USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,
Atlanta

Atlanta, Georgia, USA
October 10-14, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Maximizing Beowulf Performance

Robert G. Brown
Duke Unwversity Physics Department
Bozx 90305, Durham, NC, 27708-0305

rgb@phy.duke.edu,

Abstract

At this point in time the beowulf (and other related
compute cluster) architectures has come of age in
Linux. Few indeed are those in any realm of tech-
nical computing that are unaware of the fact that
one can assemble a collection of commodity off the
shelf (COTS) computers and networking hardware
into a high performance supercomputing environ-
ment. However, a detailed knowledge or appreci-
ation for the bottlenecks and special problems as-
sociated with beowulf design is not so common. A
review of the important bottlenecks and design fea-
tures of a beowulf is given along with associated
benchmarking and measurement tools to illustrate
how to bridge the gap between the simple “recipe” of
a beowulf as a pile of compute nodes, interconnected
with a fast network and running linux and the reali-
ties of engineering a parallel code and beowulf-style
cluster to achieve satisfactory performance.

1 Introduction

A very simple recipe for a beowulf [beowulf] might
be: Purchase N more or less identical COTS com-
puters for compute nodes. Connect them by a COTS
fast private network, for example switched fast eth-
ernet. Serve them, isolate them and access them
from auxiliary nodes (which may well be a single
common “head node”). Install Linux and a small
set of more or less standard parallel computation
tools (typically PVM and MPI, along with several
others that might or might not be present in a given
installation). Voila! A beowulf supercomputer?

1Much of this paper applies as well to any linux based
cluster, including simple LAN clusters of workstations used as
nodes. Many of these designs do not form, strictly speaking,
a “beowulf supercomputer”, but the term “beowulf” in this
paper will be used for all beowulf-style clusters.

http://www.phy.duke.edu/~rgh

Although this recipe is fair enough and will yield ac-
ceptable performance (measured in terms of “speed-
up” scaling as illustrated below) in many parallelized
applications, in others it will not. In many cases
the performance obtained will depend on the de-
tails of the node and network design as well as the
design and implementation of the parallel applica-
tion itself. The critical decisions made during the
design process are informed by a deep and quanti-
tative analysis of the fundamental rates and perfor-
mance features of both the nodes and the network.
The understanding of the important design criteria
and how they correspond to features of the parallel
application is a hallmark of a well-conceived beowulf
project or proposal.

In the following sections we will briefly review the
essential elements of successful beowulf design. They
are:

e Understand Amdahl’s Law and the fundamen-
tal limitations of parallel program design. The
most common mistake of novices is to expect
more from a parallelization of a program than
is physically possible.

e Understand the fundamental rates (and la-
tencies and bandwidths) of your computa-
tional hardware. In particular, know some-
thing about the fundamental latencies and
bandwidths available in the various relevant
subsystems (CPU, memory, network) and how
they can act as bottlenecks to your paral-
lelized subtasks. These rates should be known
quantitatively to inform a sound beowulf de-
sign. Tools to use to make these measure-
ments will be explicitly illustrated in the con-
text of two simple beowulf nodes.

The goal of the discussion will be to convey an ap-
preciation for some of the important design deci-
sions to be made that is both qualitative and quanti-

tative. The use of some mathematics is unavoidable
but will be explained in the simplest possible terms.

With a general understanding of the scaling of par-
allel computation clusters of the general beowulf
design in hand, it should be straightforward to se-
lect a successful and cost effective design for any
parallelizeable problem that lies within the general
range of the beowulf concept. Although it isn’t a
strict rule, the beowulf designs we will focus on are
those appropriate for solving complex mathemati-
cal or numerical problems such as those encountered
in physics, statistics, weather prediction, chemistry,
and many other numerical venues.

This paper will not address clustering for purposes
of failover and reliability or load balancing in e.g.
a database server or webserver context. Although
linux clusters are increasingly in use in these con-
texts, these clusters are not beowulfs.

It will also not address the more esoteric aspects of
parallel program design (not intending at all to min-
imize the importance of a sound program design in
successful beowulf operation) and indeed the math-
ematical treatment presented of parallel scaling may
appear naive to those familiar with the entire mul-
tidimensional theory of the various algorithms that
might be used to treat a given problem. We will in-
stead be satisfied with providing references to some
of the many authoritative works that address this
subject far better than we would find possible in a
short paper.

In the paper below, we will begin by addressing
the basic theory of speedup and scaling in paral-
lel computation. From this we will move on to a
description of the important microscopic rates and
measures that determine beowulf design and perfor-
mance and a discussion of tools that can be used to
measure them.

2 Amdahl’s Law & Parallel Speedup

The theory of doing computational work in parallel
has some fundamental laws that place limits on the
benefits one can derive from parallelizing a compu-
tation (or really, any kind of work). To understand
these laws, we have to first define the objective. In
general, the goal in large scale computation is to get
as much work done as possible in the shortest possi-

ble time within our budget. We “win” when we can
do a big job in less time or a bigger job in the same
time and not go broke doing so. The “power” of
a computational system might thus be usefully de-
fined to be the amount of computational work that
can be done divided by the time it takes to do it,
and we generally wish to optimize power per unit
cost, or cost-benefit.

Physics and economics conspire to limit the raw
power of individual single processor systems avail-
able to do any particular piece of work even when
the dollar budget is effectively unlimited. The cost-
benefit scaling of increasingly powerful single pro-
cessor systems is generally nonlinear and very poor
— one that is twice as fast might cost four times as
much, yielding only half the cost-benefit, per dollar,
of a cheaper but slower system. One way to increase
the power of a computational system (for problems
of the appropriate sort) past the economically feasi-
ble single processor limit is to apply more than one
computational engine to the problem.

This is the motivation for beowulf design and con-
struction; in many cases a beowulf may provide ac-
cess to computational power that is available in a
alternative single or multiple processor designs, but
only at a far greater cost.

In a perfect world, a computational job that is split
up among N processors would complete in 1/N time,
leading to an N-fold increase in power. However,
any given piece of parallelized work to be done will
contain parts of the work that must be done seri-
ally, one task after another, by a single processor.
This part does not run any faster on a parallel collec-
tion of processors (and might even run more slowly).
Only the part that can be parallelized runs as much
as N-fold faster.

The “speedup” of a parallel program is defined to
be the ratio of the rate at which work is done (the
power) when a job is run on N processors to the
rate at which it is done by just one. To simplify
the discussion, we will now consider the “computa-
tional work” to be accomplished to be an arbitrary
task (generally speaking, the particular problem of
greatest interest to the reader). We can then de-
fine the speedup (increase in power as a function of
N) in terms of the time required to complete this
particular fixed piece of work on 1 to N processors.

Let T'(N) be the time required to complete the task

on N processors. The speedup S(V) is the ratio

(V) = % 1)

In many cases the time T'(1) has, as noted above,
both a serial portion Ty and a parallelizeable por-
tion Tp,. The serial time does not diminish when
the parallel part is split up. If one is ”optimally”
fortunate, the parallel time is decreased by a factor
of 1/N). The speedup one can expect is thus

T(1) T, +T,
T(N) T,+T,/N’

S(N) = (2)

This elegant expression is known as Amdahl’s Law
[Amdahl] and is usually expressed as an inequality.
This is in almost all cases the best speedup one can
achieve by doing work in parallel, so the real speed
up S(V) is less than or equal to this quantity.

Amdahl’s Law immediately eliminates many, many
tasks from consideration for parallelization. If the
serial fraction of the code is not much smaller than
the part that could be parallelized (if we rewrote
it and were fortunate in being able to split it up
among nodes to complete in less time than it oth-
erwise would), we simply won’t see much speedup
no matter how many nodes or how fast our com-
munications. Even so, Amdahl’s law is still far too
optimistic. It ignores the overhead incurred due to
parallelizing the code. We must generalize it.

A fairer (and more detailed) description of parallel
speedup includes at least two more times of interest:

Ts The original single-processor serial time.

Tis The (average) additional serial time spent do-
ing things like interprocessor communications
(IPCs), setup, and so forth in all parallelized
tasks. This time can depend on N in a variety
of ways, but the simplest assumption is that
each system has to expend this much time, one
after the other, so that the total additional se-
rial time is for example N * T;,.

Tp The original single-processor parallelizeable
time.

Tip The (average) additional time spent by each
processor doing just the setup and work that
it does in parallel. This may well include idle
time, which is often important enough to be
accounted for separately.

It is worth remarking that generally, the most im-
portant element that contributes to T;s is the time
required for communication between the parallel sub
tasks. This communication time is always there —
even in the simplest parallel models where identical
jobs are farmed out and run in parallel on a clus-
ter of networked computers, the remote jobs must
be begun and controlled with messages passed over
the network. In more complex jobs, partial results
developed on each CPU may have to be sent to all
other CPUs in the beowulf for the calculation to pro-
ceed, which can be wery costly in scaled time. As
we’ll see below, Tj, in particular plays an extremely
important role in determining the speedup scaling
of a given calculation. For this (excellent!) rea-
son many beowulf designers and programmers are
obsessed with communications hardware and algo-
rithms.

It is common to combine T3;,, N and Tj; into a single
expression T,(N) (the “overhead time”) which in-
cludes any complicated N-scaling of the IPC, setup,
idle, and other times associated with the overhead
of running the calculation in parallel, as well as the
scaling of these quantities with respect to the “size”
of the task being accomplished. The description
above (which we retain as it illustrates the generic
form of the relevant scalings) is still a simplified de-
scription of the times — real life parallel tasks can
be much more complicated, although in many cases
the description above is adequate.

Using these definitions and doing a bit of algebra,
it is easy to show that an improved (but still sim-
ple) estimate for the parallel speedup resulting from
splitting a particular job up between N nodes (as-
suming one processor per node) is:

Ts + T,
N) = B .
S(N) Ts+ N «Tys +T,/N + Ty

3)

This expression will suffice to get at least a general
feel for the scaling properties of a task that might
be parallelized on a typical beowulf.

It is useful to plot the dimensionless “real-world
speedup” (3) for various relative values of the times.
In all the figures below, T, = 10 (which sets our ba-
sic scale, if you like) and T, = 10, 100, 1000, 10000,
100000 (to show the systematic effects of paralleliz-
ing more and more work compared to T}).

The primary determinant of beowulf scaling perfor-
mance is the amount of (serial) work that must be
done to set up jobs on the nodes and then in com-

100 [~ P -

S(N) (speedup)

e :
0 50 100
N (processors)

Figure 1: Tj, = 0 and T, = 10, 100, 1000, 10000,
100000 (in increasing order).

munications between the nodes, the time that is rep-
resented as Tjs. All figures have Tj;, = 1 fixed; this
parameter is rather boring as it effectively adds to
T, and is often very small.

Figure 1 shows the kind of scaling one sees when
communication times are negligible compared to
computation. This set of curves is roughly what one
expects from Amdahl’s Law alone, which was de-
rived with no consideration of IPC overhead. Note
that the dashed line in all figures is perfectly lin-
ear speedup, which is never obtained over the entire
range of N although one can often come close for
small N or large enough T},.

In figure 2, we show a fairly typical curve for a “real”
beowulf, with a relatively small TPC overhead of
T;s = 1. In this figure one can see the advantage
of cranking up the parallel fraction (T}, relative to
Ts) and can also see how even a relatively small
serial communications process on each node causes
the gain curves to peak well short of the satura-
tion predicted by Amdahl’s Law in the first figure.
Adding processors past this point costs one speedup.
Increasing T;s further (relative to everything else)
causes the speedup curves to peak earlier and at
smaller values.

Finally, in figure 3 we continue to set T;s = 1, but
this time with a quadratic N dependence N2 xT;, of
the serial IPC time. This might result if the commu-
nications required between processors is long range

100

S(N) (speedup)

0 50 100
N (processors)

Figure 2: Tj, = 10 and T, = 10, 100, 1000, 10000,
100000 (in increasing order).

(so every processor must speak to every other pro-
cessor) and is not efficiently managed by a suitable
algorithm. There are other ways to get nonlinear
dependences of the additional serial time on N, and
as this figure clearly shows they can have a profound
effect on the per-processor scaling of the speedup.

As one can clearly see, unless the ratio of T} to Tjs
is in the ballpark of 100,000 to 1 one cannot actually
benefit from having 128 processors in a “typical” be-
owulf. At only 10,000 to 1, the speedup saturates
at around 100 processors and then decreases. When
the ratio is even smaller, the speedup peaks with
only a handful of nodes working on the problem.
From this we learn some important lessons. The
most important one is that for many problems sim-
ply adding processors to a beowulf design won’t pro-
vide any additional speedup and could even slow a
calculation down unless one also scales up the prob-
lem (increasing the T}, to T;s ratio) as well.

The scaling of a given calculation has a significant
impact on beowulf engineering. Because of over-
head, speedup is not a matter of just adding the
speed of however many nodes one applies to a given
problem. For some problems it is clearly advan-
tageous to trade off the number of nodes one pur-
chases (for example in a problem with small T and
T,/T;s =~ 100) in order to purchase tenfold improved
communications (and perhaps alter the T},/T;, ratio
to 1000).

100 [~ P -

S(N) (speedup)
38
N
|

0 50 100
N (processors)

Figure 3: T;, = 10 and T, = 10, 100, 1000, 10000,
100000 (in increasing order) with T;s; contributing
quadratically in N.

The nonlinearities prevent one from developing any
simple rules of thumb in beowulf design. There are
times when one obtains the greatest benefit by se-
lecting the fastest possible processors and network
(which reduce both T and T}, in absolute terms)
instead of buying more nodes because we know
that the rate equation above will limit the paral-
lel speedup we might ever hope to get even with the
fastest nodes. Paradoxically, there are other times
that we can do better (get better speedup scaling,
at any rate) by buying slower processors (when we
are network bound, for example), as this can also
increase T,/T;s. In general, one should be aware
of the peaks that occur at the various scales and
not naively distribute small calculations (with small
T,/T;s) over more processors than they can use.

In summary, parallel performance depends primar-
ily on certain relatively simple parameters like T,
T, and T;, (although there may well be a devil in the
details that we’ve passed over). These parameters,
in turn are at least partially under our control in the
form of programming decisions and hardware design
decisions. Unfortunately, they depend on many mi-
croscopic measures of system and network perfor-
mance that are inaccessible to many potential be-
owulf designers and users. T}, clearly should depend
on the “speed” of a node, but the single node speed
itself may depend nonlinearly on the speed of the
processor, the size and structure of the caches, the
operating system, and more.

Because of the nonlinear complexity, there is no way
to a priori estimate expected performance on the
basis of any simple measure. There is still consid-
erable benefit to be derived from having in hand a
set of quantitative measures of “microscopic” sys-
tem performance and gradually coming to under-
stand how one’s program depends on the potential
bottlenecks they reveal. The remainder of this pa-
per is dedicated to reviewing the results of applying
a suite of microbenchmark tools to a pair of nodes
to provide a quantitative basis for further beowulf
hardware and software engineering.

3 Microbenchmarking Tools

From the previous section we can see that there
are several things that we have to understand fairly
thoroughly to design a beowulf to cost-effectively
tackle a given problem. To achieve the best scaling
behavior, we want to maximize the parallel fraction
of a program (the part that can be split up) and
minimize the serial fraction (which cannot). We also
want to maximize the time spend doing work in par-
allel on each node and minimize the time required
to communicate between nodes. We want to avoid
wasting time by having some nodes sit idle waiting
for other nodes to finish.

However, we must be cautious and clearly define
our real goals as in general they aren’t to “achieve
the best scaling behavior” (unless one is a computer
scientist studying the abstract problem, of course).
More commonly in application, they are to “get the
most work done in the least amount of time given a
fixed budget”. When economic constraints appear
in the picture one has to carefully consider trade-
offs between the computational speed of the nodes,
the speed and latency of the network, the size of
memory and its speed and latency, and the size,
speed and latency of any hard storage subsystem
that might be required. Virtually any conceivable
combination of system and network speed can turn
out to be cost-benefit optimal and get the most work
done for a given budget and parallel task.

Finding the truly optimum design can be somewhat
difficult. In some cases the only way to determine
a program’s performance on a given hardware and
software platform (or beowulf design) is to do a lot
of prototyping and determine the best design em-
pirically (where hopefully one has enough funding

in these cases to fund the prototyping and then
scale the successful design up into the production
beowulf). This is almost always the best thing to
do, if one can afford it. In all cases, the design pro-
cess is significantly easier if one possesses a detailed
and quantitative knowledge of various microscopic
rates, latencies, and bandwidths.

e A rate is a given number of operations per
unit time, for example, the number of double
precision multiplications a CPU can execute
per second. We might like to know the “max-
imum” rate a CPU can execute floating point
instructions under ideal circumstances. We
might be even more interested in how the “real
world” floating point rate depends on (for ex-
ample) the size and locality of the memory
references being operated upon.

e A latencyis is the time the CPU (or other sub-
system) has to wait for a resource or service to
become available after it is requested and has
units of an inverse rate — milliseconds per disk
seek, for example. A latency isn’t necessar-
ily the inverse of a rate, however, because the
latency often is very different for an isolated
request and a streaming series of identical re-
quests.

o A bandwidth is a special case of a rate. It mea-
sures “information per unit time” being de-
livered between subsystems (for example be-
tween memory and the CPU). Information in
the context of computers is typically data or
code organized as a byte stream, so a typi-
cal unit of bandwidth might be megabytes per
second.

Latency is very important to understand and quan-
tify as in many cases our nodes will be literally sit-
ting there and twiddling their thumbs waiting for
a resource. Latencies may be the dominant contri-
bution to the communications times in our perfor-
mance equations above. Also (as noted) rates are
often the inverse of some latency. One can equally
well talk about the rate that a CPU executes float-
ing point instructions or the latency (the time) be-
tween successive instructions which is its inverse. In
other cases such as the network, memory, or disk,
latency is just one factor that contributes to overall
rates of streaming data transfer. In general a large
latency translates into a low rate (for the same re-
source) for a small or isolated request.

Clearly these rates, latencies and bandwidths are
important determinants of program performance
even for single threaded programs running on a
single computer. Taking advantage of the non-
linearities (or avoiding their disadvantages can re-
sult in dramatic improvements in performance, as
the ATLAS (Automatically Tuned Linear Algebra
System) [ATLAS] project has recently made clear.
By adjusting both algorithm and blocksize to max-
imally exploit the empirical speed characteristics
of the CPU in interaction with the various mem-
ory subsystems, ATLAS achieves a factor of two
or more improvement in the excution speed of a
number of common linear operations. Intelligent
and integrated beowulf design can similarly produce
startling improvements in both cost-benefit and raw
performance for certain tasks.

It would be very useful to have automatically avail-
able all of the basic rates that might be useful for au-
tomatically tuning program and beowulf design. At
this time there is no daemon or kernel module that
can provide this empirically determined and stan-
dardized information to a compiled library. As a
consequence, the ATLAS library build (which must
measure the key parameters in place) is so complex
that it can take hours to build on a fast system.

There do exist various standalone (open source) mi-
crobenchmarking tools that measure a large num-
ber of the things one might need to measure to
guide thoughtful design. Unfortunately, many of
these tools measure only isolated performance char-
acteristics, and as we will see below, isolated num-
bers are not always useful. However, one toolset
has emerged that by design contains (or will soon
contain) a full suite of the elementary tools for mea-
suring precisely the rates, latencies, and bandwidths
that we are most interested in, using a common and
thoroughly tested timing harness. This tool is not
complete? but it has the promise of becoming the
fundamental toolset to support systems engineer-
ing and cluster design. It is Larry McVoy and Carl
Staelin’s “lmbench” toolset[lmbench].

There are two areas where the alpha version 2 of this
toolset used in this paper was still missing tools to
measure network throughput and raw “numerical”
CPU performance (although many of the missing
features and more have recently been added to Im-
bench by Carl Staelin after some gentle pestering).
The well-known netperf (version 2.1, patch level 3)

2More time was spent by the author of this paper working
on and with the tool than on the paper:-)

[netperf] and a privately written tool [cpu-rate] were
used for this in the meantime.

All of the tools that will be discussed are open source
in the sense that their source can be readily obtained
on the network and that no royalties are charged for
its use. The Imbench suite, however, has a general
use license that is slightly more restricted than the
usual Gnu Public License (GPL) as described below.

In the next subsections the results of applying these
tools to measure system performance in my small
personal beowulf cluster[Eden] will be presented.
This cluster is moderately heterogeneous and func-
tions in part as a laboratory for beowulf develop-
ment. A startlingly complete and clear profile of
system performance and its dependence on things
like code size and structure will emerge.

3.1 Lmbench Results

In order to publish Imbench results in a public fo-
rum, the lmbench license requires that the bench-
mark code must be compiled with a “standard”
level of optimization (-O only) and that all the re-
sults produced by the lmbench suite must be pub-
lished. These two rules together ensure that the re-
sults produced compare as fairly as possible apples
to apples when considering multiple platforms, and
prevents vendors or overzealous computer scientists
from seeking "magic” combinations of optimizations
that improve one result (which they then selectively
publish) at the expense of others.

Accordingly, on the following page is a full set of lm-
bench results generated for “lucifer”, the primary
server node for my home (primarily development)
beowulf [Eden]. The mean values and error esti-
mates were generated from averaging ten indepen-
dent runs of the full benchmark. lucifer is a 466
MHz dual Celeron system, permitting it to func-
tion (in principle) simultaneously as a master node
and as a participant node. The cpu-rate results are
also included on this page for completeness although
they may be superseded by Carl Staelin’s superior
hardware instruction latency measures in the future.

lmbench clearly produces an extremely detailed pic-
ture of microscopic systems performance. Many of
these numbers are of obvious interest to beowulf de-
signers and have indeed been discussed (in many
cases without a sound quantitative basis) on the be-

HOST lucifer

CPU Celeron (Mendocino) (x2)
CPU Family 1686

MHz 467

L1 Cache Size 16 KB (code)/16 KB (data)
L2 Cache Size 128 KB

Motherboard Abit BP6

Memory 128 MB of PC100 SDRAM
OS Kernel Linux 2.2.14-5.0smp

Network (100BT)
Network Switch

Lite-On 82¢168 PNIC rev 32
Netgear FS108

Table 1: Lucifer System Description

null call 0.696 + 0.006
null I/0 1.110 + 0.005
stat 3.794 £ 0.032
open/close 5.547 £ 0.054
select 44.7+0.82
signal install | 1.971 £ 0.006
signal catch | 3.981 =+ 0.002
fork proc 634.4 + 28.82
exec proc 2755.5 £+ 10.34
shell proc 10569.0 + 46.92

Table 2: Imbench latencies for selected proces-
sor/process activities. The values are all times in
microseconds averaged over ten independent runs
(with error estimates provided by an unbiased stan-
dard deviation), so “smaller is better”.

2p/0K | 1.91+0.036
2p/16K | 14.12+ 0.724
2p/64K | 144.67 + 9.868
8p/0K | 3.30+1.224
8p/16K | 48.45+1.224
8p/64K | 201.23 + 2.486
16p/0K | 6.26 +0.159
16p/16K | 63.66 + 0.779
16p/64K | 211.38 & 5.567

Table 3: Lmbench latencies for context switches, in
microseconds (smaller is better).

pipe 10.62 + 0.069
AF UNIX 33.74 + 3.398
UDP 55.13 + 3.080
TCP 127.71 + 5.428
TCP Connect | 265.44 + 7.372
RPC/UDP 140.06 £+ 7.220
RPC/TCP 185.30 = 7.936

Table 4: Lmbench local communication latencies, in
microseconds (smaller is better).

UDP 164.91 4+ 2.787
TCP 187.92 +9.357
TCP Connect | 312.19 & 3.587
RPC/UDP 210.65 + 3.021
RPC/TCP 257.44 + 4.828

Table 5: Lmbench network communication laten-
cies, in microseconds (smaller is better).

L1 Cache 6.00 = 0.000
L2 Cache 112.40 £ 7.618
Main mem | 187.10 £ 1.312

Table 6: Lmbench memory latencies in nanoseconds
(smaller is better). Also see graphs for more com-
plete picture.

pipe 290.17 + 11.881
AF UNIX 64.44 + 3.133
TCP 31.70 £ 0.663
UDP (not available)
beopy (libc) | 79.51 + 0.782
beopy (hand) | 72.93 + 0.617
mem read 302.79 + 3.054
mem write 97.92 £+ 0.787

Table 7: Lmbench local communication bandwidths,
in 10% bytes/second (bigger is better).

TCP
UDP

11.21 £ 0.018
(not available)

Table 8: Lmbench network communication band-
widths, in 10 bytes/second (bigger is better).

289.10 +1.394
299.09 £+ 2.295

Single precision
Double precision

Table 9: CPU-rates in BOGOMFLOPS - 108 simple
arithmetic operations/second, in L1 cache (bigger
is better). Also see graph for out-of-cache perfor-
mance.

owulf list [beowulf]. We must focus in order to con-
duct a sane discussion in the allotted space. In the
following subsections on we will consider the net-
work, the memory, and the cpu-rates as primary
contributors to beowulf and parallel code design.

These are not at all independent. The rate at which
the system does floating point arithmetic on stream-
ing vectors of numbers is very strongly determined
by the relative size of the L1 and L2 cache and the
size of the vector(s) in question. Significant (and
somewhat unexpected) structure is also revealed in
network performance as a function of packet size,
which suggests “interesting” interactions between
the network, the memory subsystem, and the op-
erating system that are worthy of further study.

3.2 Netperf Results

Netperf is a venerable and well-written tool for mea-
suring a variety of critical measures of network per-
formance. Some of its features are still not dupli-
cated in the lmbench 2 suite; in particular the abil-
ity to completely control variables such as overall
message block size and packet payload size.

A naive use of netperf might be to just call
netperf -H targethost

to get a quick and dirty measurement of TCP stream
bandwidth to a given target. However, as the lm-
bench TCP latency shows (see table 5), it takes
some 150-200 microseconds to transmit a one-byte
TCP packet message (on lucifer) or at most 5000-
7000 packets can be sent per second. For small pack-
ets this results in far less than the “wirespeed domi-
nated” bandwidth — the actual bandwidth observed
for small messages is dominated by latency.

For each message sent, the time required goes di-
rectly into an IPC time like T;;. In the minimum
200 microseconds that are lost, the CPU could have
done tens of thousands of floating point operations!
This is why network latency is an extremely impor-
tant parameter in beowulf design.

Bandwidth is also important — sometimes one has
only a single message to send between processors,
but it is a large one and takes much more than
the 200 microseconds latency penalty to send. As
message sizes get bigger the system uses more and
more of the total available bandwidth and is less af-
fected by latency. Eventually throughput saturates

100 == - ——-—— e mmm oo -

80 — —

° g e

Mbits/Second

20 —

ol v]
0 500 1000 1500

Packet Size

Figure 4: TCP Stream (netperf) measurements of
bandwidth as a function of packet size between lu-
cifer and eve.

at some maximum value that depends on many vari-
ables. Rather than try to understand them all, it
is is easier (and more accurate) to determine (max-
imum) bandwidth as a function of message size by
direct measurement.

Both netperf and bw_tcp in lmbench allow one to
directly select the message size (in bytes) to make a
measurements of streaming TCP throughput. With
a simple perl script one can generate a fine-grained
plot of overall performance as a function of packet
size. This has been done for a 100BT connection
between lucifer and “eve” (a reasonably similar host
on the same switch) as a function of packet size.
These results are shown in figure 4.

Figure 4 reveals a number of surprising and even
disappointing features. Bandwidth starts out small
at a message size of one byte (and a packet size
of 64 bytes, including the header) and rapidly
grows roughly linearly at first as one expects in
the latency-dominated regime where the number of
packets per second is constant but the size of the
packets is increasing. However, the bandwidth ap-
pears to discontinuously saturate at around 55 Mbps
for packet sizes around 130 bytes long or longer.
There is also considerable (unexpected) structure
even in the saturation regime with sharp packet size
thresholds. The same sort of behavior (with some-
what different structure and a bit better asymptotic

large packet performance) appears when bw_tcp is
used to perform the same measurement. We see
that the single lmbench result of a somewhat low
but relatively normal 11.2 MBps (90 Mbps) for large
packets in table 8 hides a wealth of detail and po-
tential IPC problems, although this single measure
is all that would typically be published to someone
seeking to build a beowulf using a given card and
switch combination.

3.3 CPU Results

The CPU numerical performance is one of the most
difficult components to precisely quantify. On the
one hand, peak numerical performance is a measure
always published by the vendor. On the other hand,
this peak is basically never seen in practice and is
routinely discounted.

CPU performance is known to be heavily depen-
dent on just what the CPU does, the order in which
it does it, the size and structure and bandwidths
and latencies of its various memory subsystems in-
cluding L1 and L2 caches, and the way the operat-
ing system manages cached pages. This dependence
is extremely complex and studying one measure of
performance for a particular set of parameters is not
very illuminating if not misleading. In order to get
any kind of feel at all for real world numerical per-
formance, floating point instruction rates have to be
determined for whole sweeps of e.g. accessed vector
memory lengths.

What this boils down to is that there is very lit-
tle numerical code that is truly “typical” and that
it can be quite difficult to assign a single rate to
floating point operations like addition, subtraction,
multiplication, and division that might not be off by
a factor of five or more relative to the rate that these
operations are performed in your code. This trans-
lates into large uncertainties and variability of, for
example, T, with parallel program scale and design.

Still, it is unquestionably true that a detailed knowl-
edge of the “MFLOPS” (millions of floating point
operation per second) that can be performed in an
inner loop of a calculation is important to code and
beowulf design. Because of the high dimensionality
of the variables upon which the rate depends (and
the fact that we perforce must project onto a sub-
space of those variables to get any kind of perfor-
mance picture at all) the resulting rate is somewhat

Double precision floating point speed

400

Speed(Bogomflops)
[avl w
=))
) 1)

-
o
(=]

‘ N N B
0 10 2x10° 3x10° 4x10°
Size(Bytes)

Figure 5: Double precision floating point opera-
tions per second as a function of vector length (in
bytes). All points average 100 independent runs.
The dashed lines indicate the locations of the L1
and L2 cache boundaries.

bogus but not without it uses, provided that the
tool used to generate it permits the exploration of
at least a few of the relevant dimensions that affect
numerical performance. Perhaps the most impor-
tant of these are the various memory subsystems.

To explore raw numerical performance the cpu-
rate benchmark is used [cpu-rate]. This benchmark
times a simple arithmetic loop over a vector of a
given input length, correcting for the time required
to execute the empty loop alone. The operations it
executes are:

x[i] = (1.0 + x[i])*(1.5 - x[i])/x[i];

where x[i] is initialized to be 1.0 and should end
up equal to 1.0 (within any system roundoff error)
afterwards as well.

Each execution of this line counts as “four floating
point operations” (one of each type, where x[i] might
be single or double precision) and by counting and
timing one can convert this into FLOPS. As noted,
the FLOPS it returns are somewhat bogus — they
average over all four arithmetic operations (which
may have very different rates), they contain a small
amount of addressing arithmetic (to access the x[i]
in the first place) that is ignored, they execute in
a given order which may or many not accidentally
benefit from floating point instruction pipelining in
a given CPU, they presuming streaming access of

Double precision speed c(standard deviation)

10 r————— ‘
| |

T speed

0 ~
T T T g $———P T T T [T T T [T T T

|
e e e
0 109 2x10° 3x10°
Size(Bytes)

4x10°

Figure 6: The standard deviation (error) associated
with figure 5.

the operational vector.

Still, this is more or less what what I think “most
people” would mean when they ask how fast a sys-
tem can do floating point arithmetic in the context
of a loop over a vector. We’ll remind ourselves
that the results are bogus by labeling them “BO-
GOflops”.

These rates will be largest when both the loop it-
self and the data it is working on are already “on
the CPU” in registers, but for most practical pur-
poses this rarely occurs in a core loop in compiled
code that isn’t hand built and tuned. The fastest
rates one is likely to see in real life occur when the
data (and hopefully the code) live in L1 cache, just
outside the CPU registers. lmbench contains tests
which determine at least the size of the L1 data
cache size and its latency. In the case of lucifer,
the L1 size is known to be 16 KB and its latency is
found by lmbench to be 6 nanoseconds (or roughly
2-3 CPU clocks).

However, compiled code will rarely will fit into such
a small cache unless it is specially written to do so.
In any event we’d like to see what happens to the
floating point speed as the length of the x[i] vector
is systematically increased. Note that this measure-
ment combines the raw numerical rate on the CPU
with the effective rate that results when accounting
for all the various latencies and bandwidths of the
memory subsystem. Such a sequence of speeds as a

function of vector lengths is graphed in figure 5.

This figure clearly shows that double precision float-
ing point rates vary by almost an order of magni-
tude as the vector being operated on stretches from
wholly within the L1 cache to several times the size
of the L2 cache. Note also that the access pattern
associated with the vector arithmetic is the most fa-
vorable one for efficient cache operation — sequential
access of each vector element in turn. The factor
of about seven difference in the execution speeds as
the size of this vector is varied has profound impli-
cations for both serial code design and parallel code
design. For example, the whole purpose of the AT-
LAS project [ATLAS] is to exploit the tremendous
speed differential revealed in the figure by optimally
blocking problems into in-cache loops when doing
linear algebra operations numerically.

There is one more interesting feature that can be
observed in this result. Because linux on Intel lacks
page coloring, there is a large variability of numeri-
cal speeds observed between runs at a given vector
size depending on just what pages happen to be
loaded into cache when the run begins. In figure 6
the variability (standard deviation) of a large num-
ber (100) of independent runs of the cpu-rate bench-
mark is plotted as a function of vector size. One
can eagily pick out the the L1 and L2 cache bound-
aries as they neatly bracket the smooth peak visible
in this figure. Although the L1 cache boundary is
simple to determine directly from tests of memory
speed, the L2 cache boundary has proven difficult to
directly observe in benchmarks because of this vari-
ability. This is a new and somewhat exciting result —
L2 boundaries can be revealed by a “susceptibility”
of the underlying rate.

4 Conclusions

We now have many of the ingredients needed to de-
termine how well or poorly lucifer (and its similar
single-Celeron nodes, adam, eve, and abel) might
perform on a simple parallel task. We also have a
wealth of information to help us tune the task on
each host to both balance the loads and to take op-
timal advantage of various system performance de-
terminants such as the L1 and L2 cache boundaries
and the relatively poor (or at least inconsistent) net-
work. These numbers, along with a certain amount
of judicious task profiling (for a description of the

use of profiling in parallelizing a beowulf application
see [profiling]) can in turn be used to determine the
parameters that describe a given task like T, T,
Tis and T,'p.

In addition, we have scaling curves that indicate the
kind of parallel speedup we can expect to obtain for
the task on the hardware we’ve microbenchmark-
measured, and by comparing the appropriate mi-
crobenchmark numbers we might even be able to
make a reliable guess at what the numbers and scal-
ing would be on related but slightly different hard-
ware (for example on a 300 MHz Celeron node in-
stead of a 466 MHz Celeron node).

With these tools and the results they return, one
can at least imagine being able to scientifically:

e develop a parallel program to run efficiently
on a given beowulf

e tune an existing program on a given beowulf
by considering for example bottlenecks and
program scale

e develop a beowulf to run a given parallel pro-
gram efficiently

e tune an existing beowulf to yield improved
performance on a given program, or

e simultaneously develop, improve, and tune a
matched beowulf design and parallel program
together

even if one isn’t initially a true expert in beowulf or
general systems performance tuning. Furthermore,
by using the same tools across a wide range of can-
didate platforms and publishing the comparative re-
sults, it may eventually become possible to do the
all important optimization of cost-benefit that is re-
ally the fundamental motivation for using a beowulf
design in the first place.

It is the hope of the author that in the near fu-
ture the Imbench suite develops into a more or less
standard microbenchmarking tool that can be used,
along with a basic knowledge of parallel scaling the-
ory, to identify and aggressively attack the critical
bottlenecks that all too often appear in beowulf de-
sign and operation. An additional, equally inter-
esting possibility would be to transform it into a
daemon or kernel module that periodically runs on

all systems and provides a standard matrix of per-
formance measurements available from simple sys-
tems calls or via a /proc structure. This, in turn,
would facilitate many, many aspects of the job of
dynamically maximizing beowulf or general systems
performance in the spirit of ATLAS but without the
need to rebuild a program.

5 Acknowledgments

I would like to gratefully acknowledge the support
of Duke University, the Army Research Office, In-
tel Corporation, who variously funded the author
and/or one of his beowulfs. I am very grateful to
this paper’s “shepherd”, Walter B. Ligon III, for
reading the various drafts and making useful sugges-
tions, and to both Larry McVoy and Carl Staelin for
at least listening to my passionate plea for an unre-
stricted GPL for the lmbench suite and for adding
a number of beowulf friendly measures. Finally, I
would also especially like to thank the members and
regular participants on the beowulf list.

6 Availability

All software discussed in this paper is open source
and readily available over the network at the URL’s
indicated in the bibliography below or by sending
email to the author at rgb@phy.duke.edu. The par-
ticular kind of licensing for each (GPL or not) is
indicated in the reference.

References

[beowulf] See http://www.beowulf.org and links
thereupon for a full description of the beowulf
project, access to the beowulf mailing list, and
more.

[Amdahl] Amdahl’s law was first formulated by
Gene Amdahl (working for IBM at the time)
in 1967. It (and many other details of interest
to a beowulf designer or parallel program de-
signer) is discussed in detail in the following
three works, among many others.

[Amalsi] G. S. Amalsi and A. Gottlieb, Highly
Parallel Computing (2nd edition), Ben-
jamin/Cummings, 1994.

[Foster] 1. Foster, Designing and Building Parallel
Programs, Addison-Wesley, 1995. Also see the
online version of the book at Argonne National
Labs, http://www-unix.mcs.anl.gov/dbpp/.

[Kumar] V. Kumar, A. Grama, A. Gupta, and
G. Karypis, Introduction to Parallel Comput-
ing, Design and Analysis of Algorithms, Ben-
jamin/Cummings, 1994.

[lmbench] A microbenchmark toolset developed by
Larry McVoy and Carl Staelin of Bitmover, In-
corporated. GPL plus special restrictions. See
http://www.bitmover.com/1lmbench/.

[netperf] A network performance microbenchmark
suite developed under the auspices of the
Hewlett-Packard company. It was written by
a number of people, starting with Rick
Jones. Non-GPL open source license. See
http://wuw.netperf.org/.

[cpu-rate] A crude tool for measuring “bo-
gomflops” written by Robert G. Brown
and adapted for this paper. GPL. See
http://www.phy.duke.edu/brahma.

[Eden] The “Eden” beowulf consists of lucifer, abel,
adam, eve, and sometimes caine and lilith. It
lives in my home office and is used for proto-
typing and development.

[profiling] Robert G. Brown, The Beowulf Design:
COTS Parallel Clusters and Supercomputers,
tutorial presented for the Extreme Linux Track
at the 1999 Linux Expo in Raleigh, NC. Linked
to http://www.phy.duke.edu/brahma, along
with several other introductory papers and
tools of interest to beowulf developers.

[ATLAS] Automatically Tuned Linear Algebra Sys-
tems, developed by Jack Dongarra, et. al. at
the Innovative Computing Laboratory of the
University of Tennessee. Non-GPL open source
license. See http://www.netlib.org/atlas.

