and executed in the virtual
kernel. This is because those processes are going to
trap directly into the host kernel, rather than the
user-mode kernel, whenever they do a system call.
So, the user-mode kernel needs a way of converting
a switch to real kernel mode into a switch to virtual
kernel mode. Without it, there is no way to virtu-
alize system calls, and no way to run this kernel.

This is implemented with the Linux ptrace system
call tracing facility. A special thread is used to p-
trace all of the other threads. This thread is notified
when a thread is entering or leaving a system call,
and has the ability to arbitrarily modify the system
call and its return value. This capability is used to
read out the system call and its arguments, annull
the system call, and divert the process into the user
space kernel code to execute it.

The other mechanism for a process to enter the ker-
nel is through a trap. On physical machines, these
are caused by some piece of hardware like the clock,
a device, or the memory management hardware forc-
ing the CPU into the appropriate trap handler in the
kernel. This port implements traps with Linux sig-
nals. The clock interrupt is implemented with the
SIGALRM and SIGVTALRM timers, I/O device inter-
rupts with SIGIO, and memory faults with SIGSEGV.
The kernel declares its own handlers for these signal-
s. These handlers must run in kernel mode, which
means that they must run on a kernel stack and with
system call interception off. The first is done by
registering the handler to run on an alternate stack,
the process kernel stack, rather than the process s-
tack. The second is accomplished by the handler
requesting that the tracing thread turn off system

call tracing until it is ready to re-enter user mode.

When a process is enters kernel mode, it is branch-
ing into a different part of its address space. On
the host, processes automatically switches address
spaces when they enter the kernel. The user-mode
port has no such ability. So, the process and kernel
coexist within the same address space. The design
of the VM system is partly a question of address s-
pace allocation. Conflicts with process memory are
avoided by placing the kernel text and data in areas
that processes are not likely to use. The kernel im-
age itself is linked so that it loads at 0x10000000.
The kernel expects the machine to have physical
memory and kernel virtual memory areas. The
physical memory area consists of a file mapped into
each address space starting at 0x50000000. The k-
ernel virtual memory area is immediately after the
end of the physical memory area. Virtual memo-
ry, both kernel and process, is implemented by re-
mapping pages from the physical memory file into
the appropriate place in the address space.

Each process within a virtual machine gets its own
process in the host kernel. Even threads sharing
an address space in the user-mode kernel will get
different address spaces in the host.

Even though each process gets its own address s-
paces, they must all share the kernel data. Unless
something is done to prevent it, every process will
get a separate, copy of the kernel data. So, what is
done is that the data segment of the kernel is copied
into a file, unmapped, and that file is mapped shared
in its place. This converts a copy-on-write segment
of the address space into a shared segment.

To balance that awkwardness, the separate address
space design allows context switches to be largely
implemented by host context switches, with pre-
emption driven by the SIGVTALRM timer.

SIGIO is used to deliver the other asynchronous
events that the kernel must handle, namely device
interrupts. The console driver, network drivers, se-
rial line driver, and block device driver use the Linux
asynchronous I/O mechanism to notify the kernel of
available data.



2.2 Virtual machine initialization and
shutdown

Before the kernel itself starts booting, some initial-
ization needs to be done in order to make the process
look enough like a real machine that the kernel can
boot it up. This is analogous to the boot loader on a
physical machine doing some hardware setup before
running the kernel.

The process arguments are concatenated into the
buffer in which the kernel expects to find its com-
mand line. Some arguments, which affect the con-
figuration of the virtual machine and how it’s to
be debugged, are parsed at this point. The physical
memory area is set up, some initialization of the task
structure and stack of the idle thread is done, the
idle thread is started, and the initial thread settles
down to its permanent job as the tracing thread.

The idle thread calls start_kernel and the vir-
tual machine boots itself up. There is some more
architecture-specific initialization that needs to be
done. mem_init makes memory available to the ini-
tial boot process, paging_init makes all free mem-
ory available to kmalloc, and the various drivers are
registered and initialized.

At the other end of the virtual machine’s lifes-
pan, when halt or reboot are run, an architecture-
specific routine is eventually called to do the actual
machine halt or restart. In this port, that involves
killing all processes which are still alive, including
any helper threads which weren’t associated with
any virtual machine processes, and asking the trac-
ing thread to finish the shutdown.

If the machine is being halted, the tracing thread
simply exits. If it’s being rebooted, it loops back
to calling the machine initialization code. At that
point, the machine boots back up just as it did when
it was first run.

2.3 Process creation and destruction

When a new process is created, the generic kernel
creates the task structure for the new process and
calls the arch layer to do the machine-dependent
part. This port creates a new process in the host
for each new process in the virtual machine. This
is done by the tracing thread. It needs to ptrace

all new processes, and that is simplified if it’s their
parent.

The new thread starts life in a trampoline which
does some initialization. It sets up its signal han-
dlers for SIGSEGV, SIGIO, and SIGVTALRM, initializes
the timer, and sets itself to be ptraced by its parent.

Once this initialization is done, it sends itself a
SIGSTOP. When the tracing thread sees the thread
stop itself, it sets the thread’s system call return val-
ue to zero, while the same system call in the forking
process returns the pid of the new process.

At this point, the parent’s fork or clone is finished,
and it returns.

At some later point, the new process will be sched-
uled to run. It is necessary that a process call
schedule_tail before it’s rescheduled. Also, the
kernel stack state needed to start a system needs to
be saved. Both of these are done at this point. An-
other signal is delivered to the new process, and the
handler calls schedule_tail, goes into the system
call handler, and stops itself. The tracing thread
captures the process state at this point. Then the
registers of the forking process (except for the one
reserved for the system call return value, which is
now zero) are restored, and the process is contin-
ued. Since the generic kernel arranged for the new
address space to be a copy of the parent address s-
pace, and the new process has the same registers as
the old one, except for the zero return value from
the system call, it is a copy of its parent. At this
point, its initialization is finished, and it’s just like
any other process in the virtual machine.

The other end of a process lifespan is fairly sim-
ple. The only resources that need to be cleaned up
are some kmalloced buffers in the thread structure,
which are freed, and the process in the host, which
is killed.

2.4 System calls

System call virtualization is implemented by the
tracing thread intercepting and redirecting process
system calls into the virtual kernel. It reads out the
system call and its arguments, then annuls it in the
host kernel by changing it into getpid. In order to
execute the system call in user space, the process is
made to execute the system call switch on its ker-



nel stack. This can be (and has been) done in two
different ways.

The first is to use ptrace to impose a new set of reg-
ister values and stack context on the process. This
context represents an execution context which put-
s the process at the beginning of the system call
switch. This context is constructed by the process,
just after its creation, calling the switch procedure
and sending itself a SIGSTOP. The tracing thread
sees the SIGSTOP and saves the process register and
stack state in the task structure. When this state is
restored and the process continued, it emerges from
the call to kill that it used to stop itself.

The second is to deliver a signal to the process before
it’s continued into the getpid. The Linux system
call path checks for signals just before returning to
user space, so that signal will be delivered immedi-
ately. The signal handler is the system call switch
and it is installed so that it executes on an alter-
nate stack (the process kernel stack). This has the
same effect as manually restoring the context, but
the host kernel does most of the work.

Regardless of which mechanism is used to impose
the kernel execution context on the process, the
tracing thread continues it with system call tracing
turned off. The process reads the system call and
its arguments from its thread structure and calls the
actual system call procedure.

When it finishes, the return value is saved in the
thread structure, and the process notifies the trac-
ing thread that it needs to go back to user space.
The tracing thread stores the return value into the
appropriate register and continues the process a-
gain, with system call tracing turned back on. Now,
the process starts executing process code again with
the system call return value in the right place, and
the user space code can’t tell that anything unusual
happened. Everything is exactly the same as if the
system call had executed in the host kernel.

2.5 Context switching

If a process sleeps instead of returning immedi-
ately from a system call, it calls schedule. The
scheduler selects a new process to run and calls the
architecture-specific context switching code to actu-
ally perform the switch. In this port, that involves
the running process sending a message to the trac-

ing thread that it is being switched out in favor of
another process. Since each process in the virtual
machine is also a process in the host, the tracing
thread performs the switch by stopping the old pro-
cess and continuing the new one. The new process
returns from the context switch that it entered when
it last ran and continues whatever it was doing.

Sometimes, after a process is switched back in, its
address space will need some updating. If some of
its address space had been paged out while it was
sleeping, those physical pages, with their new con-
tents, will still be mapped. So, in this situation,
the process will need to update its address space by
unmapping pages which are no longer valid in its
context. These pages are listed in a circular buffer
whose address is stored in the process mm_struct.
When a page is swapped out from a process while
it’s asleep, its address is appended to this buffer.
When the process wakes up, it looks at this buffer
to see if there are any changes to its address space
that it hasn’t applied yet. It then updates its ad-
dress space and sets an index in its thread structure
to point to the end of the buffer. This private index
is necessary because many processes might share a
virtual address space and an mm_struct. In general,
their host address spaces will be in different states,
depending on how long it’s been since they’ve been
updated. So, each process keeps track of how many
address changes in this buffer it has seen.

There is a possibility that the buffer might wrap
around while a process is asleep and some of the
address space changes it needs to make have been
lost. To avoid this, the index into the buffer that
each process maintains is really an absolute count.
The index is obtained by dividing the count by the
buffer size and taking the remainder. If the buffer
has wrapped, then the process count of address s-
pace changes will differ from the actual count by
more than the number of slots in the buffer. In this
case, the entire address space will be scanned and
compared to the process page tables. Any differ-
ences will be fixed by remapping or unmapping the
page concerned.

2.6 Signal delivery

When a signal has been sent to a process, it is
queued in the task structure, and the queue is pe-
riodically checked. In this port, the check happens
on every kernel mode exit. If a signal needs to be



delivered, a SIGUSR2 is sent to the underlying pro-
cess. The SIGUSR2 handler runs on the process s-
tack, and it executes the process signal handler by
simply making a procedure call to it.

Things are a little more complicated if the signal is
to be delivered on a different, process-specified, s-
tack. In this case, the alternate stack state, which
is composed of register values and stack state, is
imposed on the process with ptrace. This new s-
tate puts the process in the signal delivery code on
the alternate stack, which invokes the process signal
handler.

2.7 Memory faults

Linux implements demand loading of process code
and data. This is done by trapping memory faults
when a nonexistent page is accessed. In this port,
a memory fault causes a SIGSEGV to be delivered
to the process. The segmentation fault handler
does the necessary checking to determine whether
it was a kernel-mode or user-mode fault, and in the
user-mode case, whether the page is supposed to be
present or not. If the page is supposed to be present,
then the kernel’s page fault mechanism is called to
allocate the page and read in its data if necessary.
The segmentation fault handler then actually maps
in the new page with the correct permissions and
returns.

If the fault was not a legitimate page fault, then
the machine either panics or sends a SIGSEGV to the
process depending on whether it was in kernel mode
or user mode.

An exception to this is when a kernel mode fault
happens while reading or writing a buffer passed in
to a system call by the process. For example, a
process may call read with a bogus address as the
buffer. The fault will happen inside the kernel, in
one of the macros which copy data between the k-
ernel and process. The macro has a code path that
executes when a fault happens during the copy and
returns an appropriate error value. The address of
this path is put in the thread structure before the
buffer is accessed. The fault handler checks for this
address, and if it is there, it puts the fault address in
the thread structure, copies the error code address
into the ip of the sigcontext structure, and return-
s. The host will restore the process registers from
the sigcontext structure, effectively branching to the

error handler. The error handler uses the fault ad-
dress in some cases to determine the macro return
value. When this happens, the system call will usu-
ally react by returning EFAULT to the process.

2.8 Locking

There are three types of locking. On a uniprocessor,
interrupts must be blocked during critical sections
of code. In this port, interrupts are Linux signals,
which are blocked and enabled using sigprocmask.

SMP locking involves a processor locking other pro-
cessors out of a critical section of code until it has
left it. The instructions needed to do this are not
privileged on 1386, so the SMP locking primitives
are simply inherited from the 1386 port.

The same is true of semaphores. The 1386
semaphore primitives work in user space as well as
in the kernel, so they are inherited from the i386
port.

2.9 IRQ handling

The IRQ system was copied verbatim from the 1386
port. It works with almost no modifications. When
a signal handler is invoked, it figures out what IRQ
is represented by the signal, and calls do_IRQ with
that information. do_IRQ proceeds to call the nec-
essary handlers in the same way as on any other
port.

The one difference between this port and others is
that some IRQs are associated with file descriptors.
When input arrives, the SIGIO handler selects on
the descriptors that it knows about in order to de-
cide what TRQs need to be invoked.

3 A virtual machine

The result of all of this infrastructure is that the
Linux kernel runs in a set of Linux processes just
as it does on physical hardware. The machine-
independent portions of the kernel can’t tell that
anything strange is happening. As far as they are
concerned, they are running in a perfectly normal
machine.



When user-mode Linux is started, the normal kernel
boot-up messages are written to its console, which
is the window in which it was run. When the kernel
has initialized itself, it runs init from the filesys-
tem that it’s booting from. What happens from
that point is decided by the distribution that was
installed in that filesystem.

Essentially all applications that run on the native k-
ernel will run in a virtual machine in the same way.
Examples include all of the normal daemons and ser-
vices, including the Apache web server, sendmail,
named, all of the network services, and X, both dis-
playing as a client on the host X server, and as a
local X server.

4 Applications

4.1 Kernel debugging

This port was originally conceived as a kernel de-
bugging tool. A user-mode kernel port makes it
possible to do kernel development without needing
a separate test machine. It also enables the use of
the standard suite of process development and de-
bugging tools, like gdb, gcov, and gprof, on the
kernel.

A difficulty with using gdb is that the kernel’s
threads are already being ptraces by the tracing
thread. This makes it impossible for gdb to attach
to them to debug them. Early on, this problem
was dealt with by having the tracing thread detach
from the thread of interest. Then, gdb could attach
to it, and it could be debugged as a normal pro-
cess. Rarely, when this was over, the thread was
re-attached by the tracing thread, and the kernel
continued. More often, the whole kernel was killed
at the end of that debugging session.

Now, there is a mechanism that allows gdb to de-
bug a kernel thread without needing to attach to it,
and without needing to detach the tracing thread
from it. This works by having the tracing thread
start gdb under system call tracing. The tracing
thread intercepts ptrace system calls and a few oth-
ers made by gdb, executes them itself, nullifies the
gdb system call, and writes the return value into the
appropriate register in gdb. In this way, gdb is faked
into believing that it is attached to the thread and

is debugging it.

4.2 Isolation

Other uses of this port became apparent later. A
number of applications involve isolating users of vir-
tual machines from each other and from the host.

There are several reasons to want isolation. One is
to protect the physical machine and its resources
from a potentially hostile process. The process
would be run in a virtual machine which is given
enough resources to run. Those resources would
not be valuable, so they could be easily replaced
if destroyed. It would be given a copy of an exist-
ing filesystem. If it trashes that filesystem, then it
would just be deleted, and a new copy made for the
next sandbox. It would have no access to valuable
information, and its use of the machine’s resources
would be easily limited. The virtual Ethernet driv-
er also makes it easy to control its access to the
net. The daemon that does packet routing could be
made to do packet filtering in order to control what
traffic the sandboxed process is allowed to send and
receive.

A variation on this theme is to put a non-hostile, but
untrusted service in a virtual machine. A service is
untrusted if it’s considered to be vulnerable to being
used to break into a machine. named is such a ser-
vice, since it has had at least one hole which led to
a spectacular number of breakins. An administra-
tor not wanting to see this happen again would run
named in a virtual machine and set that machine to
be the network’s name server. named requests from
outside would be passed directly from the host to
the virtual machine. So, anyone successfully break-
ing into that service would be breaking into a virtual
machine. If they realized that, they’d need to find
another exploit to break out of the virtual machine
onto the host.

Another use of this isolation is to allocate machine
resources, whether they be CPU time, memory, or
disk space, between competing users. A virtual ma-
chine is given access to a certain amount of machine
resources when it’s booted, and it will not exceed
those resources. So, if a user runs a very memory-
intensive process inside a virtual machine, the vir-
tual machine, and not the physical machine, will
swap. Performance inside the virtual machine may
be bad, but no one else using the physical machine



will notice. The same is true of the other types of
resources. CPU time can be allocated through the
assignment of virtual processors to virtual machines.
If a virtual machine is given one processor, it will
never have more than one process running on the
host, even if it’s running a fork bomb. Again, life
will be miserable inside the virtual machine, but no
one outside will notice.

This level of isolation may find a large market in
the hosting industry. Current hosting arrangements
vary from application-specific hosting such as A-
pache virtual hosting to chroot environments to
dedicated, colocated machines. Dedicated machines
are used by customers who want complete control
over their environments, but they have the disad-
vantage that they require a physical machine and
they consume rack space and power. Running many
virtual machines on a large server offers the advan-
tages of a dedicated machine together with the ad-
ministrative conveniences of having everything run-
ning on a single machine.

4.3 Prototyping

Many sorts of services are more convenient to set up
on a virtual machine, or a set of them, before rolling
them out on physical machines. Network and clus-
tering services are good examples of this. Setting up
a virtual network is far more convenient that setting
up a physical one. Once a virtual network is run-
ning, new services can be configured and tested on
it. When the configuration is debugged, it can be
copied to physical machines with confidence that it
will work. If it doesn’t, then it is likely that the
hardware has been set up incorrectly.

So, prototyping first in a virtual environment al-
lows software configuration problems to be separat-
ed from hardware configuration problems. If the
software has been configured properly in a virtual
environment and it doesn’t work in a physical envi-
ronment, there is a high probability that something
is wrong with the physical configuration. So, time
would not need to be wasted looking at the software;
attention would be focussed on the hardware.

Another possibility is to use a virtual machine as
a test environment to make sure that a service is
working properly before running it on physical ma-
chines. This is especially attractive if there are a
variety of environments that the new service will

need to run in. They can all be tested in virtual
machines without needing to dedicate a number of
physical machines to testing.

4.4 Multiple environments without mul-
tiple machines

It is often convenient to have multiple environments
at one’s disposal. For example, it may not be obvi-
ous that a piece of software will work the same on
different Linux distributions. The same is true of d-
ifferent versions of a distribution, library, or service.
It might be necessary to test a piece of software in
the various environments in which it is expected to
run.

Normally, in order to check this, it is necessary to
have multiple machines or a single multi-boot ma-
chine. However, this port makes it possible to run
different environments in different virtual machines,
allowing testing in those environments to happen on
a single physical machine without rebooting it.

4.5 A Linux environment for other op-
erating systems

When this port is made to run on another operating
system, it implements a virtual Linux machine with-
in that OS. As such, it represents an environment
in which that OS can run Linux binaries.

A number of operating systems already have some
amount of binary compatibility with Linux, and sev-
eral have Linux compatibility environments. This is
potentially another way of achieving the same goal.
With Linux becoming the Unix development plat-
form of choice, other Unixes are going to be looking
for ways to run Linux executables, and this may be
a good way of accomplishing that.

5 Future work

5.1 Protection of kernel memory

Since the kernel’s memory is in each process ad-
dress space, it is vulnerable to being changed by



user space code. This is a security hole as well as
making the entire virtual machine vulnerable to a
badly written process. Kernel memory needs to be
write-protected whenever process code is running,
and write-enabled when the kernel is running. The
one tricky aspect of this is that the code which write-
enables kernel data will run on a kernel stack, which
needs to be writable already. So, that stack page
will be left writable when the process is running.
It’s not a problem if the process manages to mod-
ify it because it is fully initialized before any code
starts running on it. Nothing depends on anything
left behind on the stack.

5.2 Miscellaneous functionality

At this writing, the user-mode port is nearly ful-
ly functional. There’s a major omission and some
minor ones:

SMP Emulation This is the most serious missing
functionality. This will allow a virtual machine
to be configured with multiple virtual proces-
sors, regardless of how many physical proces-
sors are present on the host. This will allow
SMP development and testing to happen on u-
niprocessor machines. It will also enable scaling
experiments which test the scalability of the k-
ernel on many more processors than are present
on the host. This will possibly allow the ker-
nel to get ahead of the available hardware in
terms of processor scalability. SMP emulation
is also a way of allocating CPU time to virtual
machines. If one virtual machine is given one
processor and another is given two, and they’re
both busy, the two-processor machine will get
twice as much CPU time as the uniprocessor
machine because it will have two processes run-
ning on the host versus the one being run by
the uniprocessor machine.

SA_SIGINFQ support The SA_SIGINFO flag allows
processes to request extra information about
signals that they’ve received. There is noth-
ing difficult about supporting this option - it
just hasn’t been needed so far.

Privileged instruction emulation A number of
1386 instructions require that the process exe-
cuting them have special permission from the
processor to run them. The most common ex-
amples are the in and out set of instructions

and sti and cli. These make no sense to run
as-is because there is no hardware for in and
out to talk to, and because sti and cli are not
how interrupts are enabled and masked. So,
they will have to be emulated using the equiva-
lent user-space mechanisms. Very few applica-
tions actually use these instructions, which is
why this hasn’t been implemented yet.

Virtual Ethernet enhancements The virtual
Ethernet daemon can exchange packets with
the host and directly with the host’s Ethernet,
but it also needs to be able to talk to its peers
on other machines. This will allow a virtual
Ethernet to span multiple physical machines
without putting the Ethernet frames directly
on the Ethernet, allowing a multi-machine
virtual Ethernet to remain isolated from the
physical Ethernet.

Nesting Currently, the user-mode kernel can not
run itself. The inner kernel hangs after getting
fifty or sixty system calls into init. To some
extent, this is just a stupid kernel trick, but it
does have some utility. The main one is testing.
It is a demanding process. It exercises many
features of the host kernel that aren’t used very
often. So if it can run itself correctly, that is a
good indication that it is functional and correc-
t. The other main use for nesting is testing it-
self on multiple distributions. There have been
bugs and permission problems which show up
one some distributions and not others. So, this
would be a convenient way of making sure it
works on many distributions.

5.3 Performance improvements

5.3.1 Eliminating the tracing thread

The tracing thread is a performance bottleneck in
several ways. Every system call performed by a vir-
tual machine involves switching from the process to
the tracing thread and back twice, for a total of
four context switches. Also, every signal received
by a process causes a context switch to the tracing
thread and back, even though the tracing thread
doesn’t care about the vast majority of signals, and
just passes them along to the process.

The one thing that the tracing thread is absolutely
needed for is intercepting system calls. The curren-
t plan for eliminating it involves creating a third



system call path in the native kernel which allows
processes to intercept their own system calls. This
would allow a process to set a flag which requests
a signal delivery on each system call that it makes.
The signal handler would be invoked with that flag
turned off. Once in the handler, the process would
examine its own registers to determine the system
call and its arguments, and call the appropriate sys-
tem call function as it does currently. When it re-
turns, it would write the return value into the ap-
propriate field in its sigcontext structure, and return
from the signal handler.

At that point, it would return back into user space
with the correct system call return value, and, again,
there would be no way to tell that anything strange
had happened.

5.3.2 Block driver

The block driver is currently only able to have one
outstanding I/O request at a time. This greatly
hurts I/0O intensive applications. Fixing this would
involve either having more than one thread to do
I/0 operations or using an asynchronous I/O mech-
anism to allow multiple requests to be outstanding
without needing to block.

5.3.3 Native kernel

In order to get the best performance with this port,
some work will likely be needed in the host kernel.
The need for system call interception without con-
text switches has already been mentioned. In ad-
dition, access to the host memory context switch-
ing mechanism would probably speed up context
switches greatly. The ability to construct and mod-
ify mm_struct objects from user-space and switch
an address space between them would eliminate the
potential address space scan from context switches.

Another area to look at is the double-caching of disk
data. The host kernel and the user-mode kernel
both implement buffer caches, which will contain a
lot of the same data. This is obviously wasteful, and
tuning the host to be the best possible platform will
probably require that this be addressed somehow.

5.4 Ports

5.4.1 Linux ports

Currently, this port only runs on Linux/i386. There
are Linux/ppc and Linux/ia64 ports underway, but
not completed. The other architectures should al-
so be supported. Ports pose no major problem-
s since Linux hides most of the hardware from its
processes. The main things that show through are
register names. The system call dispatcher needs
to extract the system call number and arguments
from specific registers, and put the return value
in a specific register afterwards. This is obviously
machine-dependent. This is handled by using sym-
bolic register names in the generic code and using
a architecture-dependent header file to map those
names to real machine registers.

The other major portability problem is the system
call vector. Most system calls are common to all
architectures, although the assignments to system
call numbers are different. A minority of system
calls are present on some architectures and not oth-
ers. It is desirable to keep the bulk of the system call
vector in generic code while allowing the underlying
architecture to add in its own system calls. This is
done by having the vector initialization include, via
a macro, architecture-specific slots.

There are a few other machine-dependent detail-
s like how a sigcontext_struct is passed into
signal handlers, how a faulting address is made
available to the SIGSEGV handler, and conversion
between pt_regs and sigcontext_struct struc-
tures. These are handled by a small number of
architecture-dependent macros and functions.

5.4.2 Other OS ports

User-mode Linux can be ported to other operating
systems that have the necessary functionality. The
ability to virtualize Linux system calls by intercept-
ing and nullifying them in the host kernel is essen-
tial. An OS that can’t do that can’t run this port.
Also needed is the ability to map pages into an ad-
dress space in multiple places. Without this, virtual
memory emulation can’t be done. If those two items
are available on a particular OS, then this port can
probably run on it.



It would be convenient to have the equivalent of
CLONE_FILES, which allows processes to share a
file descriptor table without sharing address spaces.
This is used to open a file descriptor in one process
and have it be available automatically in all the oth-
er processes in the kernel. An example of this is the
file descriptors that are used by the block device
driver. They are opened when the corresponding
block device is opened, usually in the context of a
mount process. After that, any process that per-
forms operations on that filesystem is going to need
to be able to access the file descriptor. Without
CLONE_FILES, there will need to be some mechanis-
m to keep track of what file descriptors are open in
what processes.

Beyond those, this port makes heavy use of standard
Unix interfaces. So ports to other Unixes will be
significantly easier than ports to non-Unixes. How-
ever, those interfaces have equivalents on most other
operating systems, so non-Unix ports are possible.

5.5 Access to physical hardware

One potential use of this port in kernel development
that hasn’t been explored yet is driver writing and
debugging. This requires access to physical devices
rather than the virtualized, simulated devices that
are currently supported. There are two main types
of access that would be required:

I/O memory access Linux currently supports,
via the io_remap facility, mapping I/O mem-
ory into a process virtual address space. This
would give a driver access to the device’s mem-
ory and registers.

Interrupts Device interrupts need to be forwarded
to the user-mode driver somehow.

The current plan for supporting this involves a s-
tub driver in the native kernel which can probe for
the device at boot time. This driver would recog-
nize the device and provide some mechanism for the
real user-mode driver to gain access to it, such as
an entry in /proc or /dev. The user-mode driver
would open that file and make requests of the s-
tub driver with calls to ioctl. The file descriptor
would also provide the mechanism to forward inter-
rupts from the stub driver to the user-mode driver.
The stub driver’s interrupt routine would raise a

SIGIO on the file descriptor. One potential problem
with this would be if the device needed some kind
of response to an interrupt from the driver before
interrupts are re-enabled. This would preclude that
response from coming from the user-mode driver be-
cause the process couldn’t be run with hardware in-
terrupts disabled. The stub driver would have to
respond, which would require that code be put in
the host kernel, and it couldn’t be tested in user
space.

6 Conclusion

The user-mode port of the Linux kernel represents
an interesting and potentially significant addition to
the kernel pool. It is the first virtual kernel running
on Linux, except possibly for VMWare. As such, it
places new demands on the host kernel, possibly re-
sulting in new functionality, which may then be used
by other applications. This has already happened.
Until 2.2.15 and 2.3.22, ptrace on Linux/i386 was
not able to modify system call numbers (and on oth-
er architectures, it still can’t). The demands of this
port prompted Linus and Alan to add that feature,
at which point several other applications started us-
ing it. At least one of those applications was com-
pletely impossible beforehand.

Aside from this port, the only options for running
virtual machines are VMWare and IBM VM. In
both of those cases, potential applications maybe
be ruled out for economic reasons or because VM
doesn’t run on the application platform. The avail-
ability of a free virtual machine running on Linux
may open up new opportunities that were reserved
for mainframes or which just didn’t exist before.



