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Abstract

As Linux clusters have matured as platforms for low-
cost, high-performance parallel computing, software
packages to provide many key services have emerged,
especially in areas such as message passing and net-
working. One area devoid of support, however, has
been parallel file systems, which are critical for high-
performance I/O on such clusters. We have developed a
parallel file system for Linux clusters, called the Parallel
Virtual File System (PVFS). PVFS is intended both as
a high-performance parallel file system that anyone can
download and use and as a tool for pursuing further re-
search in parallel I/O and parallel file systems for Linux
clusters.

In this paper, we describe the design and implementa-
tion of PVFS and present performance results on the
Chiba City cluster at Argonne. We provide performance
results for a workload of concurrent reads and writes
for various numbers of compute nodes, I/O nodes, and
I/O request sizes. We also present performance results
for MPI-IO on PVFS, both for a concurrent read/write
workload and for the BTIO benchmark. We compare the
I/O performance when using a Myrinet network versus a
fast-ethernet network for I/O-related communication in
PVFS. We obtained read and write bandwidths as high as
700 Mbytes/sec with Myrinet and 225 Mbytes/sec with
fast ethernet.
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tion, and Computational Sciences Division subprogram of the Office
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ergy, under Contract W-31-109-Eng-38, and in part by the National
Aeronautics and Space Administration, under Research Grant NAG-5-
3835.

1 Introduction

Cluster computing has recently emerged as a main-
stream method for parallel computing in many applica-
tion domains, with Linux leading the pack as the most
popular operating system for clusters. As researchers
continue to push the limits of the capabilities of clus-
ters, new hardware and software have been developed to
meet cluster computing’s needs. In particular, hardware
and software for message passing have matured a great
deal since the early days of Linux cluster computing; in-
deed, in many cases, cluster networks rival the networks
of commercial parallel machines. These advances have
broadened the range of problems that can be effectively
solved on clusters.

One area in which commercial parallel machines have
always maintained great advantage, however, is that
of parallel file systems. A production-quality high-
performance parallel file system has not been available
for Linux clusters, and without such a file system, Linux
clusters cannot be used for large I/O-intensive parallel
applications. We have developed a parallel file system
for Linux clusters, called the Parallel Virtual File System
(PVFS) [33], that can potentially fill this void. PVFS is
being used at a number of sites, such as Argonne Na-
tional Laboratory, NASA Goddard Space Flight Center,
and Oak Ridge National Laboratory. Other researchers
are also using PVFS in their studies [28].

We had two main objectives in developing PVFS. First,
we needed a basic software platform for pursuing further
research in parallel I/O and parallel file systems in the
context of Linux clusters. For this purpose, we needed
a stable, full-featured parallel file system to begin with.
Our second objective was to meet the need for a paral-



lel file system for Linux clusters. Toward that end, we
designed PVFS with the following goals in mind:

� It must provide high bandwidth for concurrent
read/write operations from multiple processes or
threads to a common file.

� It must support multiple APIs: a native PVFS API,
the UNIX/POSIX I/O API [15], as well as other
APIs such as MPI-IO [13, 18].

� Common UNIX shell commands, such as ls, cp,
and rm, must work with PVFS files.

� Applications developed with the UNIX I/O API
must be able to access PVFS files without recom-
piling.

� It must be robust and scalable.

� It must be easy for others to install and use.

In addition, we were (and are) firmly committed to dis-
tributing the software as open source.

In this paper we describe how we designed and imple-
mented PVFS to meet the above goals. We also present
performance results with PVFS on the Chiba City clus-
ter [7] at Argonne National Laboratory. We first present
the performance for a workload comprising concurrent
reads and writes using native PVFS calls. We then
present results for the same workload, but by using MPI-
IO [13, 18] functions instead of native PVFS functions.
We also consider a more difficult access pattern, namely,
the BTIO benchmark [21]. We compare the performance
when using a Myrinet network versus a fast-ethernet net-
work for all I/O-related communication.

The rest of this paper is organized as follows. In the next
section we discuss related work in the area of parallel file
systems. In Section 3 we describe the design and imple-
mentation of PVFS. Performance results are presented
and discussed in Section 4. In Section 5 we outline our
plans for future work.

2 Related Work

Related work in parallel and distributed file systems can
be divided roughly into three groups: commercial par-
allel file systems, distributed file systems, and research
parallel file systems.

The first group comprises commercial parallel file sys-
tems such as PFS for the Intel Paragon [11], PIOFS

and GPFS for the IBM SP [10], HFS for the HP Exem-
plar [2], and XFS for the SGI Origin2000 [35]. These
file systems provide high performance and functionality
desired for I/O-intensive applications but are available
only on the specific platforms on which the vendor has
implemented them. (SGI, however, has recently released
XFS for Linux. SGI is also developing a version of XFS
for clusters, called CXFS, but, to our knowledge, CXFS
is not yet available for Linux clusters.)

The second group comprises distributed file systems
such as NFS [27], AFS/Coda [3, 8], InterMezzo [4, 16],
xFS [1], and GFS [23]. These file systems are de-
signed to provide distributed access to files from mul-
tiple client machines, and their consistency semantics
and caching behavior are designed accordingly for such
access. The types of workloads resulting from large
parallel scientific applications usually do not mesh well
with file systems designed for distributed access; par-
ticularly, distributed file systems are not designed for
high-bandwidth concurrent writes that parallel applica-
tions typically require.

A number of research projects exist in the areas of paral-
lel I/O and parallel file systems, such as PIOUS [19],
PPFS [14, 26], and Galley [22]. PIOUS focuses on
viewing I/O from the viewpoint of transactions [19],
PPFS research focuses on adaptive caching and prefetch-
ing [14, 26], and Galley looks at disk-access optimiza-
tion and alternative file organizations [22]. These file
systems may be freely available but are mostly research
prototypes, not intended for everyday use by others.

3 PVFS Design and Implementation

As a parallel file system, the primary goal of PVFS is to
provide high-speed access to file data for parallel appli-
cations. In addition, PVFS provides a clusterwide con-
sistent name space, enables user-controlled striping of
data across disks on different I/O nodes, and allows ex-
isting binaries to operate on PVFS files without the need
for recompiling.

Like many other file systems, PVFS is designed as a
client-server system with multiple servers, called I/O
daemons. I/O daemons typically run on separate nodes
in the cluster, called I/O nodes, which have disks at-
tached to them. Each PVFS file is striped across the
disks on the I/O nodes. Application processes interact
with PVFS via a client library. PVFS also has a man-
ager daemon that handles only metadata operations such



as permission checking for file creation, open, close, and
remove operations. The manager does not participate in
read/write operations; the client library and the I/O dae-
mons handle all file I/O without the intervention of the
manager. The clients, I/O daemons, and the manager
need not be run on different machines. Running them
on different machines may result in higher performance,
however.

PVFS is primarily a user-level implementation; no ker-
nel modifications or modules are necessary to install or
operate the file system. We have, however, created a
Linux kernel module to make simple file manipulation
more convenient. This issue is touched upon in Sec-
tion 3.5. PVFS currently uses TCP for all internal com-
munication. As a result it is not dependent on any par-
ticular message-passing library.

3.1 PVFS Manager and Metadata

A single manager daemon is responsible for the storage
of and access to all the metadata in the PVFS file system.
Metadata, in the context of a file system, refers to infor-
mation describing the characteristics of a file, such as
permissions, the owner and group, and, more important,
the physical distribution of the file data. In the case of
a parallel file system, the distribution information must
include both file locations on disk and disk locations in
the cluster. Unlike a traditional file system, where meta-
data and file data are all stored on the raw blocks of a
single device, parallel file systems must distribute this
data among many physical devices. In PVFS, for sim-
plicity, we chose to store both file data and metadata in
files on existing local file systems rather than directly on
raw devices.

PVFS files are striped across a set of I/O nodes in order
to facilitate parallel access. The specifics of a given file
distribution are described with three metadata parame-
ters: base I/O node number, number of I/O nodes, and
stripe size. These parameters, together with an ordering
of the I/O nodes for the file system, allow the file distri-
bution to be completely specified.

An example of some of the metadata fields for a file
/pvfs/foo is given in Table 1. The pcount field spec-
ifies that the data is spread across three I/O nodes, base
specifies that the first (or base) I/O node is node 2, and
ssize specifies that the stripe size—the unit by which the
file is divided among the I/O nodes—is 64 Kbytes. The
user can set these parameters when the file is created, or
PVFS will use a default set of values.

Table 1: Metadata example: File /pvfs/foo.

inode 1092157504
...

...
base 2
pcount 3
ssize 65536

Application processes communicate directly with the
PVFS manager (via TCP) when performing operations
such as opening, creating, closing, and removing files.
When an application opens a file, the manager returns to
the application the locations of the I/O nodes on which
file data is stored. This information allows applications
to communicate directly with I/O nodes when file data is
accessed. In other words, the manager is not contacted
during read/write operations.

One issue that we have wrestled with throughout the de-
velopment of PVFS is how to present a directory hier-
archy of PVFS files to application processes. At first
we did not implement directory-access functions and in-
stead simply used NFS [27] to export the metadata direc-
tory to nodes on which applications would run. This pro-
vided a global name space across all nodes, and appli-
cations could change directories and access files within
this name space. The method had some drawbacks, how-
ever. First, it forced system administrators to mount the
NFS file system across all nodes in the cluster, which
was a problem in large clusters because of limitations
with NFS scaling. Second, the default caching of NFS
caused problems with certain metadata operations.

These drawbacks forced us to reexamine our implemen-
tation strategy and eliminate the dependence on NFS for
metadata storage. We have done so in the latest version
of PVFS, and, as a result, NFS is no longer a require-
ment. We removed the dependence on NFS by trapping
system calls related to directory access. A mapping rou-
tine determines whether a PVFS directory is being ac-
cessed, and, if so, the operations are redirected to the
PVFS manager. This trapping mechanism, which is used
extensively in the PVFS client library, is described in
Section 3.4.

3.2 I/O Daemons and Data Storage

At the time the file system is installed, the user specifies
which nodes in the cluster will serve as I/O nodes. The
I/O nodes need not be distinct from the compute nodes.
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65536 bytes

/local/f1092157504 /local/f1092157504 /local/f1092157504

iod 1 iod 2 iod 3 iod 4 iod 5iod 0

Figure 1: File-striping example

An ordered set of PVFS I/O daemons runs on the I/O
nodes. The I/O daemons are responsible for using the
local disk on the I/O node for storing file data for PVFS
files.

Figure 1 shows how the example file /pvfs/foo is
distributed in PVFS based on the metadata in Table 1.
Note that although there are six I/O nodes in this ex-
ample, the file is striped across only three I/O nodes,
starting from node 2, because the metadata file specifies
such a striping. Each I/O daemon stores its portion of
the PVFS file in a file on the local file system on the I/O
node. The name of this file is based on the inode num-
ber that the manager assigned to the PVFS file (in our
example, 1092157504).

As mentioned above, when application processes
(clients) open a PVFS file, the PVFS manager informs
them of the locations of the I/O daemons. The clients
then establish connections with the I/O daemons di-
rectly. When a client wishes to access file data, the client
library sends a descriptor of the file region being ac-
cessed to the I/O daemons holding data in the region.
The daemons determine what portions of the requested
region they have locally and perform the necessary I/O
and data transfers.

Figure 2 shows an example of how one of these regions,
in this case a regularly strided logical partition, might
be mapped to the data available on a single I/O node.
(Logical partitions are discussed further in Section 3.3.)
The intersection of the two regions defines what we call
an I/O stream. This stream of data is then transferred in

logical file order across the network connection. By re-
taining the ordering implicit in the request and allowing
the underlying stream protocol to handle packetization,
no additional overhead is incurred with control messages
at the application layer.
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Intersection of stripe and partition

Figure 2: I/O stream example

3.3 Application Programming Interfaces

PVFS can be used with multiple application program-
ming interfaces (APIs): a native API, the UNIX/POSIX
API [15], and MPI-IO [13, 18]. In all these APIs, the
communication with I/O daemons and the manager is
handled transparently within the API implementation.



The native API for PVFS has functions analogous to the
UNIX/POSIX functions for contiguous reads and writes.
The native API also includes a “partitioned-file inter-
face” that supports simple strided accesses in the file.
Partitioning allows for noncontiguous file regions to be
accessed with a single function call. This concept is sim-
ilar to logical file partitioning in Vesta [9] and file views
in MPI-IO [13, 18]. The user can specify a file partition
in PVFS by using a special ioctl call. Three param-
eters, offset, gsize, and stride, specify the partition, as
shown in Figure 3. The offset parameter defines how far
into the file the partition begins relative to the first byte
of the file, the gsize parameter defines the size of the sim-
ple strided regions of data to be accessed, and the stride
parameter defines the distance between the start of two
consecutive regions.

offset

gsize

stride

Figure 3: Partitioning parameters

We have also implemented the MPI-IO interface [13, 18]
on top of PVFS by using the ROMIO implementation of
MPI-IO [24]. ROMIO is designed to be ported easily
to new file systems by implementing only a small set of
functions on the new file system [30, 32]. This feature
enabled us to have all of MPI-IO implemented on top
of PVFS in a short time. We used only the contiguous
read/write functions of PVFS in this MPI-IO implemen-
tation because the partitioned-file interface of PVFS sup-
ports only a subset of the noncontiguous access patterns
that are possible in MPI-IO. Noncontiguous MPI-IO ac-
cesses are implemented on top of contiguous read/write
functions by using a ROMIO optimization called data
sieving [31]. In this optimization, ROMIO makes large
contiguous I/O requests and extracts the necessary data.
We are currently investigating how the PVFS partition-
ing interface can be made more general to support MPI-
IO’s noncontiguous accesses.

PVFS also supports the regular UNIX I/O functions,
such as read() and write(), and common UNIX
shell commands, such as ls, cp, and rm. (We note
that fcntl file locks are not yet implemented.) Fur-
thermore, existing binaries that use the UNIX API can
access PVFS files without recompiling. The following
section describes how we implemented these features.

3.4 Trapping UNIX I/O Calls

System calls are low-level methods that applications can
use for interacting with the kernel (for example, for disk
and network I/O). These calls are typically made by call-
ing wrapper functions implemented in the standard C li-
brary, which handle the details of passing parameters to
the kernel. A straightforward way to trap system calls is
to provide a separate library to which users relink their
code. This approach is used, for example, in the Condor
system [17] to help provide checkpointing in applica-
tions. This method, however, requires relinking of each
application that needs to use the new library.

When compiling applications, a common practice is to
use dynamic linking in order to reduce the size of the
executable and to use shared libraries of common func-
tions. A side effect of this type of linking is that the exe-
cutables can take advantage of new libraries supporting
the same functions without recompilation or relinking.
We use this method of linking the PVFS client library to
trap I/O system calls before they are passed to the ker-
nel. We provide a library of system-call wrappers that is
loaded before the standard C library by using the Linux
environment variable LD PRELOAD. As a result, exist-
ing binaries can access PVFS files without recompiling.

Figure 4a shows the organization of the system-call
mechanism before our library is loaded. Applications
call functions in the C library (libc), which in turn
call the system calls through wrapper functions imple-
mented in libc. These calls pass the appropriate val-
ues through to the kernel, which then performs the de-
sired operations. Figure 4b shows the organization of the
system-call mechanism again, this time with the PVFS
client library in place. In this case the libc system-
call wrappers are replaced by PVFS wrappers that deter-
mine the type of file on which the operation is to be per-
formed. If the file is a PVFS file, the PVFS I/O library
is used to handle the function. Otherwise the parameters
are passed on to the actual kernel call.

This method of trapping UNIX I/O calls has limitations,
however. First, a call to exec() will destroy the state
that we save in user space, and the new process will
therefore not be able to use file descriptors that referred
to open PVFS files before the exec() was called. Sec-
ond, porting this feature to new architectures and oper-
ating systems is nontrivial. The appropriate system li-
brary calls must be identified and included in our library.
This process must also be repeated when the APIs of sys-
tem libraries change. For example, the GNU C library
(glibc) API is constantly changing, and, as a result,
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Figure 4: Trapping system calls

we have had to constantly change our code!

3.5 Linux Kernel VFS Module

While the trapping technique described above does pro-
vide the necessary functionality for using existing appli-
cations on PVFS files, the shortcomings of this method
and the effort required to keep up with changes in the
C library encouraged us to seek an alternative solu-
tion. The Linux kernel provides the necessary hooks
for adding new file-system support via loadable mod-
ules without recompiling the kernel. Accordingly, we
have implemented a module that allows PVFS file sys-
tems to be mounted in a manner similar to NFS [27].
Once mounted, the PVFS file system can be traversed
and accessed with existing binaries just as any other file
system. We note that, for the performance experiments
reported in this paper, we used the PVFS library and not
the kernel module.

4 Performance Results

We present performance results using PVFS on the
Chiba City [7] cluster at Argonne National Laboratory.
The cluster was configured as follows at the time of our
experiments. There were 256 nodes, each with two 500-
MHz Pentium III processors, 512 Mbytes of RAM, a 9
Gbyte Quantum Atlas IV SCSI disk, a 100 Mbits/sec In-
tel EtherExpress Pro fast-ethernet network card operat-
ing in full-duplex mode, and a 64-bit Myrinet card (Re-
vision 3). The nodes were running Linux 2.2.15pre4.
There were two MPI implementations: MPICH 1.2.0 for

fast ethernet and MPICH-GM 1.1.2 for Myrinet. The
kernel was compiled for a single processor; therefore,
one processor on each machine was unused during our
experiments. Out of the 256 nodes, only 60 nodes were
available at a time for our experiments. We used some of
those 60 nodes as compute nodes and some as I/O nodes
for PVFS.

The Quantum Atlas IV 9 Gbyte disk has an advertised
sustained transfer rate of 13.5–21.5 Mbytes/sec. The
performance of the disk measured using the bonnie
file-system benchmark [5] showed a write bandwidth of
22 Mbytes/sec and a read bandwidth of 15 Mbytes/sec
when accessing a 512 Mbyte file in a sequential manner.
The write performance measured by bonnie is slightly
higher than the advertised sustained rates, perhaps be-
cause the test accessed the file sequentially, thereby al-
lowing file-system caching, read ahead, and write behind
to better organize disk accesses.

Since PVFS currently uses TCP for all communication,
we measured the performance of TCP on the two net-
works on the cluster. For this purpose, we used the
ttcp test, version 1.1 [29]. We tried three buffer sizes,
8 Kbytes, 64 Kbytes, and 256 Kbytes, and for all three,
ttcp reported a bandwidth of around 10.2 Mbytes/sec
on fast ethernet and 37.7 Mbytes/sec on Myrinet.

To measure PVFS performance, we performed experi-
ments that can be grouped into three categories: con-
current reads and writes with native PVFS calls, con-
current reads and writes with MPI-IO, and the BTIO
benchmark. We varied the number of I/O nodes, com-
pute nodes, and I/O size and measured performance with
both fast ethernet and Myrinet. We used the default file-
stripe size of 16 Kbytes in all experiments.



4.1 Concurrent Read/Write Performance

Our first test program is a parallel MPI program in which
all processes perform the following operations using the
native PVFS interface: open a new PVFS file that is
common to all processes, concurrently write data blocks
to disjoint regions of the file, close the file, reopen it, si-
multaneously read the same data blocks back from the
file, and then close the file. Application tasks synchro-
nize before and after each I/O operation. We recorded
the time for the read/write operations on each node and,
for calculating the bandwidth, used the maximum of
the time taken on all processes. In all tests, each com-
pute node wrote and read a single contiguous region of
size 2N Mbytes, N being the number of I/O nodes in
use. For example, for the case where 26 application pro-
cesses accessed 8 I/O nodes, each application task wrote
16 Mbytes, resulting in a total file size of 416 Mbytes.
Each test was repeated five times, and the lowest and
highest values were discarded. The average of the re-
maining three tests is the value reported.

Figure 5 shows the read and write performance with fast
ethernet. For reads, the bandwidth increased at a rate
of approximately 11 Mbytes/sec per compute node, up
to 46 Mbytes/sec with 4 I/O nodes, 90 Mbytes/sec with
8 I/O nodes, and 177 Mbytes/sec with 16 I/O nodes.
For these three cases, the performance remained at this
level until approximately 25 compute nodes were used,
after which performance began to tail off and became
more erratic. With 24 I/O nodes, the performance in-
creased up to 222 Mbytes/sec (with 24 compute nodes)
and then began to drop. With 32 I/O nodes, the perfor-
mance increased less quickly, attained approximately the
same peak read performance as with 24 I/O nodes, and
dropped off in a similar manner. This indicates that we
reached the limit of our scalability with fast ethernet.

The performance was similar for writes with fast eth-
ernet. The bandwidth increased at a rate of approxi-
mately 10 Mbytes/sec per compute node for the 4, 8,
and 16 I/O-node cases, reaching peaks of 42 Mbytes/sec,
83 Mbytes/sec, and 166 Mbytes/sec, respectively, again
utilizing almost 100% of the available TCP bandwidth.
These cases also began to tail off at approximately 24
compute nodes. Similarly, with 24 I/O nodes, the per-
formance increased to a peak of 226 Mbytes/sec before
leveling out, and with 32 I/O nodes, we obtained no bet-
ter performance. The slower rate of increase in band-
width indicates that we exceeded the maximum number
of sockets across which it is efficient to service requests
on the client side.

We observed significant performance improvements by
running the same PVFS code (using TCP) on Myrinet
instead of fast ethernet. Figure 6 shows the re-
sults. The read bandwidth increased at 31 Mbytes/sec
per compute process and leveled out at approximately
138 Mbytes/sec with 4 I/O nodes, 255 Mbytes/sec
with 8 I/O nodes, 450 Mbytes/sec with 16 I/O nodes,
and 650 Mbytes/sec with 24 I/O nodes. With 32 I/O
nodes, the bandwidth reached 687 Mbytes/sec for 28
compute nodes, our maximum tested size. For writ-
ing, the bandwidth increased at a rate of approximately
42 Mbytes/sec, higher than the rate we measured with
ttcp. While we do not know the exact cause of this,
it is likely that some small implementation difference
resulted in PVFS utilizing a slightly higher fraction
of the true Myrinet bandwidth than ttcp. The per-
formance levelled at 93 Mbytes/sec with 4 I/O nodes,
180 Mbytes/sec with 8 I/O nodes, 325 Mbytes/sec with
16 I/O nodes, 460 Mbytes/sec with 24 I/O nodes, and
670 Mbytes/sec with 32 I/O nodes.

In contrast to the fast-ethernet results, the performance
with Myrinet maintained consistency as the number of
compute nodes was increased beyond the number of I/O
nodes, and, in the case of 4 I/O nodes, as many as 45
compute nodes (the largest number tested) could be effi-
ciently serviced.

4.2 MPI-IO Performance

We modified the same test program to use MPI-IO calls
rather than native PVFS calls. The number of I/O nodes
was fixed at 32, and the number of compute nodes was
varied. Figure 7 shows the performance of the MPI-IO
and native PVFS versions of the program. The perfor-
mance of the two versions was comparable: MPI-IO
added a small overhead of at most 7–8% on top of native
PVFS. We believe this overhead can be reduced further
with careful tuning.

4.3 BTIO Benchmark

The BTIO benchmark [21] from NASA Ames Research
Center simulates the I/O required by a time-stepping
flow solver that periodically writes its solution matrix.
The solution matrix is distributed among processes by
using a multipartition distribution [6] in which each
process is responsible for several disjoint subblocks of
points (cells) of the grid. The solution matrix is stored
on each process as C three-dimensional arrays, where
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Figure 5: PVFS performance with fast ethernet
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Figure 6: PVFS performance with Myrinet

C is the number of cells on each process. (The arrays
are actually four dimensional, but the first dimension has
only five elements and is not distributed.) Data is stored
in the file in an order corresponding to a column-major
ordering of the global solution matrix.

The access pattern in BTIO is noncontiguous in mem-
ory and in the file and is therefore difficult to handle
efficiently with the UNIX/POSIX I/O interface. We
used the “full MPI-IO” version of this benchmark, which
uses MPI derived datatypes to describe noncontiguity in
memory and file and uses a single collective I/O func-
tion to perform the entire I/O. The ROMIO implementa-
tion of MPI-IO optimizes such a request by merging the
accesses of different processes and making large, well-
formed requests to the file system [31].

The benchmark, as obtained from NASA Ames, per-
forms only writes. In order to measure the read band-
width for the same access pattern, we modified the
benchmark to also perform reads. We ran the Class C
problem size, which uses a 162� 162� 162 element ar-
ray with a total size of 162 Mbytes. The number of I/O
nodes was fixed at 16, and tests were run using 16, 25,
and 36 compute nodes (the benchmark requires that the
number of compute nodes be a perfect square). Table 2
summarizes the results.

With fast ethernet, the maximum performance was
reached with 25 compute nodes. With more compute
nodes, the smaller granularity of each I/O access re-
sulted in lower performance. For this configuration, we
attained 49% of the peak concurrent-read performance
and 61% of the peak concurrent-write performance mea-
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Figure 7: ROMIO versus native PVFS performance with
Myrinet and 32 I/O nodes

Table 2: BTIO performance (Mbytes/sec), 16 I/O nodes,
Class C problem size (162� 162� 162).

Compute Fast Ethernet Myrinet
Nodes read write read write

16 83.8 79.1 156.7 157.3
25 88.4 101.3 197.3 192.0
36 66.3 61.1 232.3 230.7

sured in Section 4.1. The other time was spent in the
computation and communication required to merge the
accesses of different processes in ROMIO’s collective
I/O implementation. Without this merging, however,
the performance would have been significantly lower be-
cause of the numerous small reads and writes in this ap-
plication.

With Myrinet, the maximum performance was reached
with 36 compute nodes. Here we again see the bene-
fit of a high-speed network in that even for the smaller
requests resulting from using more compute nodes, we
were able to attain higher performance. The perfor-
mance obtained was about 51% of the peak concurrent-
read performance and 70% of peak concurrent-write per-
formance measured in Section 4.1.

5 Conclusions and Future Work

PVFS brings high-performance parallel file systems to
Linux clusters and, although more testing and tuning are
needed for production use, it is ready and available for

use now. The inclusion of PVFS support in the ROMIO
MPI-IO implementation makes it easy for applications
written portably with the MPI-IO API to take advantage
of the available disk subsystems lying dormant in most
Linux clusters.

PVFS also serves as a tool that enables us to pursue fur-
ther research into various aspects of parallel I/O and par-
allel file systems for clusters. We outline some of our
plans below.

One limitation of PVFS, at present, is that it uses TCP
for all communication. As a result, even on fast giga-
bit networks, the communication performance is lim-
ited to that of TCP on those networks, which is usually
unsatisfactory. We are therefore redesigning PVFS to
use TCP as well as faster communication mechanisms
(such as VIA [34], GM [20], and ST [25]) where avail-
able. We plan to design a small communication abstrac-
tion that captures PVFS’s communication needs, imple-
ment PVFS on top of this abstraction, and implement
the abstraction separately on TCP, VIA, GM, and the
like. A similar approach, known as an abstract device
interface, has been used successfully in MPICH [12] and
ROMIO [32].

Some of the performance results in this paper, particu-
larly the cases on fast ethernet where performance drops
off, suggest that further tuning is needed. We plan to
instrument the PVFS code and obtain detailed perfor-
mance measurements. Based on this data, we plan to in-
vestigate whether performance can be improved by tun-
ing some parameters in PVFS and TCP, either a priori
or dynamically at run time.

We also plan to design a more general file-partitioning
interface that can handle the noncontiguous accesses
supported in MPI-IO, improve the client-server interface
to better fit the expectations of kernel interfaces, design a
new internal I/O-description format that is more flexible
than the existing partitioning scheme, investigate adding
redundancy support, and develop better scheduling al-
gorithms for use in the I/O daemons in order to better
utilize I/O and networking resources.

6 Availability

Source code, compiled binaries, documenta-
tion, and mailing-list information for PVFS
are available from the PVFS web site at
http://www.parl.clemson.edu/pvfs/.



Information and source code for the ROMIO
MPI-IO implementation are available at
http://www.mcs.anl.gov/romio/.
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