®
o ®
THE MAGAZINE OF USENIX & SAGE
, ‘ February 2001 e volume 26 e number 1

inside:

PRITHVI RAO:
USING CORBA WITH JAVA:
A MINI NAPSTER, PART 1

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

using CORBA
with java

A Mini NOPSter by Prithvi Rao

P rl_ l Prithvi Rao is the co-
a founder of Kiwilabs,
which specializes in

. software engineering
Introduction methodology and
The need to understand middleware technologies such as CORBA, DCOM, Java/CORBA training.
He has also worked on
and RMI has been hastened in recent years partially because they have all me gxxeclﬁpgsent gf
S and a
matured to the point that they are all capable of being deployed in scalable real-time version of
and evolvable distributed applications. Qﬁﬁjcnt't' Eiljftagt
. . « .. Y . Carnegie Mellon and teaches in the Heinz
In this article I present a code example that I call a “mini napster.” In this example the School of Public Policy and Management.

client and server communicate using the Object Request Broker (ORB) that is available

. . o . ithvi+@ux4.sp.cs.cmu.ed
with the JDK1.2 release. The example itself is a simple Java program, but it is adequate prTVITEIsp. e ek

for the purposes of demonstrating the capabilities of CORBA.

A Brief History of CORBA and DCOM

The CORBA movement was largely a response to the pioneering effort by Microsoft in
the development of their component object model (COM). In both cases these software
capabilities (also known as middleware) made it possible to write powerful distributed
applications with more ease. I am not suggesting that writing distributed applications
using DCOM and CORBA are trivial but that they are much easier than programming
at the remote procedure call (RPC) layer.

In fact one of the stated goals of the Object Management Group (OMG) that devel-
oped the specification for CORBA was to make programming-distributed applications
as simple as writing non-distributed applications. The salient steps are:

1. Create an object
2. Make it distributable
3. Make it distributed

This approach is predicated heavily on the deployment of sound object-oriented soft-
ware engineering design and analysis. In our example we will assume that this is the
case.

The main difference between DCOM and CORBA is that CORBA has been proven to
run on various flavors of UNIX as well as Windows; DCOM clearly runs best on
Microsoft platforms, and although the marketing literature suggests that it is supported
on UNIX (Bristol and MainSoft are examples of companies making these claims), it is
likely that the performance will be unacceptable for most practical purposes.

The CORBA Interface Definition Language (IDL)

The CORBA IDL is a purely declarative language designed for specifying program-
ming-language-independent operational interfaces for distributed applications. The
OMG specifies a mapping from IDL to several different programming languages
including C, C++, Java, ADA, COBOL and SmallTalk. For each statement in the IDL
there is a mapping to a corresponding statement in the programming language. For
instance, all the primitive types in Java are supported. There is also provision to define
new types such as structures.

One of the main features of the CORBA IDL is that it is intended to capture the design
of the server. In other words, the IDL is a language-independent representation of the
server and therefore promotes an important concept of “design portability”; conse-

February 2001 ;login: USING CORBA WITH JAVA

PROGRAMMING | NETWORKING | COMPUTING

43

44

quently it is possible to write the client in one language and the server in another (by
using IDL compilers for both languages) and thus promote inter-operability as well.

Napster Server
The Napster server permits a client application to register the name of an artist and
album and perform operations on this data. Specifically the operations are:

= Add an item

= Delete an item
= Find an item

= Update an item

Napster also requires that this information be available as a record structure, so it is
necessary to define a data type which is a “struct.”

The Napster IDL
The Napster IDL file called “Napster.idl” is a text file that has the following entries:

module Napster

{

struct Record

{

long version;

string artist_name;
string album_name;
string owner_name;

I3
interface NapsterServerl

{

Record findltemInServer(in string albumName);

string addRecordInServer(in Record desiredRecord);
boolean deleteltemInServer(in Record desiredRecord);
boolean updateRecordInServer(in Record desiredRecord,
in string newOwner);

I3
Mapping the IDL to Java

In this section we will compile the Napster.idl file and examine the output. The idltojava
compiler takes an IDL file as an input and generates the required Java files as follows:

idltojava Napster.idl (or idltojava -fno-cpp Napster.idl)

The “module” translates to a Java package name. When this file is compiled using the
idI2java compiler it will create a directory called “Napster” into which it adds the client
stubs and server skeleton code for use by the client and server.

The “interface” translates to a Java interface that must be “implemented” (recall that
you extend classes and implement interfaces). The methods that are defined in this
interface are commensurately translated to Java methods in the Java interface.

Making Sense of the Output of IditoJava
In this section we examine the files that are generated by the idltojava compiler.

NapsterServerlimplBase.java
This abstract class is the server skeleton that provides basic CORBA functionality for
the server. It implements the NapsterServerl.java interface. The server class NapsterServant

Vol. 26, No. 1 ;login:

extends _NapsterimplBase.

NapsterStub.java
This class is the client stub providing CORBA functionality for the client. It imple-
ments the NapsterServerl.java interface.

NapsterServerl.java
This interface contains the Java version of the IDL interface. It contains the four meth-
ods defined:

package Napster;

public interface NapsterServerl
extends org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity {
Napster.Record findltemInServer(String albumName)

String addRecordInServer(Napster.Record desiredRecord)
boolean deleteltemInServer(Napster.Record desiredRecord)

boolean updateRecordInServer(Napster.Record desiredRecord,
String newOwner)
}
NapsterServerlHelper.java
This final class provides auxiliary functionality and, in specific, the “narrow” method
required to cast CORBA object references to their proper types.

NapsterServerlHolder.java

This final class holds a public instance member of type NapsterServerl. It provides
operations for “out” and “inout” arguments that CORBA has but which do not map
easily to Java semantics.

When you write the IDL interface, you are really doing all the programming that is
required to generate all the files mentioned to support the distributed application. The
only additional work required is the actual implementation of the client and server
classes.

In the next article I will present the client and server code for the Napster example and
provide instructions on how to run this application. We will observe that the structure
of a CORBA server and client code written in Java are identical to most Java applica-
tions as described below:

= Import the required library packages
= Declare the server class

= Define a main method

= Handle exceptions

Conclusion

The level of difficulty in writing distributed applications is significantly ameliorated
with the advent of middleware such as CORBA. Consider that writing the Napster
example using RPC not only requires advanced knowledge of networks and how they
work but also promotes embedding network-related code in the application, generally
considered bad software engineering practice.

It is true to say that CORBA presents its own challenges and there is a finite learning
curve that must be addressed in order to feel confident with this technology. It has been
my experience, however, that once the concepts are understood, CORBA will not pres-
ent any mystery to practitioners.

The level of difficulty in
writing distributed
applications is significantly
ameliorated with the advent
of middleware such as
CORBA.

February 2001 ;login: USING CORBA WITH JAVA

PROGRAMMING | NETWORKING | COMPUTING

45

