
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Lockmeter: Highly-Informative Instrumentation for Spin Locks
 in the Linux® Kernel

Ray Bryant
raybry@us.ibm.com

 IBM® Linux Technology Center
 Austin, Texas

John Hawkes
hawkes@engr.sgi.com

 SGI™
 Mountain View, California

Abstract

Lockmeter is a tool for instrumenting the spin locks in a multiprocessor Linux kernel. Lockmeter was designed to
make minimal cache disruptions, taking care to both minimize cache misses and also to minimize interprocessor
cache coherency operations. Lockmeter is “highly informative” in the sense that not only does it record overall
statistics for each spin lock, it also reports (where possible) these statistics on a per caller basis. This allows one to
readily identify which portions of the kernel code are responsible for causing lock contention. In this paper, we
describe the capabilities and implementation of Lockmeter version 1.3.

Introduction

As Linux becomes more popular for use in Web
server, E-commerce and other compute intensive
application environments, performance requirements
on the Linux kernel will be much more stringent than
for the “traditional” Linux desktop environment.
This is particularly the case when Linux is used as
the operating system for a symmetric multiprocessor
“server” machines.

Symmetric multiprocessor (SMP) system perfor-
mance is typically determined by two factors:
instruction path length and lock contention.
Instruction path length (that is, the time required to
execute a particular function in the kernel) can be
measured and optimized on a uniprocessor system
using profiling tools such as SGI kernprof [SGI
kernprof] or the profiling facilities of the gcc
compiler. Such tools have relatively low overhead
and can be used to measure realistic workloads with
relatively little perturbation to the system under test.

The second factor that can limit the performance of a
multiprocessor kernel is lock contention. As a general
rule, correct execution of a shared-memory
multiprocessor kernel requires that a lock be acquired
before accessing a shared resource (e. g. a shared data
structure) and released after the access. Contention
arises when more than one process in the system tries
to acquire a lock at the same time. Correct execution
requires that only one of the processes can succeed;
the other processes must be delayed until the lock is
released. A delay can be implemented either by
“spinning” (i. e., executing a tight instruction loop
that constantly tries to acquire the lock) or by

suspending the task that is attempting to access the
shared resource and dispatching that processor to run
some other task in the system. Locks can thus be
classified as either “spin” locks or “suspend” locks
depending on how a conflicting-lock access is
delayed.

Each class of lock has its advantages and
disadvantages:

• Acquiring or releasing a spin lock can be very
inexpensive but waiting for a lock in a spin loop
wastes time that could be devoted to useful
work.

• A task that is suspended while waiting for a lock
does not consume processor time, but the cost of
acquiring or releasing a suspend lock is much
higher than it is for the spin lock case.

For these reasons, both spin locks and suspend locks
are typically present in a multiprocessor operating
system kernel. Spin locks, however are more
primitive and are normally used to implement
suspend locks. In either case, excessive contention
for a lock can lead to poor system performance,
either because too many tasks are suspended, or
because too much time is wasted spinning waiting for
a lock to become available.

While instruction path length is typically
straightforward to instrument without significantly
perturbing the workload being measured, it is
difficult to instrument lock usage in the Linux kernel
without significantly impacting system performance.
In Linux the code to acquire and release a spin lock is
highly optimized and coded as an in-line assembler

sequence. The result is that the Linux kernel can
employ as few as two instructions to acquire a spin
lock and one instruction to release it. Because spin
lock operations are so inexpensive, they are used
extensively throughout the kernel. Thus, increasing
the number of instructions per lock, or, more
importantly, causing an additional cache miss every
time a lock is acquired or released, can significantly
change system performance.

In this paper, we discuss Lockmeter, a tool for
instrumenting the usage of spin locks in the Linux
kernel. Lockmeter was developed and released as a
kernel patch to the open source community by John
Hawkes at SGI (Silicon Graphics) (based on a
previous design by Jack Steiner at SGI). Ray Bryant
of IBM subsequently enhanced this tool, and the
enhanced version is now available at the SGI open-
source website [SGILockmeter]. Lockmeter is
supported for Intel® i386 (also called IA32 in this
paper) and Alpha architectures, and will soon be
supported for the Intel IA64 and MIPS architectures,
although the only full implementation of Lockmeter
at the moment is for IA32.

 Lockmeter allows the following statistics (among
others) to be measured for each spin lock:

• The fraction of the time that the lock is busy.
• The fraction of accesses that resulted in a

conflict.
• The average and maximum amount of time that

the lock is held.
• The average and maximum amount of time spent

spinning for the lock.

This information can be used to determine which
locks are causing the most contention and where in
the kernel these locks are being held for excessive
periods of time. Examining these statistics can help
identify places in the kernel where the code may need
to be restructured in order to achieve improved
efficiency and performance of the Linux kernel on
SMP systems.

Lockmeter is designed to minimize the number of
additional cache misses and cache coherency traffic
introduced by the instrumentation itself.
Furthermore, Lockmeter is a raw data-gathering
engine inside the kernel, leaving more
computationally expensive data reduction operations
to a usermode application called Lockstat. Lockstat
retrieves the raw data from the kernel, merges it into
a unified system view, and displays the results in a
human-readable form.

In addition to the per lock statistics, Lockmeter also
provides statistics on a per function basis. One can
readily determine from the Lockmeter output not
only which locks have higher than acceptable
contention levels, but also determine the functions
from which the highly-contended calls originated.
For this reason we describe Lockmeter as being
“highly informative”.

In the next sections of this paper, we first describe the
Lockmeter implementation. Next, we present some
sample Lockmeter output. We discuss the
measurements contained in that output, as well as
propose an interpretation of this data. We conclude
with a discussion of areas of current investigation for
improving Lockmeter.

Lockmeter Implementation

Multiprocessor Linux kernels of version 2.2.x and
above use two types of spin locks to serialize access
to shared data. (When a Linux kernel is compiled
for a uniprocessor, conditional compilation flags are
set so that neither the locks nor the locking
instructions themselves are present in the kernel.)
The two types of locks are a mutual exclusion lock,
which inside the kernel is declared by the spinlock_t
data type, and a multiple reader, single writer
“read/write lock” which is declared using the
rwlock_t data type. The latter locks do not support
promotion from reader to writer; the lock must be
released in order to make this transition.

In spite of the naming convention, both of these lock
types are spin locks in the classical sense – that is, if
the lock cannot be immediately acquired, then the
requester enters a tight spin loop checking for the
lock to be released by the current owner, at which
point the requester again attempts to reacquire it. If
the lock is never freed, then the requester will spin
forever. No attempt is made to suspend or reschedule
the requester. Semaphores and wait queues are used
in those cases where the hold time of the lock is
sufficiently long enough to make it worthwhile to
suspend the requester and schedule another process.
Spinlocks and read/write locks are reserved for those
cases where the lock holding time is known to be
short, or as primitives to build more robust locking
primitives such as semaphores.

Implementation for spinlock_t Locks

The kernel mutual exclusion spin locks are declared
as the data type spinlock_t and (for IA32) are
implemented as a structure consisting of a single 32-

bit word. To acquire the lock one calls spin_lock();
to release the lock one calls spin_unlock(). There are
variations of these calls that save and restore the
interrupt state of the machine, but for the purposes of
this paper we will ignore these variations (and will
ignore them for the rwlock_t case below) since they
consist of a wrapper that surrounds the spin_lock() or
spin_unlock() call itself. Since the Lockmeter
implementation modifies these basic macros, it
modifies the variations as well.

In a non-lockmetered kernel, spin_lock(),
spin_unlock(), and spin_trylock() are C language
macros that resolve to gcc inline functions that
contain assembler instructions that implement the
lock operations. The Lockmeter patch renames these
inline lock macros with a nonmetered_ prefix (e.g.,
nonmetered_spin_lock()), then declares new
spin_lock() (et al) macros that call external
lockmetering routines _spin_lock_() and
_spin_unlock_(). Obviously, procedure calls are
more expensive than a few inline assembler
instructions, but the instrumented lock code is too
large to be inserted inline.

The nonmetered_*() primitives are employed by
_spin_lock_() and _spin_unlock_() to implement the
instrumented locks. Thus the Lockmeter code is
largely machine (and lock implementation)
independent, since it uses the existing underlying
lock primitives.

As an example of how this is done, consider the
following pseudo-code implementation of
_spin_lock_():

void __spin_lock_(spinlock_t *lock) {
 if (nonmetered_spin_trylock(lock)) {
 /* we acquired the lock without waiting */
 update statistics for this case
 } else {
 /* we must to spin to wait for the lock */
 record time we started spinning
 nonmetered_spin_lock(lock);
 record time we stopped spinning
 update statistics for this case
}

The key data structures used by the Lockmeter spin
lock routines are:

• The directory, which is organized as a hash
table keyed by the address that invokes the
instrumented lock routine, and further
indexed by lock type.

• The count array, which is a two-dimensional
array indexed by hash-table index and by
logical CPU number.

The hash table entries in the directory contain no lock
statistics data; all that is present is the calling address
for the instrumented lock routine, the address of the
lock itself, and a lock type field. Separate lock types
exist for spinlock_t locks, rwlock_t’s acquired for
read mode, and rwlock_t’s acquired for write mode.
The lock type information is used as part of the hash
lookup and by the data reduction program, Lockstat.

When a hash lookup is performed, the directory entry
information is used to resolve hash table synonyms.
The result of the hash table search is an index that is
used in combination with the current logical CPU
number to select an entry in the count array where the
actual statistics are stored. This makes the directory
a performance-efficient read-mostly structure for all
processors. The directory is only updated when each
lock request is first encountered, making them
relatively rare events once the system is running and
the directory has been populated with the frequently
used spin locks. A single nonmetered spin lock
protects directory updates.

A directory entry is either a “single-address” entry or
a “multi-address” entry. A single-address entry
contains the address of the spin_lock() caller and the
address of the spinlock_t structure being locked.
Such an entry results when a given caller always
specifies the same lock address. Lock requests for
statically allocated locks are typically of this type. A
multi-address entry results when a particular lock
request specifies different lock addresses on different
invocations. Typically this happens when a lock
routine is acquiring a spinlock_t that is part of a
larger dynamically allocated structure.

Each new directory entry is initially allocated as a
single-lock entry. It converts to a multi-lock entry if
a search of the hash table finds a match on the caller's
address, but the current lock address does not match
the value previously associated with that caller. At
that point, the entry converts to a multi-lock entry by
setting the lock address in the entry to zero. The data
reduction program, Lockstat, recognizes this as a
special case and reports only a coalesced summary of
all locks set by this caller's address. For the more
common single-lock entries, Lockstat reports per
caller statistics for each unique spin lock address.

Each occupied directory entry contains a unique
index into the count array. Each count entry
represents a spin lock address, and the entry contains

the count of lock requests for that specific spin lock,
the cumulative sum of "hold" times and "wait" times
for that lock, and the maximum observed "hold" and
"wait" times. Thus, each time a spin lock is acquired
and each time it is released, the lockmetering routines
update a count entry.

An important implementation efficiency is to give
each CPU its own private count array. One
advantage this provides is that we do not need to
protect concurrent count entry updates with a
(nonmetered!) spin lock. Another advantage is that
processor-private updates only perturb a single
processor’s cache, and thus colliding updates do not
cause expensive inter-processor cache references.

Each entry of the count array maintains lock statistics
for one spin_lock() call on a particular processor.
(We refer to these as “per caller” statistics.) Lockstat
calculates global statistics for a lock by aggregating
all of the single address statistics entries that
correspond to the same lock. Statistics for the
multi-address entries are reported on a per-caller
basis only.1 Experience has shown that eliminating
the distinction between single and multi-address
entries (by hashing on the caller address and the lock
address, for example) clutters the Lockmeter output
with many temporary, single-use locks.

In the _spin_lock_() routine, the count array is
updated as follows:

1. Look up the calling address in the directory.
2. Using the directory index, find the count entry

and update acquire-time statistics such as
number of times the lock has been requested and
the spin time.

3. Store the acquisition timestamp in the count
entry as the first step in calculating the lock
"hold" time.

At unlock time we need to locate this same count
entry in order to finish the "hold" time calculation,
which means we need to determine the directory
index of that entry. To compute the directory hash
index, we would need the address of the previous
_spin_lock_() call, but that is presumably unknown to
us at _spin_unlock_() time. We could remember
these directory indices in yet another per-processor
data structure, but this would introduce more code to

1 It is possible for a lock to be accessed both by static
and dynamic lock requests; in this case the lock
statistics will be split between global and per-caller
statistics. We are not aware of any lock usage in the
kernel that follows such a pattern.

manage the data structure and potentially more costly
cache misses.

We solve this problem by storing the hash index in
the lock itself. In every implementation we have
seen, a spinlock_t is allocated as a 32-bit location, but
few of the 32 bits are actually used. We therefore
can use some of the remaining bits to save the hash
index that was computed in _spin_lock_() for later
use at _spin_unlock_() time. Since the lock location
is already in the cache of the local processor due to
acquiring the lock, storing the hash index in the lock
results in negligible additional overhead and no
additional cache misses.

Implementation for Read Locks

As with spin_lock() and spin_unlock(), the non-
instrumented multiprocessor kernel implements
read_lock() and read_unlock() as inline functions
that generate only a few assembly language
instructions each. Lockmeter replaces these inline
functions with calls to _read_lock_() and
_read_unlock_(), respectively. The existing lock
primitives are renamed to nonmetered versions, just
as for the spinlock_t case, and the nonmetered
versions are utilized by the instrumented lock
routines to perform the actual lock operations.

In _read_lock_(), acquire time statistics such as the
count of requests, the time spent spinning waiting for
the lock, and the count of times that the lock was
obtained without spinning are maintained in the count
array at the appropriate hash index. The directory
entry is set to lock type “rwlock_t acquired in read
mode.” As before, separate statistics entries are
maintained for each processor. Thus we record per
caller statistics for read locks for statistics that are
completely known at read-lock acquire time.

Hold-time statistics for read locks are problematic,
however, since more than one processor can
concurrently hold the same read lock. Therefore,
_read_unlock_() cannot easily determine which
_read_lock_() it is releasing, and this makes direct
calculation of the read lock hold time impossible.
(Since a spinlock_t is a mutual exclusion lock, each
_spin_unlock_() ends the hold time that began with
the most recent _spin_lock_() for this lock, so
determining the hold time is straightforward.) One
could keep track of the correspondence between each
_read_lock_() and its matching _read_unlock_()
using a list associated with each processor, but
maintaining this list would be expensive and of
questionable analytic value.

Lockmeter solves these problems as follows. We
first require that the rwlock_t be declared as a pair of
32 bit words. (The Linux 2.3.99-pre6 kernel uses the
2nd word as a debug flag; Lockmeter merely requires
that this debug word be present. We cannot store any
data in the first word of the lock structure since in the
current implementation of read/write spin locks there
are no unused bits in that word.)

The first time a read or write lock is acquired on a
variable of type rwlock_t, a read lock index is
allocated for the lock. This is done by incrementing a
global variable and assigning the next available index
to this lock variable. The read lock index is stored in
part of the second word of the lock for use on
subsequent lock operations. The read lock index
specifies the location in the read_lock_count array,
where hold time statistics for this lock are stored.

Like the count array for spinlock_t metering, the
read_lock_count array is a two-dimensional array;
the first index being the read lock index, the second
index being the current logical CPU number. The
read_lock_count array contains running sum and
count information necessary to calculate average read
lock hold times as well as the overall read lock
utilization time. Once again, statistics for each lock
are maintained in storage private to each processor,
and the data reduction program, Lockstat, is
responsible for merging these statistics across
processors.

However, for read locks, the data is not kept on a per
caller basis, since the read lock index is the same for
all users of the lock. Per caller statistics for read lock
hold times would require that we match read lock and
unlock operations using a per processor lock list, and
we regard that approach as too expensive to employ.

The running sum for lock hold times in the
read_lock_count structure are updated as follows
based on an idea from [IBM1, IBM1A]:

 At lock acquire: running_sum -= get_cycles64();
 At lock release: running_sum +=get_cycles64();

(Here get_cycles64() returns the current 64 bit Time
Stamp Counter (TSC register) value.) This approach
keeps us from having to maintain the lock acquire
time for each processor for each read lock (and it
keeps us from having to deal with recursion problems
related to a read lock that is set more than once by a
particular processor).

The above works because the above is equivalent to
the more straightforward algorithm, where at acquire
time we record a timestamp:
 lock_acquire_time = get_cycles64();
And at release time we decrement the current
timestamp from the saved acquisition timestamp:
 running_sum += get_cycles64()
 – lock_acquire_time;
(provided that lock_acquire_time is kept on a per
processor basis.)

This calculation can alternatively be done as:
 running_sum += get_cycles64(); /* (1) */
 running_sum -= lock_acquire_time; /* (2) */
And since addition is commutative, we will get the
same result if we do (2) before (1). If we do (2) first,
we might as well do it at lock request time and avoid
the temporary variable:
 running_sum -= get_cycles64(); /* (2) */
then at lock release time, we do (1):
 running_sum += get_cycles64(); /* (1) */
which is how we described the calculation originally.

However, we do have the problem that the
running_sum is only correct when there are no read
lock holders. Otherwise, the running_sum is a
negative number (provided we assume that the
maximum read lock hold time is very small
compared to the current get_cycles64() value).
Complete details of how this is done can be found in
the source code [SGILockmeter] and [IBM2]. For
this paper it will suffice to say that read lock hold
time statistics are enabled and disabled on a per lock
basis, and a transition from enabled to disabled state
is only allowed when there are no read lock holders
of the lock.

The last part of the read lock statistics to be discussed
here is read lock utilization; that is, the fraction of
time that a particular rwlock_t is owned in read mode
by one or more readers. This is done by maintaining
in the read_lock_count array a running sum of the
busy period lengths that ended on the current
processor for this lock. (A busy period is defined as
the time starting when the number of read lock
holders for a lock transitions from zero to one, until
the next time that the number of readers transitions
from one to zero.) It is easy enough for the
instrumented read lock routines to recognize the start
and end of a busy period; the hard problem is how to
update the running sum of busy period lengths
without using a global variable. Using a global
variable would cause too much interprocessor cache
coherency traffic as well as requiring a locked update
of some kind to deal with concurrent accesses.

The solution here [IBM3] is to maintain in the
read_lock_count entry for this processor (and this
lock) the last time (measured using get_cycles64())
that a busy period started due to a _read_lock_() call
executed on this processor for this lock. Also, when a
busy period starts, the current logical CPU number is
stored in the rwlock_t structure. (Since this structure
is pulled into the local cache when the lock is
acquired, this operation causes minimal additional
overhead.)

When a processor detects the end of a busy period in
_read_unlock_(), that processor can determine the
busy period’s start time by looking in the appropriate
read_lock_count array entry for the processor that
started the busy period; the logical CPU number of
that processor is obtained from the rwlock_t
structure. From this and the current time, we know
the busy period length. The busy period length is
then added to a running sum of busy period lengths,
and the number of busy periods is incremented.
(Both of these variables are stored in per processor
storage in the read_lock_counts array.) This
approach results in at most one remote cache
reference at the end of each busy period.

Implementation for Write Locks

Since write locks are mutual-exclusion locks, the
implementation of metering write mode locks on a
rwlock_t is basically the same as it is for spin_lock().
The only difference is that the hash table index for
the lock statistics entry is saved in the
read_lock_counts array instead of in the lock itself.
This allows us to keep per-caller statistics for write
mode locks on a rwlock_t.

When the directory entry is being searched, the hash
function is based upon the return address of the
_write_lock_(). The directory entry is set to lock
type of “rwlock_t acquired in write mode”.

Each rwlock_t in the kernel thus can have three
statistics structures associated with it:

1. The global read lock counts structure in the
read_lock_count array.

2. A statistics entry containing read lock spin wait
times on a per caller basis in the count array.
This entry is updated only at read_lock() time
with statistics that are known at the time that the
read lock is acquired.

3. A statistics entry containing write lock spin and
hold times on a per caller basis in the count
array. This entry is updated at write_lock() and
write_unlock() times.

The Lockstat Program

Lockstat is the user interface to the Lockmeter
facility. It implements the following categories of
operations:

• Instrumentation control: Lockmeter statistics can
be enabled, disabled, queried, reset, or released
under control of the Lockstat program.
(“release” frees the kernel storage occupied by
the count, directory, and read_lock_count data
structures.)

• Data reduction: Lockmeter statistics can be read
from the kernel and either saved for later data
reduction or immediately reduced and printed.
Either function can be performed on-demand or
automatically using a periodic timer. During
data reduction, Lockstat uses the kernel’s
System.map file to translate lock names and
function addresses into symbolic names.

A typical measurement scenario would look
something like the following:

 # begin measurement
 lockstat on
 # run experiment
 . . .
 # end measurement
 lockstat off
 # reduce data
 lockstat –m System.map print > lock.report
 # clear statistics to prepare for next measurement
 lockstat reset

Alternatively, one could use the “lockstat get”
command to fetch the raw lockmeter statistics for
printing at a later time.

Lockstat supports the notion of multiple
measurement “intervals”. Each execution of
“lockstat on” begins a new measurement interval;
executing “lockstat off” ends the interval. Statistics
from each interval are merged together during data
reduction. The “reset” command is used to clear
data from previous measurement intervals and begin
a new set of measurements. This facility allows one
to run several repetitions of an experiment and have
Lockstat merge the statistics from the repetitions into
a single Lockstat report.

Additional documentation on Lockstat is provided by
the “--help” option to Lockstat; of course the source
code itself is available at [SGILockmeter].

Lockstat Output

The Lockstat report consists of three major sections:
“SPINLOCKS”, “RWLOCK READERS” and
“RWLOCK WRITERS.” Each of these sections is
subdivided into per-lock statistics entries and per-
caller statistics entries. A condensed version of a
Lockstat report is provided in the Appendix and is
discussed in the following. Due to space constraints,
this condensed report provides statistics for only a
small fraction of the locks present in a real Lockstat
report. Also, in order to make the report fit onto a
printed page, we have removed some of the columns
of Lockstat output.

The top of the report shows information about the
system being measured. (For this report the system
was an IBM Netfinity® 7000 M10 Intel® Pentium®
II Xeon™ 4-way SMP system.) This particular
Lockstat report was generated for all 4 processors.
However, since Lockmeter statistics are kept on a per
processor basis, one could also generate a report
based on a single processor’s lock usage.

The data presented here summarizes Lockmeter
statistics recorded during an experiment of
approximately 140 seconds in length. The workload
being run for this experiment is VolanomarkTM

[VMark], a benchmark written in the JavaTM

language. For these measurements, Volanomark was
run using the IBM® Developer Kit for Linux®,
Java™ Technology Edition, Version 1.1.8. For
further details about this benchmark environment, see
[JTThreads, SMPPerf]. For discussion purposes here,
it is sufficient to know that the benchmark is CPU
bound and causes a large number of Linux processes
(threads) to be created and scheduled.

“SPINLOCKS” Section of the Report
The SPINLOCKS section of the Lockstat report
shows statistics information for the runqueue_lock
and the timerlist_lock (see Note 1 and Note 2 in the
report). These locks protect the scheduler queue and
the timer list data structures, respectively.

The first line of the report for each lock shows
overall statistics, while subsequent lines provide per-
caller statistics for that lock. At the end of the
SPINLOCKS section (see Note 2) are some multilock
statistics entries. (These entries can be recognized
because there is no lock name associated with this
part of the report.) These entries report on
spin_lock() calls that request more than one lock
address during the measurement run; typically this
means that the locks being set are dynamically

allocated. Rather than report on each individual lock,
Lockstat aggregates all such requests and reports
them only by lock caller. As previously discussed,
this avoids cluttering the Lockstat output (and the
kernel Lockmeter statistics) with information about
many temporary, single-use locks.

The first column of the SPINLOCKS report (labeled
UTIL) is the lock utilization. 2 This is defined as the
fraction of time that the lock was held during the
report interval. The second column (CON) is the
fraction of lock requests that found the lock was busy
when it was requested. The third and fourth columns
(HOLD MEAN and MAX) show the mean (average)
and maximum hold times for the lock. The next two
columns (WAIT MEAN and MAX) give the mean
and maximum times that a lock requester had to wait
to obtain a lock.3 The next column of the report
(TOTAL) gives the total number of requests that
occurred for the lock during the measurement
interval. In a full Lockstat report, subsequent
columns display the number of requests that had to
spin for the lock; this and similar columns have been
removed from the report here in order to conserve
space. The last column gives either the lock name
(runqueue_lock for the case at Note 1) or the calling
location, as appropriate.

“RWLOCK READERS” Section of the Report
The RWLOCK READERS section of the Lockstat
report provides statistics about read_lock() requests
for rwlock_t locks. Like the SPINLOCKS section,
this section is divided into a lock statistics section
and a multilock section; to conserve space the latter
has been omitted from this condensed report. We
show here entries for the tasklist_lock and the
xtime_lock. The task_list lock is held in read mode to
scan over all tasks in the system, while the
xtime_lock is held in read mode to read system time
information.

Just as the previous report, the UTIL column gives
the lock utilization. For read-mode locks, this is
defined as the fraction of time that there is at least
one reader for the lock. Total utilization for this lock
is the sum of the utilizations from the “RWLOCK
READERS” and “RWLOCK WRITERS” sections of
the Lockstat report. The “HOLD MEAN” column
gives the average time that the lock was held in read

2 The UTIL field can optionally be replaced by a rate
request field via a Lockstat command-line option.
3 The mean wait time is defined as the average over
all requesters that had to wait, rather than over all
requesters.

mode, averaged over all readers of the lock. Given
the current implementation Lockmeter, this statistic is
only available on a global and not a per-caller basis.

The “MAX READERS” column gives the maximum
number of readers that simultaneously held the lock
at any one time. The fact that this number is 5 on a
4-way SMP system indicates that some processor
holds this lock more than once. One possible
explanation for this is that the timer-interrupt code
obtains a read lock on task_list lock; if all four
processors in the system already hold the task_list
lock and then a timer-interrupt occurs, this will cause
one of the processors to re-lock the tasklist_lock.

The “RDR BUSY PERIOD” columns provide mean
and maximum times of busy periods for the lock. A
busy period for a read lock is defined as the period of
time starting when the number of read-lock holders
goes from zero to one and ending when there are no
read-lock holders of the lock. Busy period
information tells us how long a write-requester might
have to wait in order to obtain the lock. The sum of
the lengths of busy periods is used to calculate the
read-lock utilization.

“RWLOCK WRITERS” Section of the Report
The “RWLOCK WRITERS” section of the Lockstat
report provides statistics about write_lock() requests
for rwlock_t locks. The same format and locks
discussed in the “RWLOCK READERS” section
above are used here.

The utilization column (UTIL) in this section of the
report gives the fraction of time that the lock was
held in write mode. The wait-time statistics for a
write-mode lock are given as the mean and maximum
wait time over all requests as well as the mean and
maximum wait times for write-lock requesters who
had to wait due to other write-lock holders of the lock
(as opposed to write-lock requesters who had to wait
due to other read-lock holders of the lock). These
statistics are given in the “WAIT (ALL)” and “WAIT
(WW)” columns of the report, respectively.
Similarly, the “SPIN ALL” and “SPIN (WW)”
columns of the report give the count of requesters
who had to spin for the lock and the count of
requesters who had to spin for the lock due to another
write-lock holder.

Analysis of the Lockstat Data

As an example of the kind of analysis one might do
with the Lockstat data, we now discuss the results
reported by Lockstat for this benchmark.

Inside the Linux kernel, the runqueue_lock protects
access to the scheduler queue. Since the Volanomark
benchmark is a scheduler intensive benchmark
[JTThreads, SMPPerf] we expect to see contention
for the runqueue_lock in this report. At Note 1 we see
that utilization of this lock is nearly 22% and that
25% of the requests for this lock had to spin-wait for
the lock. One can see that most of the time spent
holding this lock was due to requests that occurred at
schedule+0xd0. From the numbers reported here,
one can see that this caller was responsible for 40%
of the requests to this lock and 67% of the utilization.
This caller also held the lock for longest time
(average and maximum). Examination of the
kernel/sched.c source code shows that this lock is
held from entry of schedule() until after the goodness
calculation has completed. Previous work
[JTThreads, SMPPerf] has shown that for this
benchmark, the goodness calculation can consume a
significant amount of CPU time. These lock statistics
for the runqueue_lock validate that observation.

Note also how the hold times due to schedule+0xd0
impact the other lock requests. See, for example, the
request at schedule+0x444. While the utilization of
the lock due to this request is only 1.7%, 56% of all
such lock requests had to spin for the lock. This
indicates that although the lock holding time for this
request is low, usage of the lock elsewhere causes
contention and results in an average 14 microsecond
delay and a maximum delay of 285 microseconds.
Examination of the source code shows that this lock
request is from the inlined function __schedule_tail()
just before the scheduler returns, running a new
process. Hence the 14 microsecond mean wait time
here directly affects the latency of the system in
starting to run a new process.

Similarly, if we examine the tasklist_lock (see Note 5
in the Lockstat report) we see that do_fork() (the
worker routine that implements the fork system call)
was delayed an average of 7.3 microseconds and a
maximum of over 1.5 milliseconds waiting for the
tasklist_lock. Note that it could have been worse,
since the maximum read-lock busy period for this
lock was over 8 milliseconds (Note 4).

Of course, these observations are correct only for this
particular benchmark and are not necessarily
indicative of actual bottlenecks in the Linux kernel.

Rather they are provided as examples of where
potential bottlenecks might occur and how the
Lockstat report can be used to find such problems.

Concluding Remarks

As the Linux kernel continues to be deployed on
large SMP servers, additional performance
optimization of the kernel will be required in order to
achieve performance comparable to the more mature
operating systems that have traditionally been used
on such hardware. As systems become larger and
more complex, we will need increasingly powerful
tools to analyze and diagnose system performance
problems. Lockmeter endeavors to be one such
measurement tool in a Linux performance toolbox
that can be used to diagnose and optimize Linux
system performance.

We are continuing to improve Lockmeter and
Lockstat. Alternative implementations of the
read/write lock statistics recording mechanism are
currently under investigation, as are benchmark
studies to estimate the Lockmeter measurement
overhead. Such overhead measurements should be
available at the time of the 2000 Atlanta Linux
Showcase and Conference. An updated version of
this paper should also be available at that time on the
SGI lockmeter website [SGILockmeter] or the IBM
Linux Technology Center website [IBMLTC].

References

[SGI Kernprof]: “Kernel Profiling,”
http://oss.sgi.com/projects/kernprof

[SGI Lockmeter]: “Kernel Spinlock Metering for
Linux.” http://oss.sgi.com/projects/lockmeter

[IBM1] United States Patent 5,872, 913, “System
and Method for Low Overhead, High Precision
Measurements using State Transitions,” Robert F.
Berry et al.

[IBM1A] United States Patent 5,920,689, “System
and Method for Low Overhead, High Precision
Measurements using State Transitions,” Robert F.
Berry et al.

[IBM2] “Efficient Update of Shared Resource Usage
Statistics,” IBM Technical Disclosure Bulletin, to
appear.

[IBM3] “Careful Update and Control of Hold Time
Statistics for Shared Multiuser Resources,” IBM
Technical Disclosure Bulletin, to appear.

[Volano]: “Volano Java Chat Room,” Volano LLC.
http: //www.volano.com.

[JTThreads]: “Java technology, threads, and
scheduling in Linux--Patching the kernel scheduler
for better Java performance,” Ray Bryant, Bill
Hartner, IBM. http://www4.ibm.com/
software/developer/library/java2 /index.html.

[SMPPerf]: “SMP Scalability Comparisons of
Linux® Kernels 2.2.14 and 2.3.99,” Ray Bryant, Bill
Hartner, Qi He, and Ganesh Venkitachalam,
Proceedings of the 2000 Atlanta Linux Showcase and
Conference, Atlanta, Ga., October, 2000.

[IBMLTC] Linux Technology Center, http:
//oss.software.ibm.com/developerworks/
opensource/linux/.

Trademark and Copyright Information

© 2000 International Business Machines Corporation
and © 2000 SGI, Inc.

IBM ® and Netfinity® are registered trademarks of
International Business Machines Corporation.

Linux® is a registered trademark of Linus Torvalds.

VolanoMark™ is a trademark of Volano LLC. The
VolanoMark™ benchmark is Copyright © 1996-2000
by Volano LLC, All Rights Reserved.

Java™ is a trademark of Sun Microsystems, Inc., and
refers to Sun's Java programming language.

SGI™ is a trademark of SGI, Inc.

Intel® and Pentium® are registered trademark of
Intel Corporation.

All other brands and trademarks are property of their
respective owners.

Appendix: (Condensed) Lockstat Output

System: Linux testlinux.austin.ibm.com 2.3.99-pre6 #147 SMP Tue Aug 22 15:18:05 CDT 2000 i686

All (4) CPUs

Start time: Fri Aug 25 16:09:05 2000
End time: Fri Aug 25 16:11:26 2000
Delta Time: 141.33 sec.
Hash table slots in use: 356.

- -
SPINLOCKS HOLD WAIT
 UTIL CON MEAN(MAX) MEAN (MAX) TOTAL NAME
. . .
 21.86% 25.12% 3.3us(87us) 4.4us(311us) 9480279 runqueue_lock ÏNote 1
 1.62% 25.14% 3.3us(13us) 1.1us(136us) 696844 __wake_up+0x110
 0.00% 0.00% 0.2us(0.2us) 0us 1 __wake_up_sync+0xfc
 0.00% 23.60% 5.1us(19us) 4.3us(112us) 322 process_timeout+0x1c
 0.00% 8.71% 0.5us(1.3us) 0.2us(7.1us) 551 release+0x28
 0.00% 61.11% 2.0us(5.1us) 1.2us(5.9us) 36 schedule_tail+0x48
 14.69% 19.63% 5.5us(87us) 1.7us(311us) 3806754 schedule+0xd0
 1.71% 56.33% 2.1us(12us) 14us(295us) 1150208 schedule+0x444
 0.51% 14.35% 4.3us(28us) 0.5us(51us) 165306 schedule+0x710
 0.68% 12.89% 0.8us(4.5us) 0.7us(178us) 1224206 send_sig_info+0x2a0
 0.00% 40.57% 4.8us(10us) 0.9us(11us) 801 setscheduler+0x68
 0.78% 46.40% 0.9us(6.1us) 15us(265us) 1210679 sys_sched_yield+0xc
 1.88% 5.56% 2.2us(14us) 0.4us(164us) 1224571 wake_up_process+0x18
. . .
 0.95% 3.87% 0.6us(17us) 0.1us(9.4us) 2380970 timerlist_lock ÏNote 2
 0.13% 4.66% 0.4us(4.1us) 0.1us(9.4us) 405952 add_timer+0x14
 0.33% 4.50% 0.5us(4.3us) 0.1us(9.2us) 1004500 del_timer+0x14
 0.00% 0.18% 0.5us(1.5us) 0.0us(2.1us) 565 del_timer_sync+0x20
 0.31% 3.35% 0.6us(4.2us) 0.0us(8.2us) 777490 mod_timer+0x18
 0.03% 1.86% 3.0us(17us) 0.0us(4.8us) 14134 timer_bh+0x12c
 0.16% 0.99% 1.2us(5.1us) 0.0us(6.3us) 178329 timer_bh+0x2b4
. . .
 3.47% 0.00% 7.0us(142us) 0.0us(7.1us) 702015 __wake_up+0x24 ÏNote 3
 0.22% 0.56% 0.4us(36us) 0.0us(5.9us) 811287 dev_queue_xmit+0x30
 0.01% 0.00% 1.1us(5.9us) 0us 14558 do_IRQ+0x40
 0.01% 0.00% 4.7us(31us) 0us 1521 do_brk+0x108
 0.00% 0.00% 0.2us(0.9us) 0us 429 do_exit+0x240
 0.00% 0.00% 0.2us(0.6us) 0us 338 do_fork+0x6fc
. . .
- -
RWLOCK READERS HOLD MAX RDR BUSY PERIOD WAIT
 UTIL CON MEAN READERS MEAN (MAX) MEAN (MAX) TOTAL NAME
. . .
 52.91% 0.00% 105.8us 5 114.8us (8274.8us) 0.0us(3.3us) 1402747 tasklist_lock ÏNote 4
 0.00% 0us 28 count_active_tasks+0x10
 0.23% 0.0us(2.3us) 429 exit_notify+0x1c
 0.00% 0us 5 exit_notify+0xb8
 0.00% 0us 576 get_pid_list+0x18
 0.00% 0.0us(3.0us) 1224079 kill_something_info+0xb8
 0.00% 0us 11002 proc_pid_lookup+0x4c
 0.00% 0us 7 proc_root_lookup+0x30
 0.00% 0us 165306 schedule+0x6d0
 0.00% 0us 25 session_of_pgrp+0x14
 1.12% 0.0us(3.3us) 801 setscheduler+0x78
 0.00% 0us 18 sys_setpgid+0x38
 0.00% 0us 1 sys_setsid+0x10
 0.00% 0us 461 sys_wait4+0x158
 0.00% 0us 9 will_become_orphaned_
 pgrp+0x14
. . .
 0.33% 0.06% 0.5us 2 0.5us (6.5us) 0.0us(528us) 856780 xtime_lock
 0.06% 0.0us(528us) 856780 do_gettimeofday+0x10
. . .

Appendix: (Condensed) Lockstat Output (continued)

- -
RWLOCK WRITERS HOLD WAIT (ALL) WAIT (WW) SPIN SPIN
UTIL CON MEAN (MAX) MEAN (MAX) MEAN (MAX) TOTAL ALL WW NAME

0.00% 10.53% 0.8us(2.7us) 9.8us(1515us) 0.8us(1.7us) 1691 173 5 tasklist_lock
0.00% 10.68% 1.2us(2.6us) 7.3us(1515us) 0.8us(1.7us) 833 84 5 do_fork+0x8a4 ÏNote 5
0.00% 2.80% 0.2us(0.8us) 0.2us(13us) 0us 429 12 0 exit_notify+0x284
0.00% 17.95% 0.7us(2.7us) 25us(486us) 0us 429 77 0 release+0x78
. . .
0.12% 1.29% 6.2us(802us) 0.0us(7.7us) 0.9us(4.3us) 28352 281 84 xtime_lock
0.03% 1.68% 2.8us(802us) 0.0us(7.7us) 1.0us(3.1us) 14193 180 59 timer_bh+0x14
0.10% 0.89% 9.6us(24us) 0.0us(6.4us) 0.8us(4.3us) 14159 101 25 timer_interrupt+0x14

