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ABSTRACT: Delayed write is a very popular tech-

nique to improve the file system performance of UNIX
operating systems. When write operations are delayed,

an update policy decides how and when to write these

modified blocks to their assigned disk locations. Recent

research results show that conventional update mecha-

nisms do not perform very well, because they neglect

the fact that different VO requests naturally have dif-
ferent characteristics. It makes time critical interactive
jobs endure large variations in response time. Update
policy controls background write activities that are less

time critical and should be performed under constraints

that do not violate the urgency of other time critical
jobs.

In this paper we propose an effective update

scheme. We suggest new techniques: burst declus-

tering and opportunistic asynchronous write. Besides,

we develop a system activity sensor called SAPRO
(system activity probe) that monitors the system ac-

tivities and disk queuing status to adjust the behavior
of our algorithm. Performance evaluation shows that

our algorithm can alleviate the lengthy queuing delay,

reduce the variance and worst case read response time
signiflcantly (307o and 5l7o respectively). The mean

read response time and total system performance are

also improved.
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l. Introduction

Typical file systems use disk cache to reduce average access time for data storage
and retrieval [Karedla et aL.1994, Smith 1935]. Delayed write used in UNIX op-
erating systems is a very popular technique to improve file system performance

lBach 1986]. When a user program makes a write system call to write some data,
the data are not written to disk immediately. Instead, the modiûed data are kept
dirty in memory for a while. It hopes that when the write operations are delayed,
subsequent requests will rewrite these cached locations frequently. Thus a large
number of disk UOs are eliminated.

when the write operations are delayed, we must decide how and when to
write these modified blocks to their disk locations. If there is no bound on the
delay period, a system crash will cause serious data loss. The algorithm used to
decide how and when to write delayed data to disk is referred as an update pol-
icy. conventional UNIX systems use a periodic update (pu) policy, writing all
delayed-write data once every 30 seconds [Bach 1986].

Recent analytical and simulation results, presented by Carson and Setia [Car-
son & Setia 19921, showed that the PU policy actually performs less well in many
cases than the write-through (Wl making all writes immediately) policy. The bulk
arrivals generated by the periodic update policy cause a traffic-jam effect which
results in severely degraded service. Ruemmler and Wilkes also noted that bursts
of delayed writes caused by periodic update policy can seriously degrade perfor-
mance [Ruemmler & \Milkes 19931.

Carson and Setia proposed several alternative write policies. The first, use the
WT (write through) policy with all writes performing asynchronously. A more at-
tractive alternative is tJ;ie periodic update with read prioriry (PURP) policy which
gives higher priority to read operations. A third alternative is the individual peri-
odie update (IPU) policy, in which write operations are delayed for a fixed time
interval on an individual basis, rather than being presented to the disk system in
bulk [Carson & Setia 1992].

Fixed-priority schemes such as PURP introduce the potential for inûnite de-
lays of delayed writes, if read load is heavy enough to saturate the disk [Carson
& Setia 19921. Peacock also reported that adding PURP to System V Release 4,
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in which the buffer cache can be quite large, actually reduces benchmark perfor-

mance by preventing asynchronous requests from getting a sufficient share of the

disk [Peacock 1992].

Mogul [Mogul 1994] used implementation to validate Carson and Setia's re-

sults on an actual system. He found that IPU adds little code to the kernel and per-

forms much better than periodic update, but IPU depends on a relatively uniform
distribution of file writes over time to achieve its higher performance. According
to user level file access patterns, file system activity is bursty lBaker et al. 1991,

Ousterhout et al. 19851. So, IPU policy cannot avoid long disk queue in general.

As more and more write operations are delayed by various delayed write
mechanisms [Bach 1986, Ganger & Patt 1994,Feng & Chang 1994], read oper-

ations become more and more time critical than before. Due to the popularity of
interactive computing, the read fesponse time and especially the variance in read

response time are becoming the most important performance metrics.

Carson and Setia showed that how write requests are presented to the disk sys-

tem is more important than the write request rate if read response time is the most

important performance metric lCarson & Setia 1992]. As the size of delayed write
buffer rapidly incteases, a better update policy is critical to system performance

[Mogul t994].
In this paper we propose an intelligent file system updater that uses a system

activity sensor called SAPRO (system activity probe) and the following two tech-

niques to achieve an effective update policy: burst declustering and opportunistic

asynchronous write. Burst declustering is a technique for detecting and breaking

up potential write bursts. Opportunistic asynchronous write is a mechanism for
using VO idle periods to accomplish less critical write operations. SAPRO can

observe the current system status to adjust the behavior of our update policy. Per-

formance evaluation shows that our algorithm significantly reduces the variance

and worst case read response time.
The rest of this paper is organized as follows. In Section 2, we introduce the

new scheme. The design and implementation of our facility are described in Sec-

tion 3. Performance evaluation is given in Section 4. Several related works are

reviewed in Section 5. Concluding remarks are given in Section 6.

2. Proposed Scheme

The main reason for the inadequate performance of PU is its lengthy queuing de-

lays. By dumping all the dirty blocks onto the disk at once, PU generates a long

queue. In some UNIX file systems, this long queue causes the latency-sensitive

synchronous operations, such as tle reads or synchronous writes, to be forced to
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wait behind latency-insensitive operations in the queue [Mogul 1994]. Effective
use of disk caching and disk scheduling can alleviate this problem, but only under
a n¿urow range of operating conditions lCarson & Setia 1992].

Although IPU is better in most cases, it cannot avoid the long disk queue in
general. If the file writes themselves arrive in bursts, the benefits of IPU are elimi-
nated. In the \ryorst case, IPU and PU have the same performance [Mogut 1994].

Traditional VO system studies lreat all VO requests as equally important. This
is not true; different VO requests naturally have different characteristics. Syn-
chronous requests have the side effect ofblocking the calling process, delayed
writes can wait longer and allow more flexibility in choosing the proper time for
updating. Ganger and Patt proposed a process flow model and claimed that VO
research should take a global view that takes overall system performance into con-
sideration [Ganger & Patt 1993]. They also emphasized the importance of VO
requests classification. In order to achieve higher system performance and smaller
variations in response time for interactive jobs, non-critical requests should not
interfere with the completion of time critical requests if possible.

Update policy conffols the background activities that flush out the delayed-
write cache (buffer). Basically, these background write activities are less time
critical and should be performed under consffaints that do not violate the urgency
of other time critical jobs. This goal can be achieved if we can maintain a short
disk queue. Thus, subsequent synchronous (time critical) operations can be served
as soon as possible. Because disk queue is the only path to accomplish the disk
VO requests, subsequent synchronous requests will endure long delays or large
variations in response time if the queue length is very long or the requests are
bursty. This will degrade the system performance.

In order to ensure a reasonable disk queue length, we propose two techniques:
burst declustering and opportunistic asynchronous write.Btrst declustering is
a technique that detects and breaks up potential write bursts. If many clustered
updated blocks are found, the algorithm will decluster these incoming write oper-
ations over time. Opportunistic asynchronous write is a mechanism that senses the
disk queuing status and utilizes VO idle periods to accomplish less time critical
nonsynchronous write operations.

2.1. Burst Declustering

In order to explain this algorithm, we assume that our system has a linear buffer
pool that contains all system buffers. Each buffer in the pool has the following
possible states: clean or dirt¡ free or in-use. The declustering algorithm linearly
scans the entire buffer pool at some specified frequency. The affay age is used
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Figure 1. Declustering operation.

to record the aged situation of the dirty buffers in the pool. For example, age [i]
represents the number of dirty buffers that have been found that are i seconds

old since last reset of the age ¿uray. The reset time of age Íuray is decided by

the implement. The age of a dirty buffer is the elapsed time in seconds since the

buffer is first modified.
During the buffer pool scanning, we calculate the age of each dirty buffer and

update the statistics kept in the age aray. If too many (no less than a threshold

value) dirty buffers are clustered in the same age (e.g. are'i seconds old) as the

buffer currently being scanned, the declustering operation is executed, otherwise,

they would cause large write burst in the near future. The algorithm begins a lin-
ear scan from age hl to age li+declustering-range], and shifts the age of
the dirty buffer currently being scanned forward to the nearest age with age ar-

ray entry value smaller than the threshold. If all entries in the declustering range

have values greater than or equal to the threshold, the enûry with the lowest value

is chosen. This technique can prevent too many dirty buffers from being flushed

out at the same time. declustering-raage is a control parameter that prevents

shifting dirty buffers too far away. It will be explained later.

Figure 1 is a small example used to demonstrate the declustering operation.

On the left side of the graph, one cell marked with a vertical a:row is the currently
scanned buffer. The original age of this buffer is 2. When we look at the age a:ray

we find that age [2] and age [3] are full (no less than the threshold value), so we

shift its age to 4 as illustrated in the right side of the figure.

Age of the dirty buffer

Shift from 2 to 4

o 2 2 o I o 2 2
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2.2. Opportunístic Asynchronous Write

In modern flle systems, many noncritical write operations are delayed or carried
out asynchronously. From the point ofview of overall system performance, these
write operations are less time critical. Priority should be given to synchronous
requests under constraints that do not violate the lifetime limits of dirty buffers
belonging to noncritical writes. The flush rate of delayed operations can be con-
trolled by the ûle system flush daemon, but no mechanism can be used to control
those asynchronous write operations in conventional UNIX systems.

Process execution normally contains a mixture of CPU processing and VO
operations. The bursty access patterns reported in research literature suggest that,
a system should have some periods of low VO (disk) utilization. If we can use
these VO idle (low utilization) periods to accomplish some of the background
write activities, the overlap between CPU processing and VO operation should be
increased. This will smooth down the write load of UO subsystem and improve the
system performance.

Opportunistic asynchronous write is the technique for adjusting the asyn-
chronous write flush rate. We use disk queue status reported by SAPRO as the
threshold for achieving opportunistic asynchronous write. When the UO system
load is too heav¡ asynchronous write operations issued by the operating system
are queued to OAW (Opportunistic Asynchronous Write) queue to keep the disk
queue short. These queued operations will be flushed to disk queue later when an
VO idle period is detected. This can help to alleviate the problem due to lengthy
queuing delay.

3. Desígn and Implementation

In this section we describe the design and implementation of our update policy.
UNIX SVR4/Ì\{P Version 2 operating system is used as the basis for development
of our algorithm. We ûrst introduce the original scheme used by SVR4/I\4P, and
then show how we improve the original scheme to accomplish our goal.

3.1. Original Scheme of SVR4/MP Version 2

There are two tunable parameters in SVR4/IMP that the system administrator can
use to control the operation of the update mechanism IUNIX 1990]:

FSFLUSHR: This is the file system flush rate. It specifies the rate in seconds for
checking (by a file system checker called f sf lush daemon) the need to
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write the file system buffers, modified inodes, and mapped file pages to
disk. Mapped frle page means those memory pages used as VO cache, it
will be explained later. The default value of FSFTUSHR is one second, it
means that f sf lush will be awaked every second. If the f sf lush finds

some aged dirty buffers, it will update them to disk. A diny buffer is aged

if it is dirty and has been memory resident beyond the limit specified by
the NAUTOUP parameter.

NAUTOUP: This parameter specifies the buffer age in seconds for automatic

file system updates. System buffers and other cached file attributes (meta-

data, such as inodes) are written to the hard disk when they have been

memory-resident for the interval specified by this parameter. Specifying
a small NAUTOUP value increases system reliability by writing the buffers

to disk more frequently and decreases system performance. Specifying a

large value increases system performance at the expense of reliability. The

default value is 60 seconds.

In order to reduce the overhead caused by the file system checker, it is not
required to check the entire page pool list for each invocation of fsflush if
FSFLUSHR is high enough. In the implementation of SVR4/IvIP, only

(Total number of pages in the page pool LisI)*FSFLUSHR/NAUT0UP

pages need to be checked for each invocation of fsflush.
Buffer cache is a pool of internal data buffers that contain data from recently

used disk blocks. In conventional IINIX systems, buffer cache is the only path for
block VO [Bach 1986]. Due to the increasing gap between disk and CPU speed,

it is a critical component in determining file system performance. Recently, many

modern operating systems use mapped file pages for VO cache. This has the ad-

vantage of using all available memory as UO cache or memory cache as needed.

Thus, the importance of conventional buffer cache has been reduced. In SVR4/IVIR

the buffer cache is used to access some metadata only. The position of the buffer
cache module is illustrated in Figure 2.

Inode cache is also a pool of internal buffers used to store recently accessed

inodes. Inode is the data structure in which metadata about a file are stored. Ker-
nel needs the information stored in the inode to access file data. Recent research

results show that metadata VO account for a large number of all disk VOs [Muller
& Pasquale 1991, Ruemmler & Wilkes 19931. So, an efficient inode cache is also

important to system performance.

SVR4/MP Version 2 uses a hybrid update policy. For buffer cache and inode

cache, it uses IPU policy. Every time the f sflushO is awaked, it scans the en-

tire buffer cache and writes those aged entries (lifetime greater than NAUTOUP) to
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Figure 2. Position of the buffer cache.

disk. It will also flush out all dirty inode cache entries to disk every NAUTOUP

seconds. For mapped file page, PU policy with a one-second period (FSFLUSHR is
set to 1 second) is used. fsflusho checks each page in the page pool once every
NAUT0UP second, and writes all mapped file pages found dirty out to disk. This
means that only one-sixtieth of the page pool is checked each time f sf lusho
is awaked if NAUT0UP is set to 60 seconds. This will alleviate the write-burst
problem caused by the traditional 30 seconds PU policy [Carson & Setia 1992].
Because PU based policies ignore the age of dirty pages, they may flusfr out many

fresh dirty pages.

3.2. The Approach

In light ofrecent research results, and file system consistency requirements,
we use IPU policy as the basis of the new system. Our first step is to change
SVR4IN4P to a pure IPU policy. IPU is a time-based update policy where each

dirty block lives in memory for a prespecified time limit. We add one timestamp
ûeld to the software page structure to record the time-of-first-modification of ev-
ery dirty page. The software page structure is used to maintain the identity and
status of each physical page. Then, we change the code accomplishing the page

pool scan to write out only those mapped file pages that are dirty and aged (have

been memory-resident for NAUT0UP seconds). After that we implement our declus-
tering algorithm and the mechanism that performs opportunistic asynchronous
write. The value of the global variable lbo1t (which keeps track of the number of
ticks since last boot) is used as the timestamp. Thus the age of a dirty page can be

calculated as follows:

age in ticks = lbolt - timestamp in the page structure
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3.3. Declustering Mechanism

As described in previous paragraphs, IPU depends on a relatively uniform distri-
bution of file writes to achieve higher performance. But if an application's access

behavior is bursty IPU's advantage is lost. In order to fix this problem, we add

a burst declustering algorithm to the mapped file page scan in the f sf lush dae-

mon. Because the size of the mapped file pages can be extended to occupy large

portions of available memory they will be the source of most background write
activities.

3.3. l. Local Declustering

In order to alleviate the write-burst problem caused by background write activities,

modern operating system update policies.adopt an approach that increases scan-

ning frequency and reduces the range of each scan. For example, in SVR4/IVIP's

original scheme, f sf lush daemon is awaked once per second but scans only one-

sixtieth of the page pool during each run. If there are many dirty pages clustered

around some age but evenly distributed across different scan periods, it is not a

real potential burst and does not hurt system performance. This kind of cluster-

ing is called false-clustering and is caused by the implementation of the update

mechanism.

Our declustering mechanism is a direct implementation of the algorithm de-

scribed in Section 2. Besides, the point of view is changed from global to local

to avoid declustering those false-clustered dirty pages. This means that only dirty
pages clustered in the same scan period are declustered. The age ¿ilray is reset (set

to 0) every time the f sf l-ush is awaked.

The construction of the age [1 anay is embedded in the page pool scan in the

f sf lush daemon. When the age of a dirty page is checked by f sflush, its corre-

sponding entry in the age array is updated (increased). The declustering operation

is executed if a great many clustered ditty pages are found.

3.3.2. Declustering Range and Threshold

One potential problem is some artificial burstiness caused by the declustering al-

gorithm. In order to ensure the file system hardening requirement, we can only

increase the age of these clustered pages (one way declustering). V/ithout some

bound on declustering, too many 60-second old pages will be generated. Thus, a

large burst will be inevitable. So, a localization technique is used. Now we use a

fixed decl-ustering-range (e.g. 10 seconds). If a potential burst (too many clus-

tered pages) is found at age i, we try to decluster within the range from age i to
age i,l declustering-range (? + 10).
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Figure 3. Opponunistic asynchronous write mechanism.

A threshold is used to control the declustering operation. Smaller values
can decluster the age [J anay more finely, but also require more computa-
tion time. A dynamically adaptable threshold sounds attractive but may entail
larger overhead. Because our declustering algorithm is linearly bounded by the
declustering-range parameter of the algorithm, a fixed declustering threshold
is used in the current implementation.

3 . 4. Ac c omp li s hin g A sy nchro no u s Writ e O p p o rtuni s t i c ally

The opportunistic asynchronous write mechanism is illustrated in Figure 3. When
an asynchronous write operation is issued by the operating system, the control is
passed to the page write routine (vop-putpage). The routine has been modified to
check the disk load before sending the VO request to the disk queue. If the current
disk load is beyond the control threshold reported by SAPRO, the asynchronous
write is delayed and inserted into the OAW (opportunistic asynchronous write)
FIFO queue. SAPRO monitors the queuing status of the disk constantly and ad-
justs the control threshold accordingly. When a low VO-load period is found, it
triggers the asynchronous write daemon to dequeue asynchronous write requests
from the OAW qu'oue and send them to the disk queue. Asynchronous write dae-
mon is a system daemon process designed by us and is responsible for flushing
delayed asynchronous writes.
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The most important element of the opportunistic asynchronous writing is de-

tecting low UO utilization periods. Although an absolute control threshold is easy

to implement, a continuous stream of large VO operations may keep the system

busy for long periods of time. Thus, delayed asynchronous writes must endure

long delays. A large number of system resources are also required to describe

these delayed operations.

Because of file system consistency requirements, we cannot delay asyn-

chronous writes too long, so, a relative control threshold is used. In the current

implementation, SAPRO monitors the disk queue and calculates the average disk
queue length for the previous 10 seconds (avq1Os) as the control threshold. When

an asynchronous write is coming, the page write routine reads the current disk
queue length from the system disk structure. If current disk queue is shorter than

or equal to avqlOs, we consider the VO system to be in a relatively idle (low uti-
lization) state, and the VO request is issued as usual. Otherwise the VO request is

put into the OAW queue.

3.5. System Activity Probe (SAPRO)

V/e design and implement a facility called SAPRO (system activity probe) to
monitor the system status: CPU utilization, disk queue average waiting time,

and current disk queue length. But only the disk queuing status is currently be-

ing used. SAPRO calculates and reports the last 10 second average disk queue

length (avqlOs) every ten seconds. AvqlOs is used as the control threshold in ac-

complishing opportunistic asynchronous write. If the computed value is too small,

a pre-specified minimum value is used. SAPRO also compares the current disk
queue length with avqlOs every second and triggers the asynchronous write dae-

mon to write queued operations when a relatively idle period is found. Thus the

flushing behavior of our update algorithm can be adjusted and can adapt to the

system status change.

SVR4 dP has many kernel data structures that contain various cumulative
data about system activities since last boot. These data arc collected during system

execution. For example, in the SCSI disk driver send routine, the system records

the total number of read/write requests in a structure called scsi-iotime. SAPRO

uses these raw data to calculate the required statistics to control the update algo-

rithm. In current implementation, SAPRO adheres to the f sf lush daemon as it
will be awaked once per second.
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4. P erformance Evaluation

In order to assess the performance behavior of various update schemes, we have

done extensive performance evaluation. In the following paragraph, we shall in-
troduce our experimental apparatus, the benchmarks used, and the performance
results obtained from various update policies.

4.1. The Evaluation Environment

The testbed consisted of a personal computer with a 120 Mhz AMD 486DX4 pro-
cessor. It contained 16 megabytes of main memory and two SCSI disks. The first
disk was a Quantum LPS540S that held the root file system and the swap parti-
tion. The second disk, a Seagate ST31230N, was the test (data) disk. It had a 300
MB test partition and 182.3M8 of them are free. The SCSI host adaptor was an
Adaptec 15428. Our update policy was installed through kernel modification. The
system was running the UNIX SVR4/I\{P Version 2 operating system and all mea-
surements were taken without network attachments. Before each test, we unmount
and remounl the test partition to eliminate the effects of memory caching. All ûle
systems rân UFS, the block size was 4 kilobytes. The geometry and performance
characteristics of the tested disks are illustrated in Table 1.

4.2. Random Read/Wríte Test

'We perform the random read/write tests similar to the method described in [Mogul
19941. The read/write load generators proceed in a confrolled fashion such that
data are read from the disk and written to the in-memory cache. So the reader
process is more time critical than the writer process. The purpose of these tests

is to show how the new scheme affects the mean, worst case and especially the
variance in read response time.

The test programs consist of one reader process and several writer processes.

The reader process issues 10000 random read requests (each 1024 bytes long)
from a large (32 MB) tle. Because the file size is much larger than the main
memory size, most random read requests will generate synchronous disk reads
to get the required data. Ifthe disk queue length is large or changeable, the read

response time will also endure a long delay or a large variance. The purpose of
the writer processes is to pollute the in-memory cache and keep the f sf lush dae-
mon busy to generate enough background write activities to interfere with the read
requests.
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Diskl Disk2

Disk Model
Interface

Capacity(MB)
Cylinders
Heads

SectorsÆrack
Bytes/Sector

Spindle RPM
Tracks/Zone

Data Access Time (ms)

Transfer Rate (KBisec)

Quantum LPS540S

SCSI-2

54r.4
2740

4

125

512
4500

4
to.7

21.r0

Seagate ST31230N

Fast SCSI-2

1050

3892
5

104

5t2
54tI

5

9.4
2520

Table 1. The geometry and performance characteristics of
the test disks on the test machine (486 processor, ISA bus).

The geometry data are reported by the scsicntl program

from Adaptec Corporation. The performance data arc rc-
ported by the QBench benchmark from Quantum Corporation.

The workload used during the transfer rate test arc 65Vo se-

quential, 357o rundom,607o read, and 40Vo write. Block size

ranges from 1 to 128 sectors.

The function of the writer process is to create a small file, then randomly write
1 KB blocks to this new file. Because the file is new, write to a new block does

not need an additional read. Because the file is small, subsequent writes will hit in
the memory. So, most disk operations caused by the writer process is coming from
the f sf l-ush daemon.

Figure 4 shows the results of the random read/write tests. LDCL represents the

policy with local declustering. LDCL&OAW represents the LDCL extension with
opportunistic asynchronous write. The figure shows a point for each trial (10000

random reads), plotted with mean read response time on the horizontal axis and

the standard deviation of read response time on the vertical axis. In these tests the

declustering threshold is 6 and declustering range is 10 seconds.

In Figure 4a, the write load is smaller and most background write activities
are issued by the f sf lush daemon. So the LDCL scheme performed well. Com-
pared with IPU polic¡ LDCL shows large improvements (35.6Vo in vanance, 67Vo

in worst case, and 6.6Vo in mean read response time). Although LDCL&OAW
shows only a 2.6Vo improvement in mean read response time due to the overhead
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Workload
Mean Stdev Worst Mean Stdev Worst

IPU value 64.34 100.45 2890 69.94 99.88 2800

LDCL value

7o

60.38 74.08 1730

6.56 35.6 67

93.01 2050
7.39 36.59

70

0

LDCL&
oAw

Table 2. Results of the random read/write test. The table

shows the mean, standard deviation, and the worst case read

response time (in millisecond) of the various update poli-
cies under two different workloads as in Figure 4. The per-

centages of improvement compared with IPU policy are also

shown.

of OAW, it also has 45Vo and l1,9%o improvements in, respectively, variance and

worst case read response time.

When the write load is increased, various asynchronous writes are issued by
the memory manager to reclaim memory resource quickly. These write operations

are beyond the control of f sf lush daemon but can be managed by the oppor-

tunistic asynchronous write mechanism. Although LDCL does not show good

performance in Figure 4b, LDCL plus OAW achieve II.6Vo,30Va, and 47.87o

improvements in mean, variance, and worst case read response time. The results

are summarized in Table 2.

In order to demonstrate the effects of our burst declustering algorithm,

we measured the write burst distribution in executing the random read/write

test. The results are shown in Figure 5. A 5k bytes kernel trace buffer is used

to keep the histogram of the number of blocks queued for disk on each in-
vocation of f sf lushO daemon. After each run, the traced data arc read out

through the /dev/I<nem interface. As shown in Figure 5, most write burst are

smaller than 100 blocks under LDCL scheme. But there are alarge number

of writes with burst size larger than 100 under IPU policy. The local declus-

tering policy (LDCL) indeed smooths down burstiness as compared to the IPU
policy.

4.3. AIM Benchmarks

To assess the effectiveness of our scheme on system performance, AIM bench-

mark is used. AIM Suite III is a synthesis benchmark developed by AIM Tech-

value
Vo

62.7 69.15

2.62 45.26

1320

118.94

61.81 69.8 t460
13.15 43 91.78
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Figure 5. Burst-size distributions for writes during random

read/write test. The results are extracted during the execution

of workload 1 in Figure 4. Most write bursts are smaller than

100 blocks under LDCL scheme. A large number of writes

with burst size larger than 100 under IPU policy.

nology to test the total system performance of all major system components in a
multitasking environment. It attempts to simulate the load that a specified num-

ber of users would exert on a computer system by running a set of functional

benchmarks intended to model a particular application. It contains many primi-

tive functions, and users can adjust the job mix and weight of them. AIM III can

be configured to represent various workloads.
'We compare the performance of our scheme and IPU update policy using

the AIM III benchmark. The test results reported are based on the standard job
mix, whích is designed to describe a typical I-INX environment. The results are

illustrated in Figure 6.

In Figure 6, IPU means the IPU policy. LDCL&OAW is the policy proposed

by us. As illustrated in Figure 6 and Figure 7, as much as a 4.6Vo performance

improvement is obtained as compared to the IPU policy.

We also measured the write burst distribution while executing the AIM III
benchmark. The results are shown in Figure 8. All write bursts are smaller than

108 blocks under our scheme. But there are a large number of writes with burst

size larger than 250 under IPU policy. Our update policy obviously alleviates the

write burst.
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Figure 6. Result of AIM III benchmark. The test results re-
ported are based on the standard model, which purports to
describe a typical UNIX environment.

Numbcr of usc¡s

Figure 7. Improvements achieved in AIM benchmark. Compared

with IPU policy, the performance improves by as much as 4.67o.

5. RelatedWorks

UNIX systems have traditionally used a simple periodic update (PU) policy: once

every 30 seconds, all dirty blocks in the file system's buffer cache are placed on

the disk queue for updating [Bach 1986].

Carson and Setia showed that the PU policy actually performs worse in
many cases than the write-through policy [Carson & Setia 1992]. Ruemmler
and Wilkes also noted the write burst problem caused by periodic update policy

[Ruemmler & Wilkes 1993].

--- IPU

-LDCL+OAW
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Figure 8. Burst-size distributions for writes traced during six

runs of AIM III. The workload is 2-t2 users and stepped by

2 users after each run.

Carson and Setia proposed several alternative write policies: WT, PURP, and

IPU policy. They showed that IPU never gives worse mean read response time

than WT or PU, although in some situations it may perform worse than PURP

lCarson & Setia 19921.

Mogul used implementation to validate the results of Carson and Setia with an

actual system. He found that combining delayed writes with IPU policy improves

both the mean and variance. He also concluded that IPU policy depends on a rela-

tively uniform distribution of file writes to achieve its more uniform distribution of
disk writes, and higher performance [Mogul 1994].

Hac proposed dynamic update algorithms that choose when to schedule disk

writes based on the system load and write activity [Hac 1991]. We share the same

view, but she only proposed a conceptual model. Although his analysis proceeded

with care, some important factors were overlooked. Besides, the advantages of
dynamic policy ate not visible in his performance analysis.

Other works also take the advantage of idle time to improve their perfor-

mance. For example, in the AFRAID system, Savage and Wilkes alleviate the

small update problem in a RAID 5 disk anay by delaying the parity update to the

next quiet period between bursts of client activity [Savage & Wilkes 1996]. By

trading away a fraction of the reliability provided by disk array, it is possible to

achieve performance that is almost as good as Íilray of disks with no parity.
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6. Conclusions

We have designed and implemented an intelligent update policy that smooths

down the burstiness of input requests, and uses the VO idle periods to accom-
plish opportunistic asynchronous write. The results of random read/w¡ite tests

show improvements of as much as 40Vo in the variance, and 9O7o in the worst case

read response time as compared with the IPU policy. Overall system performance

is also improved according to AIM benchmark results.

There are some issues needing further study. For example, how to adjust the
declustering threshold and the opportunistic asynchronous write control parameter

more dynamically according to application burstiness. These studies can help us

to control the mechanism more precisely, and construct a more effective update

policy.
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