
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Knowing When To Say No
Allan Cantos

CTO, Acrylis, Inc.

You see a new piece of software posted on freshmeat,
and you just know that it will solve that nagging
problem you’ve been having with (insert name here).
But what many of us don’t realize, until it’s far too
late, is all the possible ramifications of installing (or
deleting) even one simple piece of software. Allan
Cantos, CTO at Acrylis (www.acrylis.com) will
explore many real-world scenarios and pose questions
that every Linux Administrator should ask prior to
hitting the download button. Things like how much
work is involved if I install that new software? What,
if anything, will break in the process? Do I need to
update any existing libraries on my system? What
other key applications rely on those libraries? In the
end, is it worth my time to do an upgrade?

In this seminar you will learn how to:

Understand Recursive Dependencies

While RPM gives some data on dependencies, what
dependencies do the dependencies have? A detailed
look in recursive dependencies of packages will be
explored.

Manage Software Across All Systems

If a security alert on a particular piece of software
arises, how can you quickly find it on all of your
systems? Tools and techniques for remote system
management and monitoring will be discussed.

Deal with Tarballs

Not all software is in RPM packages. In fact a vast
majority of them are delivered, by the developer, as a
compressed tar file. When installed on an RPM based
system, it's not visible to the system's RPM database--
where the resulting loss of visibility can create issues.
Methods and techniques on dealing with tarballs will
be discussed.

Plan for Installation

Once a decision is made to install new software, how
do you scope out the "net list" of tasks necessary to
do the upgrade on all effected systems?

About Allan Cantos

Allan Cantos, Chief Technology Officer for Acrylis
Inc. has been in software development for 18 years,
managing and developing systems software and
software development tools. Before joining Acrylis,
Allan managed the engineering organization of
UniPrise Systems, Inc. Prior to that, Allan managed a
prominent software development consulting
operation. Earlier in his IT career, Allan was the
manager of Integration Platforms at Apollo, leading
the design and development of software frameworks
for tool integration. Allan has focused on the design
and development of large heterogeneous systems
tools in the UNIX and NT markets. Allan has an MS
in Computer Science from the University of
California at Berkeley.

About Acrylis Inc.

Founded in 1998 and headquartered in North
Chelmsford Massachusetts, Acrylis Inc., is an
emerging leader in the open-source, software
management industry. Acrylis provides system
administrators with Internet-delivered tools and
services for faster, more reliable software
management. The company has developed
WhatifLinux, an Internet based subscription service
that proactively monitors and manages the software
assets running on networks of dynamic, Linux
servers. Acrylis takes a unique approach to delivering
critical Linux software information. By focusing their
efforts on deploying autonomous agents that work in
conjunction with their Knowledge Base, Acrylis is
creating a community of open-source software know-
how, which is designed for quicker, more reliable
open- source software management. For more
information, visit www.WhatifLinux.com.

For Additional Information Please Contact:

Chris McCoin
McCoin & Smith Communications LLC
508-881-0095
chris@mccoinsmith.com

Knowing When To Say No
Allan Cantos

CTO, Acrylis, Inc.

Introduction

Linux acceptance in corporate enterprises has moved
from being on one or two evaluation systems to being
used on many systems. While the benefits of Linux have
been well documented, the software management issues
are another matter. Specifically, how does an
administrator manage and maintain software on multiple
Linux systems given the dynamic change in free/open
source software development.

Research done by Acrylis, Inc. shows that
administrators spend between 30 minutes to an hour a
day keeping up with the changes in free/open source
software. They spend an additional 30 minutes to one
hour evaluating how this software applies to their
systems, and accessing what needs to be done to
implement what they've just researched.

This paper outlines some of the issues and possible
solutions.

Understanding Recursive Dependencies

Not long ago, new software was added to UNIX and
Linux systems using 'tarballs' or more specifically, tape
archive record files. As we know, tar files simply read
and write what a directory of files has, and places them
in the relative place on the system. Putting software in
the correct directory is a good start, but much additional
time is needed to get software configured to work
properly. This includes setting environment variables,
editing scripts and resource files, creating symbolic
links, and more. The whole process is further
complicated when dependencies arise when running the
software for the first time. The administrator discovers a
shared library was missing, or needs to be upgraded.

To resolve the issue of properly configured software,
Marc Ewing and Eric Troan developed the Red Hat
Package Manager (RPM). RPM addresses some of the
complexities in installing, upgrading, and removing
software. Today, RPM has become a standard, used by
many of the Linux distributions in addition to
developers wanting to deliver software to users.

With very few exceptions, all software depends on
installed components resident on a target system. These
dependencies are outlined in the dependency tag of the

RPM Spec file that the target system uses to compare to
the system's RPM database. For very simple packages,
this system works well, but when a dependency has its
own dependencies, or when one or two of the installed
components, it doesn’t quite work well. Other problems
arise when these dependencies conflict with each other,
or need to be updated to fulfill their support role.

Problems with Recursive Dependencies and
RPM

The main problem with RPM installation today is that it
doesn't the installer whether the software package being
installed requires software that has subsequent
dependencies. Administrators running into this problem
can get caught up in a version tango, manually going
down each dependency to find out what needs to be
installed, what needs to be updated, or what is in
conflict and why. The result is time consumed in
installing software that could be spent doing other work.

Common remedies employed by Administrators faced
with recursive dependencies includes using a
--nodeps install, or using tarballs to install software.
While these are the quickest paths to getting software
installed, it has a high risk of not working correctly.
What’s left is software invisible to the other software in
the RPM database, giving rise to other software
incompatibilities and other hidden gotchas later.

One of problems causing recursive dependency is that
information isn't filled out properly or completely in the
package description tags, yielding an incorrect analysis
from the RPM query. This problem makes it difficult to
do any package equivalency analysis. Furthermore if an
administrator installs a SuSE package on a Red Hat
system the problem might get worse. More detail is
provided in the table below, which contains that
dependency information for the same version of Apache
web server, but delivered by two different vendors:

Red Hat:
apache-1.3.9-8-i386

Dependencies

TurboLinux:
apache-1.3.9-6-i386

Dependencies
/etc/mime.types

/sbin/chkconfig

/bin/sh

/usr/bin/perl

/bin/mktemp

/bin/rm

mailcap

grep

textutils

ld-linux.so.2

libc.so.6

libcrypt.so.1

libdb.so.3

libdl.so.2

libm.so.6

/etc/mime.types

/sbin/chkconfig

/bin/sh

/usr/bin/perl

ld-linux.so.2

libc.so.6

libcrypt.so.1

libdb.so.3

libdl.so.2

libm.so.6
Source: www.whatiflinux.com

These are essentially the same package, but Red Hat's
release has five dependencies not found in the
TurboLinux release. Which one is correct? Can the
TurboLinux package be installed on the Red Hat
system, and visa versa?

Some solutions to this problem exist. Debian already
solves this by including recursive dependency
information in its package descriptions, which is
something RPM may implement in the future. The
Linux Standards Base is an effort to solve many of the
interoperability problems with Linux, including
installing RPMs across distributions.

Managing Software Across All Systems

The complexity of software management on Linux
systems increases when it is extended to dozens of
systems stretched out over a corporate enterprise. If a
security alert on a particular piece of software arises,
how can you quickly find it on all of your systems? And
once found, how easy is it to update?

Complicating the problem is the necessity for other
people in the organization to have some choice in their

system setup, and require access (root or sudo) to the
system. This creates the possibility of system
differences that need to be reconciled and managed
when necessary updates need to be done.

One unfortunate solution to the problem of managing
multiple systems is to mandate system configuration,
essentially making all machines the same. This makes it
easy to manage one system, and then push the results to
all other systems. The disadvantage of this method is
that systems can no longer be specialized for tasks (the
Web server and the Samba server for example).
Common Practice involves reducing the software
configuration to only necessary daemons for increased
security and reliability of the system. It also doesn't
provide the necessary flexibility relevant to today's
rapidly changing environment.

The choice for administrators for managing software
across many systems includes scripting and record
keeping (either manual or with a database). RPM lends
itself to scripting because of its command line interface.
Graphical applications such as Gnorpm can also be used
when run remotely via X. The ultimate solution would
allow an administrator to view all software on a specific
system, and to view specific software over all systems.

Dealing with Tarballs

As mentioned earlier in this paper,not all software is in
RPM packages. In fact, a vast majority of software is
delivered by the developer as a compressed tar file.
When installed on an RPM based system, the software
is invisible to the system's RPM database. This loss of
visibility can create issues with future software
installations. This is especially true when dealing with
dozens of systems, not all of which are under the
control of the administrator.

Aside from auditing systems on a file-by-file basis, the
only option for administrators is to get the system under
control as soon as possible. Administrators can rebuild
tars into RPMs using rpmbuilder. This application
allows administrators to get packages under control
before installation.

Plan for Installation

Once a decision is made to install new software, it’s
important to understand how to scope out the "net list"
of tasks necessary to do the upgrade on all effected
systems. The process is presented below:

1. Find the most up to date, or most stable
package.

 The many sources for this information present a
challenge to administrators. Various source include
the mirror sites, rpmfind.net. Red Hat charges for a
service that gives customers priority access to FTP
servers.

2. Research the package.

 Review if the software has any outstanding security
alerts. Check Bugtraq, Security Focus, X-Force, to
see any issues.

3. Verify package against public keys for

vendor.

 Verifying a package can't occur until the software is
downloaded. Can your source of the binary be
trusted?

4. Are there dependencies?

 If so, repeat above process until completed.

5. Will installing a dependency impact other

software running on the system?

A risk assessment needs to be done whenever new
libraries or other components are installed. Adding
a new feature could possibly clobber an existing
one.

If a problem is found (security or otherwise) during the
installation process, the process needs to be repeated
with the next available package. This is a very time
consuming process, which lends itself to automation.
Here's a graphical example of the process:

Conclusion

While current software installation and management
systems have served us well up to this point, extending
them to manage machines across the enterprise, with the
level of dynamic change in the underlying software
brings a whole new set of challenges. Undoubtedly,
these challenges will be met by new methods in the near
future.

Sources:

Maximum RPM, Edward C. Bailey, SAMS Publishing
copyright 1997by Red Hat Software Inc.
RPM Builder,
http://sourceforge.net/projects/rpmbuilder/
Linux Standards Base: http://linuxbase.org

