
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Library Interface Versioning in Solaris and Linux

David J. Brown and Karl Runge

Solaris Engineering, Sun Microsystems Inc.

Abstract
Shared libraries in Solaris and Linux use a versioning
technique which allows the link editor to record an
application’s dependency on a particular release level of
the library. The versioning mechanism operates at the
level of the library’s GLOBAL symbol names—a finer
granularity than simply associating a version number
with the library itself.

In Solaris, this mechanism has also been used to provide
a means for the system-supplied shared libraries to
define their application interface: to declare specifically
which of their symbols are intended for application use
(and are stable from one release to the next), and which
are internal to the system’s implementation (and hence
subject to incompatible change).

This paper describes the library symbol-versioning tech-
nology in Linux and Solaris, the ways in which it is used
to support upward compatibility for existing compiled
applications from one release of Solaris to the next, and
the potential for similar mechanisms to be applied in
Linux versioned shared libraries.

1  Introduction
As Linux continues to grow in popularity, and more peo-
ple come to depend on it, issues regarding compatibility
will likely become increasingly important. In what fol-
lows we focus on a method for successive releases of

system software, such as Linux1 or Solaris, to maintain
binary compatibility with existing applications. We
describe some practices that are presently being used in
Solaris (at the level of the system’s library interfaces) to
define and maintain an Application Binary Interface
(ABI). We further describe how this definition along
with an approach to library interface versioning helps to

ensure the stability of existing application binaries
across successive Solaris releases.

The hope is that some, if not all, of these practices can
be incorporated into the development practices for Linux
libraries to help increase binary stability for Linux appli-
cations. Due to the differences in development models
between GNU/Linux and Solaris, some aspects of these
schemes may need to be modified suitably to be benefi-
cial to Linux development.

2  The ABI—a basis for system interface
definition
Maintaining source-level or API compatibility, is well
understood; less familiar is the idea of maintaining
binary-level, or ABI, compatibility. The Solaris ABI
(application binary interface) is the set of runtime inter-
faces in Solaris that may be depended upon by an appli-
cation; if the ABI evolves in an upward-compatible way
from one release of Solaris to the next, then existing
compiled applications built on a given release will run
on all subsequent releases without change (i.e. there is
no fear that the application will break when run on a
later release of the system).

The enormous value of access to source code may
obscure the fact that there are many end-users who can-
not exploit source-level compatibility and “simply”
recompile their applications as needed when the system
software has changed. Most often it is large organiza-
tions, as compared to individual users or developers,
who are in this situation. The need for the new system’s
binary compatibility with their existing applications
may be because they do not have access to the source
code for certain applications, but much more often the
logistical nightmare of recompiling, retesting and redis-
tributing the hundreds or even thousands of applications
that a typical large organization relies on, is the predom-
inant issue.

Consequently, establishing a clear runtime interface for
applications, and maintaining its binary compatibility is

1. When we use the term Linux in this paper, we are using
the common shorthand, and mean a complete software
system based on a Linux kernel (those provided by
RedHat, SuSE, or Debian GNU/Linux are examples).



an important requirement for a supplier of operating
system software. The means of satisfying that require-
ment is through precise definition of the system’s appli-
cation binary interface (ABI): If the producer of system
software maintains the integrity of those interfaces, and
the developers of software products which rely on the
system also abide by it (and only use interfaces belong-
ing to the ABI) then compatibility is assured.

2.1  Defining the Solaris ABI

At Sun, we tend to think of the system (Solaris) as the
provider of a set of services, and these services are pri-
marily provided to application programs and/or other
layered software products, which are built and released
independently to Solaris.

To a first approximation, the broader set of system ser-
vices are provided to applications by the set of libraries
supplied as part of the system. While the kernel is the
underlying foundation for this, as provider of the most
fundamental services (and there can be a great deal of
focus on this, especially in the Linux environment), a
complete software system represents a good deal more
than the kernel alone: So in Solaris it is the set of system
libraries, and more specifically the particular interfaces
offered by those libraries, that we use to characterize the
application’s runtime interface.

Importantly, these interfaces are accessed by a compiled
software product (such as an application) via dynamic
linking—bindings made at runtime between the applica-
tion and the shared objects which implement the system
libraries. The use of shared libraries is critically impor-
tant because dynamic linking to these libraries allows us
to maintain a clear separation between a compiled appli-
cation and the system implementation. Focusing on the
runtime binding interface between the two is analogous
to defining a protocol, or may be thought of as charac-
terizing the interface to the Solaris virtual machine.

2.2  Defining system-internal interfaces

While the system libraries provide a set of interfaces to
allow applications access to system services, most sys-
tem libraries also expose some implementation inter-
face—making visible a broader set of GLOBAL symbols
than just those intended for use by applications. System
libraries which are “lower” in the system’s implementa-
tion-architecture hierarchy can have intimate interde-
pendencies, so these libraries also expose some system-
internal implementation interfaces. These interfaces,
such as those needed in libc to support particular
semantics in conjunction with libthread or libnsl,
are really part of the system’s implementation (as
opposed to its external interface), and not intended for

application use. To distinguish these two classes of
interface, we define the following terms:

“Public” - interfaces which are intended for use by
applications (and/or any other layered software products
released asynchronously to Solaris), and which there-
fore have the upward compatible evolution property;

and “Private” - interfaces which are not intended for use
by applications (or any asynchronously released layered
software component), because these interfaces are part
of the internal implementation of Solaris, and do not
have the upward compatible evolution property.

In the following sections, where we discuss how change
is managed, we will be focusing on changes to the Pub-
lic interface—namely, those system interfaces that affect
applications (or any other layered software product
released asynchronously to the system software). In
Solaris we have not yet attempted to provide for the
asynchronous release of individual system libraries,
such as might be addressed by carefully managing
change to the interface between system libraries (i.e. the
Private, or internal implementation interface manifest by
the libraries). The assumption at present, therefore, is
that a release of the system constitutes (and requires) a
synchronous release of all the system libraries along
with the kernel.

3  Versioning
As a system evolves, whether by the addition of new
functionality, or via changes to the system’s implemen-
tation of existing functionality (as are frequently done to
improve its quality or performance), there is the need to
indicate the kind of change. This is important, because
applications, and other software products have been
constructed which depend upon this functionality. Since
changes to the system’s interfaces can affect existing
applications, some means to indicate the nature of the
changes made is highly desirable.

A particular property that we consider important, and
that we’re trying to realize, is that developers of applica-
tions (and many other layered software products) can be
insulated from changes made to the system they rely on
for many of the kinds of change to that system’s soft-
ware.

3.1  Kinds of change—“major”, “minor” and
“micro” releases

At the outset is important to define the kinds of change
that can be introduced to a system software product (and
which also apply at a finer granularity to individual
components of a system software product). In this paper



we will focus specifically on the system’s libraries, since
libraries are the primary components of the system soft-
ware which provide interfaces to other software prod-
ucts built to run on that system. The following three
terms define a simple taxonomy of change which is
applicable to all systems:

A major release is an incompatible change to the system
software, and implies that [some] applications depen-
dent on the earlier major release (specifically those that
relied upon the specific features that have changed
incompatibly) will need to be changed in order to work
on the new major release.

A minor release of the system software is an upward-
compatible change—one which adds some new inter-
faces, but maintains compatibility for all existing inter-
faces. Applications (or other software products)
dependent on an earlier minor release will not need to be
changed in order to work on the new minor release:
Since the later release contains all the earlier interfaces,
the change(s) imparted to the system does not affect
those applications.

A micro release is a compatible change which does not
add any new interfaces: A change is made to the imple-
mentation (such as to improve performance, scalability
or some other qualitative property) but provides an inter-
face equivalent to all other micro revisions at the same
minor level. Again, dependent applications (or other
software products) will not need to be changed in order
to work on that release as the change imparted to the
system (or library) does not undermine their dependen-
cies.

3.2  Managing changes to the system interface

Now let’s take a look at how the various kinds of change
to system interfaces described above have been man-
aged in some systems historically.

Virtually all systems that we are aware of incorporate
some sort of version number in the filename of each
library, and most systems that we are aware of have had
some means of recording both the major and minor
release concepts on a per-library basis in order to indi-
cate and manage upward compatibility. Historically,
several systems have recorded minor and/or micro
release levels explicitly in the library’s filename: For
example, in Sequent’s Dynix [Huiz 97] and Sun’s SunOS
4.x (Solaris’s OS component prior to Solaris2), library
filenames were of the sort:

lib<name>.so.<major>.<minor>

(for example, libc.so.2.9), and in Linux, library file-
names often also contain a micro (or “release”) number,
being of the sort:

lib<name>.so.<major>.<minor>.<rls>

(for example, libz.1.1.3).

3.2.1  Library minor release

When a library evolves compatibly, existing interfaces
are preserved, but new ones are added (as needed for
example, when new functional content is added). On
many systems this change is reflected in the library (or
libraries) affected by exhibiting both major and minor
version numbers in the library’s filename (e.g., lib-
foo.so.1.2) and incrementing the library’s minor
number to indicate that new interfaces were added (e.g.
to libfoo.so.1.3). Since nothing has been done that
would break applications constructed earlier (i.e. those
that were built using either libfoo.so.1.1 or lib-
foo.so.1.2), it is OK for these older applications to
be linked with the newer library at run-time (although
we have yet to describe how the application’s dependen-
cies are recorded and how this is managed at runtime,
but will do so shortly).

3.2.2  Library major release

If the interfaces in a library shared object change incom-
patibly, not only must there be a way of indicating that a
different version of the library has been created, but also
of detecting application binaries that were built using
the earlier edition of the library and preventing them
from linking at runtime with the library’s new major
release.

Analogous to a library’s minor release, the system or
library provider’s practice is to update the major revi-
sion number associated with the library. So for example,
an incompatible change to libfoo would require that
the successor to libfoo.so.1 be named lib-

foo.so.2, or in the case that both major and minor
numbers are reflected in the library filename (as in our
preceding example), the naming revision would, for
example, be from libfoo.so.1.3 to libfoo.so.2.1
(where 2.1 indicates the first minor release of major
release 2).

3.3  How applications record library dependencies

Now while updating the major and/or minor version
number on a library is a simple way for the system soft-
ware or library provider to indicate the change, this
practice presumes of course, that there is also some
mechanism for labelling application binaries with the
revision levels of the libraries they have used. And at
run-time, some mechanism must be present to ensure a



rendezvous of the application with an appropriate ver-
sion of each library it requires.

There must, at the very least, be a way of marking appli-
cations with the name and major revision level of a
library they were built with to ensure that application
executables requiring a given major version of a library
(e.g. libfoo.so.2) are not accidently linked with
another major version of the library, either a later (lib-
foo.so.3) or earlier one (libfoo.so.1), since we
know that these are incompatible with the application.
Related to this is that later releases of a system software
product, if they are to be able to run older application
binaries, must continue to provide earlier major edi-
tion(s) of the libraries, and have a mechanism for the
older applications to be linked at runtime to the major
version they require.

3.3.1  Historical Practice

On some earlier systems, when an application was built,
the link editor simply recorded within the application
binary, the filename of each library that it depended
upon (that is, a name containing the major and minor
number of the library present on the build platform).

At run time, upward compatibility could be handled by
the runtime linker’s explicit knowledge of the semantics
of the version numbers contained in the library filena-
mes. In SunOS 4.x for example, the runtime linker
would look for a library with the same name and same
major release number as that recorded as a dependency
in the application (and in the presence of multiple
minor-version instances of the library that match the
major number, the instance with the highest minor ver-
sion number is used) [Gingell 87].

If the minor version number of the library found on the
runtime platform was greater or equal to that of the
dependency recorded in the application binary, dynamic
linking proceeded silently (since the library must con-
tain all the content required). In the case that the minor
revision found on the runtime platform was lower than
that recorded in the binary SunOS 4.x had the policy of
issuing a warning diagnostic (that an earlier version had
been found), but allowing the runtime linking to pro-
ceed. The application might still run successfully if it
had only happened to depend on functional content (and
interfaces) present in the earlier release of the library. If
the application had depended on later content however, a
runtime relocation error would occur when the applica-
tion invoked an interface not present in the library on the
runtime platform. Other systems may have adopted a
more conservative policy and disallowed an application
to run if a minor release of at least equal minor revision

level to that required by the application was present on
the runtime platform.

Neither of these policies is particularly satisfactory how-
ever, as the former might permit an application to run
whose dependencies can’t be met, while the latter pre-
vents a class of applications whose interface dependen-
cies could be met (i.e. whose interface needs were
limited to content present in an earlier minor edition of
the library, but were built on platforms with later minor
editions), from being allowed to run on platforms bear-
ing an earlier edition of the library than the application
was built (and hence labelled) with, but which in fact
happened to provide everything the application actually
required.

3.4  The minor-version rendezvous problem

The important but somewhat subtle issue associated
with minor revision changes, just described, is that an
application built with a given minor release of a library
might, but cannot be certain to run on an earlier minor
release level of the library. This is because the applica-
tion may have used one or more of the interfaces added
to the library at a later minor release level, and not
present in the earlier one.

To resolve this problem we must know more than just
what minor release level an application was built with.
We must know more specifically what content within
that library it is actually dependent upon if we are to
determine whether that content is present in the library
found on a particular runtime system that the application
is being run against. This is one of the key concerns
addressed by the library versioning and linking technol-

ogy present in both Solaris and Linux-based systems2.

4  Library versioning in Solaris and Linux
Many contemporary systems (including Solaris and
Linux-based systems) use the ELF object file format (the
SystemV Executable and Linking Format) [SysVABI].
Where ELF is used, dynamically-linked libraries (librar-
ies implemented as shared objects) contain an so-
name—a specific means of naming the library (super-
ceding the library’s filename) stored within the library’s

object file3.

When an application (or other dynamic object) which
depends on the library is built, it is the library’s so-name
(not the filename) that is recorded in the application

binary as a dependency.4 And when the application is

2. Those using GNU libc version 2 or later
3. The DT_SONAME contained in the shared object’s

.dynamic section.



run, dependency information contained in the applica-
tion binary is used by the runtime linker to locate and
load the libraries depended upon by the application.

In order to allow for upward compatible evolution of the
library—to permit an application constructed on a given
system release to encounter a different minor revision of
the library on the runtime platform (and still run suc-
cessfully), current practice is to have the library’s so-
name contain only the major number (e.g. libc.so.1).
At this level applications record a dependency only on
the particular name and major release of the library and
may be run with any minor release level they encounter
on a runtime platform (albeit with the expectation of
finding a minor release level sufficient to provide the
interface content they depend upon).

For minor versioning, rather than the traditional method
of associating a single minor version number with the
library and incrementing it (as a way of saying “some-
thing was added”), a more useful approach is to define
specifically what has been added, and to record this
information in the library shared object itself.

So, instead of simply renaming the library (e.g. from
libfoo.so.1.2 to libfoo.so.1.3), the library’s
name remains libfoo.so.1 (reflecting its major
release level) and inside the library, a label is introduced
(say, “VERS_1.3”) that indicated the GLOBAL symbols
added in the third minor revision level. If such labels are
added with each minor revision level (e.g. VERS_1.1,
VERS_1.2, VERS_1.3, ...) and all earlier labels pre-
served within subsequent minor release editions of the
library, the evolution of the library’s interface can be
seen clearly.

4.1  Basic mechanism

In 1995 the Solaris 2.5 link editor (ld) and the run-time
linker (ld.so.1) were enhanced to support “version-
ing” and “scoping” of symbols in shared objects.

The versioning mechanism itself is fairly stratightfor-
ward, simply allowing for the definition of named sets,
each of which contains a specified list of symbols. Sets
may be defined by providing an explicit list of symbols,
and/or by referring to other sets by their name to include

(inherit) the symbols in those sets5 [Solaris LLM].

The GNU/Linux implementation6 is the same as that in
Solaris, although the GNU implementation provides
two extensions [GNU_ld]: First, as an alternative to pro-
viding definitions in a separate mapfile, “.symver”
assembler directives may be included in-line in the C
source code for the library. Second, a form of interface
overloading is provided: Multiple (incompatible) ver-
sions of the same function are allowed to exist in a sin-
gle revision of the library. This is done by mapping an
external symbol name (as referred to by an application)
to a different internal name for the function, depending
on the (minor) version set specified by the application’s
dependency. Special .symver directives must be pro-
vided to indicate the per-version mapping:

.symver old_printf, printf@VERS_1.1

.symver new_printf, printf@VERS_2.0

The intention is to allow several incompatible versions
of any individual interface to be carried simultaneously
within the library, and thus not have to increase the

library’s major version number7.

When a versioned library (shared object) is built, a

“mapfile8” containing the list of exported symbols

grouped into named sets9 is passed to the link editor
ld(1) via the -M option.

As a simple example, consider the versioning mapfile
for a hypothetical library named libstack.so.1:

SUNW_1.1 {
global:

pop;
push;

}

SUNWprivate {
global:

__pop;
__push;

local:
*;

}

4. More specifically the so-name is recorded as a
DT_NEEDED entry in the application object’s
.dynamic section for each library used by the applica-
tion.

5. Full details of the library versioning technology in
Solaris may be found in the Solaris Linker and Librar-
ies Manual in the section describing “Versioning”.

6. The mechanics for symbol versioning in Linux are
implemented in the GNU link editor (ld), provided in
the binutils package

7.  We are not yet sure of the broader policies describing
the expected use of this mechanism however.

8. What is called a “versioning mapfile” in Solaris is
called a “VERSION script” by the GNU link editor, but
their syntax is the same.

9. These named sets are called “versions” in the parlance
of the Solaris Linker and Libraries Manual, indicating
the primary purpose intended by their design.



In Solaris system libraries, by convention, the “SUNW”

prefix10 is used in the set names (versions).

The versioning mapfile above instructs the link editor
(ld(1)) to construct a shared object which exports (as
GLOBALs) the symbols pop, push, __pop, and
__push for use by other binary objects (executables or
other shared objects). The “local: *;” directive
instructs the link editor to take all remaining GLOBAL

symbols defined in the objects being linked and make
them inaccessible external to the shared object being
produced: Essentially the link editor “demotes” these
symbols from GLOBAL to LOCAL symbols (see 4.1.2
“Scoping” below). For example, utility functions that
are part of the internal implementation interface of the
library (and hence intended only for use within the
shared object) will not be exported.

Suppose that in a later revision of libstack.so.1 it is
decided that a swap() functionality is desired, then the
mapfile would be the same as above, but with an addi-
tional version definition:

SUNW_1.2 {
global:

swap;
} SUNW_1.1;
...

This notation reflects the upward-compatible evolution
of the library’s Public interface, in which the set
SUNW_1.2 defines two new interfaces, and inherits
those interfaces in the set named SUNW_1.1. The inher-
itance chain of symbol sets SUNW_1.1 .. SUNW_1.2
..., and so on, evolves corresponding to each new revi-
sion that adds interfaces to the library. Note that the ver-
sion numbering scheme following the SUNW prefix is a
major and minor number pair, where the major number
corresponds to the major revision number of the library.

4.1.1  Versioning

The immediate effect of the library’s versioning is that
at the time an application is built (compiled and linked),
the link editor can record into the application binary the
names of any versions (named sets of symbols) in the
library that the application depends on. This is the
default build practice for Solaris applications. Impor-
tantly, it is not the name of the latest set (version)

present in the library that is recorded, but the smallest
set (or sets) containing those symbols depended upon by
the application: For example, if libc.so.1 contained
six minor revision levels, of which the latest was
SUNW_1.6 on the platform used to build test_app, but
this application only relied on symbols present in revi-
sions up to the third minor release (SUNW_1.3), then
the application would be labelled with that named set to
indicate its correct minor version dependency.

This permits applications built on later minor release
editions of the library to be run (correctly) with earlier
editions of the library, when their interface requirements
are constrained to an earlier release level. And second, it
ensures that applications which record a dependency on
a given named set (minor revision level) will not be

run11 with an edition of the library which does not pos-
sess that named set.

When the application is run, the runtime linker uses the
version dependency information recorded in the applica-
tion binary to determine if all these named sets (inter-
faces required by the application), are present in the
library found on the runtime platform. This ensures that
the sufficient minor revision content is present in the
library to meet the application’s needs (thus going
beyond simply using the application’s list of NEEDED so-
names to locate the correct major versions of the librar-
ies).

4.1.2  Scoping

Somewhat specifically designed to overcome a short-
coming of the C language’s symbol scoping capabilities,
implementation interface which is used only internal to
a library itself (i.e. interface used only within a single
dynamic object) can be handled specially. A capability
is afforded by the Solaris link editor which permits a
reduction in the scope of those interfaces from GLOBAL

to LOCAL within the library at the time that the library
(dynamic object) is linked. We refer to this as “scope
reduction” or library-level “scoping” of symbols.

The keyword local: in a mapfile is a scope-reduction
directive, and provides that one or more symbols
intended for use only within the shared object itself may
be treated as library-level STATIC symbols. In this way
the shared library can control what symbols are intended
for export. Scope-reduced symbols are changed from
library GLOBAL symbols to LOCAL symbols as part of the

10. Originally this was intended as a way to distinguish
interfaces introduced by Sun Microsystems—and
therefore perhaps particular to Solaris, from those
defined by broader standards, such as the SystemV ABI
or the Open Group’s UNIX) . The prefix “GLIBC” is
used by the GNU/glibc package in a similar conven-
tion.

11. At application start-up, a warning is emitted by the
Solaris runtime linker indicating that the library does
not contain the version required by the application, and
the application exits. This is in lieu of a runtime reloca-
tion error if the application were allowed to execute.



link editing process which produces the shared object,
thus preventing application programs (or any other
dynamic object) from accidentally (or intentionally)
using them. As a corresponding effect, these symbols
are removed from the dynamic symbol table. Note that
scope-reduced symbols are not actually associated with
any named set.

4.2  Versioning practices (policies) in Solaris

To implement Solaris’s interface definition and upward
compatibility policies, we have defined a set of practices
which apply the library versioning mechanisms
described above. These practices are now used at Sun as
an intrinsic part of Solaris’s library development prac-
tices.

Sun defines the Solaris ABI in terms of the interfaces to
the system’s libraries. First, at the library-naming level,
libraries are given a filename and so-name correspond-
ing to the library’s major release level. Minor versioning
information is contained within the library binary.

In order to make clear which of a library’s GLOBAL sym-
bols are part of the ABI and which aren’t, the symbol
versioning mechanism described above are used to clas-
sify all GLOBAL symbols (as Public or Private, and by
ascribing each Public interface to a set indicating the
minor release level of the library in which it was intro-
duced). The set of all symbols indicated to be Public in a
system library constitutes the library’s ABI, and the col-
lection of all such libraries in a given release of Solaris
thus constitutes the Solaris ABI. This ABI is self-docu-
menting since the definitional information (which sym-
bols are Public and which are Private) is part of the

library itself12 and readily accessible through system
utilities such as the pvs(1) (“print version section”)
command.

When the library versioning mechanisms were first
applied to the Solaris shared libraries, the scoping
mechanism was applied to hide all interfaces that are
part of the linkage between the individual compilation

units (.o files) of the library, but used only within the
library itself. These symbols are “scoped out” (demoted
from GLOBAL to LOCAL in the link-editor’s construction
of the shared object), so that these symbols are not visi-
ble external to the library and cannot be used by any
external dynamic object.

Remaining GLOBAL symbols (those interfaces that must
be visible external to the library) are separated into Pub-
lic and Private. GLOBAL symbols classified as Public
name interfaces intended for use by application develop-
ers (they are documented and guaranteed not to change
incompatibly from one release of Solaris to the next).
Private symbols name interfaces that are part of the
Solaris implementation (they can not be guaranteed to
remain compatible, or even to persist at all, from one
Solaris release to the next, and are not suitable for use
by application developers).

To reflect the upward compatible evolution represented
by a series of minor revisions to the library, the Public
symbols appear as a number of named sets of the form:
“SUNW_<major>.<minor>”. Each named set (version)
identifies the full interface content present in a given
minor revision of the library. The set lists the Public
symbols introduced in that minor release, and names its
predecessor to inherit its contents (e.g. SUNW_1.2
explicitly identifies the set of symbols added in the sec-
ond minor release of libc, and inherits SUNW_1.1—
the set of symbols present prior to that). A new version
is added to the library only when a release of the library
introduces new interface content.

All Private symbols, in contrast, are associated with a
single version named “SUNWprivate”. Symbols may be
added to (or removed from) this set from one release to
the next, and since there is no expectation of upward
compatibility in this set there is no inheritance chain of
versions for Private symbols. Recall that Private means
(system-internal implementation interface) and that
applications must not depend on these symbols. The
contents (or even the existence) of this set therefore
should not matter to an application.

All of the system libraries in Solaris which provide the
basic OS and core networking services, as well as many
of the basic window system interfaces, have been ver-
sioned in this way since Solaris 2.6. The eventual goal is
to version all libraries shipped by Sun which can be
used with Solaris. In due course it is hoped that the
same approach will be taken by libraries built by other
developers—particularly those “middleware” products
which are not included with the Solaris release, where
such libraries offer application-usable interfaces. The
intent is that all layered products that can be used with

12. These definitions are contained within each library
binary. They are reflected within the shared object by
three ELF sections: Two sections named
.SUNW_version and one named .SUNW_versym.
The first has sh_type: SHT_SUNW_verdef, and gives
all those versions (named sets of symbols) defined by
the library. The second section has sh_type:
SHT_SUNW_verneed and lists versions (named sets of
symbols in other shared objects) depended upon by the
library). The third has sh_type: SHT_SUNW_versym,
and associates a set of GLOBAL symbols in the library
with a respective “version” (named set) listed in the
first section in order to define each such set name.



Solaris define stable application interfaces, in order to
realize similar benefits of upward binary compatibility
for applications that depend upon them.

4.3  Versioning practices in Linux-based systems

The GNU “glibc” package provides about 20 shared
libraries (including libc) and makes extensive use of
the versioning mechanism in ld(1), both to implement
scope reduction for library-internal symbols, and to
indicate the library’s minor release evolution through
versioning. For example, in libc.so the current ver-
sion chain is:

GLIBC_2.0, GLIBC_2.1, GLIBC_2.1.1, GLIBC_2.1.2

For libraries that have not been added to recently, the
highest version remains the last one in which content
was added. For example, the highest version in lib-

crypt.so is GLIBC_2.0. If a new library is added at a
certain version of the GNU glibc package its initial ver-
sion set name is that of the corresponding package: e.g.
librt.so begins at GLIBC_2.1

Looking at the Redhat Linux 6.2 release, one can see
that most of the libraries that are not part of the glibc
package (e.g. those of XFree86 and libgtk) are not as
well managed: While most have versions defined in
them, these are currently only a default version with no
structure yet defined (that is, there are only two versions
lib<name>.so.<n> and GCC.INTERNAL). These
libraries currently have no Public inheritance set chain
defined.

The most important difference between GNU/Linux and
Solaris is that the GNU glibc libraries do not distin-

guish the system’s internal implementation-interface13

from their application interface. By making it clear that
application developers should not use implementation
interfaces (see section 5), Solaris library developers can
change the library’s implementation in the future (for
example, to substitute new algorithms or to achieve per-
formance gains within the Solaris system libraries),
without the fear that existing applications could be bro-
ken.

5  Constructing stable applications
Once a system has clearly defined the set of runtime

interfaces intended for use by applications14, and is

committed to maintain them in an upward compatible
way, all properly constructed applications will continue
to run without change. This raises the question of how
we decide that any given application meets those crite-
ria.

5.1 appcert: Checking applications’ interface use

An immediate benefit of the Solaris ABI is that we can
use the definition it provides to decide whether a com-
piled application (or other software product) uses unsta-
ble interfaces. This can be done by a tool which:

• Determines all bindings an application makes to
interfaces in Solaris’s libraries.

• Extracts the system’s interface definition informa-
tion (Public vs. Private interfaces) from the Solaris
libraries.

• Warns of any bindings made directly from the
application to Private (non-ABI) interfaces in the
libraries.

We have written a tool for Solaris that performs the
above examination and one or two other checks for
potential binary instabilities (for more information see
[appcert]).

Implemented as a Perl script, appcert relies on two
important Solaris system utilities: To determine an
application’s runtime dependencies (both the libraries
and specific per-library symbol bindings) appcert

relies on a feature of the Solaris runtime linker

(ldd(1))15. Next, for each Solaris system library the
application depends on, appcert uses the pvs(1) util-
ity to determine the library’s ABI (its Public vs. Private
symbols).

Some additional checks related to binary stability are
also performed by appcert. In particular, the static
linking of Solaris archive libraries (e.g., libsocket.a)
are flagged, as well as calls to certain specific inter-
faces—whether individual symbols or entire libraries,
known to have caused binary breakage in earlier
releases.

13. Some analog to the SUNWprivate symbol set that
Solaris system libraries use to indicate unstable inter-
library artifact which is not part of the ABI as opposed
to stable interfaces that application developers are
intended to use.

14. This also applies to any other layered software product
that is not part of the system (in the sense that it does
not such an integral part of the core system software
that it must be re-built and reissued as a part of every
release of the system software product).

15. ldd is run with the environment variable LD_DEBUG
set to “files,bindings”.



6  Benefits
Library versioning, as present in both Solaris and Linux
provides a finer grain solution to the minor-revision ren-
dezvous problem described above. An application which
has been constructed using versioned libraries records
the name(s) of the version(s) containing the interfaces
that it uses, and that it thus requires to be present in a
library on a runtime platform. Beyond location of a
library matching the major revision level needed by the
application on the runtime platform (an exact match of
the so-name recorded in the application binary), the
runtime linker now also ensures that the minor version
dependencies recorded in the application are present
within the library.

Library scoping has been applied to eliminate a class of
library internal interface from external visibility.
Dynamic linking of the libraries is sped up by scoping,
since scoped symbols are removed from the dynamic
symbol table (.dynsym): Since scope-reduced symbols
become LOCAL symbols, references to those symbols
(within the library) are resolved statically at the time the
library is constructed. Dynamic relocations are no
longer required for these symbols.

In Solaris, library versioning has also been applied to
define the ABI—a stable, upward compatibly evolving
interface for applications, and to distinguish this from a
set of interfaces exposed by libraries which reflect part
of the system’s internal implementation. This serves as
the foundation for ensuring the integrity of successive
system releases, and for establishing stability in the
installed base of applications and software products that
rely on the system.

7  Conclusions
Given that the enabling technology is now present in the
GNU linker, and has been demonstrated in its applica-
tion to glibc, it strikes us as highly desirable that addi-
tional libraries used by Linux developers (e.g. XFree86
and libgtk) adopt versioning practices consistent with
those used by the GNU glibc libraries. An important
part of this will be to identify and advocate a set of poli-
cies to be used—especially important considering the
number of independent developers contributing to
Linux-based systems. The more libraries that carefully
define and manage the evolution of their external inter-
faces, the smaller is the chance for binary incompatibili-
ties to arise for applications that depend upon them. And
the more uniform the set of practices for implementing
library interface definitions, the more practical will be
developers ability to understand and apply that in the
software products that they construct.

7.1  A Linux ABI

We are convinced that the GNU glibc project (and
other Linux-related library projects) would benefit if a
GNU/Linux ABI were defined for these libraries. This
could be done, just as in Solaris, by adding an analog to
SUNWprivate (for example, a “GLIBC_PRIVATE” for
the GNU glibc package), to indicate the system-inter-
nal (non-ABI) symbol set. Currently both application
interface (ABI) and system-internal interface (non-ABI)
symbols appear to be exported together.

If the Linux community discovers these practices to be
effective, it should be as natural to define all library
interfaces as it was for Solaris. In fact, due to the more
distributed and modular nature of open source develop-
ment, it may prove even more fruitful to apply these
practices. Further, due to the independent development
and release of many of the libraries used in Linux-based
systems, it may be necessary to explore additional clas-
sifications beyond the “Public” and “Private” used in
Solaris, perhaps to identify and version inter-library
interfaces (those between separately-released collec-
tions of libraries). While it may appear that this use of
symbol versioning only applies to monolithic “cathe-
dral” systems like Solaris, it should be noted that Sun
also applies its versioning scheme to libraries from out-
side Sun (e.g., the CDE and X11 libraries) released as
part of Solaris.

Given the similarity of mechanisms, the definition and
use of the ABI to cultivate a base of increasingly stable
applications, as in Solaris, could easily be done in
Linux. As an initial step, and proof of concept, we have
developed a prototype of appcert on Linux. But while
the tool itself is a necessary element of the solution, the
identification of a core set of system libraries for Linux
systems and the definition and stabilization of their
interfaces is needed to realize the full value. Such con-
siderations might serve as the basis for a broader discus-
sion of what libraries constitute the core system
interface for Linux, and what interface definition and
versioning practices might be useful to the open source
community and development process.

Our ultimate desire is that a set of normalized practices
for library interface definition and management of com-
patibility will be identified that are sufficient for com-
mon and widespread use in the industry.

7.2  Compatibility across Linux systems

Sun has benefitted from the library versioning practices-
described, both by defining Solaris’s system interfaces
and in managing their upward compatible evolution. We
are excited to see these mechanisms and similar prac-



tices adopted by the GNU glibc project, and hope that
the practices will be developed and applied more
broadly in open source library development.

A significant opportunity that arises from the definition
of an ABI and library versioning, is the ability to com-
pare the system interface provided by different system
or product releases. While most recently this has been
used in Solaris to maintain upward compatibility for
successive releases of a single product, definition of an
ABI in the Linux environment could serve to enable
cross-product binary compatibility, so that a software
product build on one Linux-based system (such as a
Caldera release) could be run successfully on others
(such as Linux-based distributions released by RedHat,
Debian, SuSE and so on). This could prove important to
avoid a Balkanization of the interface as offered by dif-
ferent Linux-based releases, and perhaps critical to the
success of the open source efforts related to its ongoing
development.
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