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ABSTRACT Radix sorting methods have excellent
asymptotic performance on string data, for which com-
parison is not a unit-time operation. Attractive for use

in large byte-addressable memories, these methods
have nevertheless long been eclipsed by more easily
prograÍrmed algorithms. Three ways to sort strings by
bytes left to right-a stable list sort, a stable two-array
sort, and an in-place "American flag" sor¿-are illus-
trated with practical C programs. For heavy-duty sort-
ing, all three perform comparably, usually running at
least twice as fast as a good quicksort. We recommend
American flag sort for general use.

@ Computing Systems, Vol. 6 . No. 1 . Winter 1993



1. Introduction

For sorting strings you can't beat radix ss¡f-s¡ so the theory says.

The idea is simple. Deal the strings into piles by their first letters. One

pile gets all the empty strings. The next gets all the strings that begin

with A-; another gets B- strings, and so on. Split these piles recur-
sively on second and further letters until the strings end. Vy'hen there
are no more piles to split, pick up all the piles in order. The strings
are sorted.

In theory radix sort is perfectly efficient. It looks at just enough

letters in each string to distinguish it from all the rest. There is no way

to inspect fewer letters and still be sure that the strings are properly
sorted. But this theory doesn't tell the whole story: it's hard to keep

track of the piles.
Our main concern is bookkeeping, which can make or break radix

sorting as a practical method. The paper may be read as a thorough
answer to excercises posed in Knuth chapters 5.2 and 5.2.5, where the
general plan is laid out.[l] Knuth also describes the other classical sort-
ing methods that we refer to: radix exchange, quicksort, insertion sort,
Shell sort, and little-endian radix sort.

I.I. Radix Exchange

For a binary alphabet, radix sorting specializes to the simple method
of radix exchange.t'l Split the strings into three piles: the empty
strings, those that begin with 0, and those that begin with 1. For clas-
sical radix exchange assume further that the strings are all the same

length. Then there is no pile for empty strings and splitting can be

done as in quicksort, with a bit test instead of quicksort's comparison
to decide which pile a string belongs in.

Program 1.1 sorts the part of array A that runs from Allo]to
Alhi - 1]. All the strings in this range have the same å-bit prefix, say
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Program 1.1.

RadixExchange(,A', 1o, hi, b)
ifhi-lo<1

thel return
if b > length(Atlol)

then return
mid : = Split (,{, 1o, hi, b)
RadixExchange (A', fo, mid, b+1)
RadixExchange(4, mid, hi, b+1)

x-. The function split moves strings with prefix -r0- to the beginning

of the array, from A [0] through Almid - 1], and strings with prefix

¡ 1- to the end, from A lmidl throtgh Alhi - Il.
To sort an n-element array, call

RadixExchange (,{, 0, n, 0)

When strings can have different lengths, a full three-way split is

needed, as in Program I.2.l3l The pile of finished strings, with value

x, say , begins at Allo]; the ¡ 0- pile begins at Alí01; the x 1 -pile begins

at AliIl.

Program 1.2.

RadixExchange(,{, lo, hi, b)
ifhi-1o<1

then return
(i0, i1) :: Split3 (A', 1o, hi, b)
RadixExchange(4, i0, il, b+1)
RadixExchange(A', i1, hi, b+1)

Three-way splitting is the famous problem of the Dutch national

flag: separate three mixed colors into bands like the red, white and

blue of the flag.l+] For us, the three colors are Ø (no bit), 0 and 1. A
recipe for splitting is given in Figure 1.1 and Program 1.3. The index

l0 points to the beginning of the 0- pile, i I points just beyond the end

of the 0- pile, and i2 points to the beginning of the 1- pile. The nota-

tion A[i].å denotes the åth bit, counted from 0, in string A[i]. When

split3 finishes, il points to the beginning of the 1- pile as desired.

The test for Ø is figurative; it stands for a test for end of string.
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Ø o [:*¡l ? l?l I

Figure 1.1 How split3 works. The four parts of the array hold
strings known to have ended (Ø), strings known to have 0 in the
selected position, unknown strings, and strings known to have I
there. Repeatedly look at the selected position of the first unknown
string-the shaded box. Update according to the matching diagram.

Program 1.3.

splitS(s', lo, hi, b¡ =
(i0, i1, i2) := (1o, 1o, hi)
while i2 > i1 do

case A[il].b of
Ø: (Ati01 , Atill , i0, i1) := (Atitl, tiol , io+1, i1+1)
0: i1::i1f1

1: (Ati1l, Ati2-11 , i2) :: (Ati2-11 , Ati11 , iz-L)
return (i0, i1)

L2. Quiclcsort to the Fore

After enjoying a brief popularity, radix exchange was upstaged by
quicksort.lsl Not only was radix exchange usually slower than quick-
sort, it was not good for programming in Fortran or Algol, which hid
the bits that it depends on. Quicksort became known as simple and
nearly unbeatable; radix sorting disappeared from textbooks.

A
r0lo

to to it ûn hi

Ø 0 ,l I
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Nevertheless, radix exchange cannot be bettered in respect to
amount of data looked at. Quicksort doesn't even come close. Quick-
sort on average performs O (log n) comparisons per string and in-
spects Ct(log n) bits per comparison. By this measure the expected

running time for quicksort is 0(n log2 n), for radix exchange only
O(n log n). Worse, quicksort can "go quadratic," and take time
A@2 bgn) on unfortunate inputs. This is not just an abstract possibil-

ity. Production quicksort routines have gone quadratic on perfectly rea-

sonable inputs.[6J
The theoretical advantages of radix exchange are usually swamped

by the cost of bit picking. Quicksort is nimbler in several ways.

. Quicksort can use machine instructions to compare whole words
or bytes instead of bits.

. Quicksort splits adaptively. Because it picks splitting values

from the data, quicksort can be expected to get roughly 50-50
splits even on skewed data. Such splits are necessary to realize
minimal expected times in either quicksort or radix exchange.

. Quicksort can sort anything, not just strings. Change the
comparison routine and it is ready to handle different data.

Because radix sort intrinsically assumes string data on a finite
alphabet, it requires one to make the data fit the routine, not
vice versa. For example, to sort dates with quicksort, one might
provide code to parse ordinary notation (e.9. February Il,1732)
as each key is looked at, while with radix sort one would pre-
convert all dates to a canonical form (e.g. I732O2II).

In other ways, quicksort and radix exchange are quite alike. They

both sort in place, using little extra space. Both need a recursion

stack, which we expect to grow to size O (log n).In either method, if
the strings are long or have different lengths, it is well to address

strings through uniform descriptors and to sort by rearranging small

descriptors instead of big strings.
The wisdom that blesses quicksort dates from the era of small

memories. With bigger machines, the difference between nlog n and

n log2 n becomes more significant. And with bigger machines we can

afford more space. Thus the wisdom deserves to be reexamined.
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2. List-Based Sort

For most modern machines, the 8-bit byte is a natural radix, which
should overcome the bit-picking slowness of radix exchange. A byte
radix makes for 256- or 257 -way splitting, depending on how the ends

of strings are determined. This raises the problem of managing space

for so many piles of unknown size at each level of recursion. An array
of linked lists is an obvious data structure. Dealing to the piles is easy;
just index into the array. Picking up the sorted piles and getting them
hooked together into a single list is a bit tricky, but takes little code.
Program 2.1 does the job. It is written in C rather than pseudocode,

because the troubles with radix sort are in implementation, not in con-
ception. The input variables are

a linked list of null-terminated strings.
b the offset of the byte to split on; the strings agree in

all earlier bytes.
sequel a sorted linked list of strings that compare greater

than the strings in list a.

Three in-line functions are coded as macros:

ended (a, b) tells whether byte position b is just beyond the
null byte at the end of string a.

append (s, a) appends list s to the last element of non-empty
list ø.

deal (a, p) removes the first string from list a and deals it
to pile p.

Program 2.1 has four parts. First, if the list is empty, then the
result of sorting it together with sequel is sequel. Next, at "pile
finished," if the last byte seen in the strings in list d was null (0), they
cannot be sorted further. Put them in front of the sequel and return
the combined list. At "split," all strings have a bth byte. Clear all the
piles and then deal the strings out according to byte b of each string.
Finally, at "recur on each pile," sort the piles from last to first. At
each stage append to the sorted current pile the sorted list accumulated
from all following piles.

Program 2.1 works-slowly. Empty piles are the root of the trou-
ble. Except possibly at the first level or two of recursion, most piles
will be empty. The cost of clearing and recursively "sorting" as many
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Program 2.1. Simple list-based sort.

typedef struct list {
struct list *next;
rmsigned char *data;

) list;
list *rsort(list *a, int b, list *sequel)

{

#def ine ended(a, b) b>O && a->datalb-11:o
#define append(s, a) tnp=¿t while(tmp->next) tmp:f,¡p->next; tmp->next:s
#define deal (a, p) tmp : "-ttt.*t, a->next : p' p = a, a : tmp

list xPile [256] , *tmp;

int i;
if 1a: o¡

return sequel;
if(ended(a, b)) { 7x pile finished */

append(sequel, a);
return a;

)
for 1i : 256; --i >- 0; ) /* split */

nile¡i¡ : 6'
while (a)

deal (a, pile [a->data tb] I ) ;

for 1i = 256|, --i >= o; ) /* recur on each pile *,2

sequel : rsort(piletil, b+l, sequel);
return sequel;

Ì

as 255 empty piles for each byte of data is overwhelming. Some easy

improvements will speed things up.

l2.l Always deal into the same array and clear only the occupied
piles between deals, meanwhile stackirig the occupied piles

out of the way.
I2.2 Manage the stack directly. Since the number of occupied

piles is unpredictable, and probably small except at the first
level or two of recursion, much space can be saved. The piles

may be stacked in first-to-last order so they will pop off in
last-to-first order just as in Program 2.1.

I2.3 Don't try to split singleton piles.

I2.4 Optimize judiciously: eliminate redundant computation;

replace subscripts by pointers.
12.5 Avoid looking at empty piles.
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Program 2.2 implements improvements l2.I-I2.3. Here the state-

carrying parameters b and sequel become hidden, as they should be.

On typical aþabetic data Program2.2 runs about 15 times as fast

as Program 2.1-not a bad return from such simple optimizations, but
not yet good enough. Most of the time for Program 2.2 is still wasted

scanning empty piles. Thus we turn to improvementI2.5, avoiding
looking at empty piles, which can be done in many ways.

For textual keys, such as names or decimal numbers, the piles are

likely to be bunched. Single-case letters span only 26 of the 256 piles,

digits only 10. To exploit bunching, we use a simple pile-span heuris-
tic: keep track of the range of occupied piles. The finished 0- pile is an

expected outlier and is kept track of separately.

Thken together, improvements 12.l-I2.5 speed up Program 2.1

by a factor of 100 on typical inputs. The result, Program A in the

appendix, is a creditable routine. It usually sorts arrays of 10,000 to

100,000 keys twice as fast as do competitive quicksorts.

None of our programs so far sorts stably. Because piles are built
by pushing records on the front of lists, the order of equal-keyed
records is reversed at each deal. To stabilize the sort we can reverse
each backwards pile as we append to it. Alternatively we can maintain
the piles in forward order by keeping track of head and tail of each

pile. Program A does the latter. Sorting times differ negligibly among
forward/reverse and stable/unstable versions.

3. Two-Array Sort

Suppose the strings come in an arÍay as for radix exchange. In basic
radix exchange, the two piles live in known positions against the bot-
tom and top of the array. For larger radixes, the positions of the piles
can be calculated in an extra pass that tallies how many strings belong
in each pile. Knowing the sizes of the piles, we don't need linked
lists.

Program 3.1 gets the strings home by moving them as a block to
the auxiliary afiay ta, and then moving each element back to its
proper place. The upper ends of the places are precomputed in array

pile as shown in Figure 4. 1. (This "backward" choice is for harmony
with the programs in section 4.) Elements are moved stably; equal ele-
ments retain the order they had in the input. As in Program 2.2, the
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stack is managed explicitly; the stack has a third field to hold the

length of each subarray.
Program 3.1 is amenable to most of the improvements listed in

section 2; they appear in Program B. In addition, the piles are inde-
pendent and need not be handled in order. Nor is it necessary to
record the places of empty piles. These observations are embodied in
the "find places" step of Program B.

As we observed in the introduction, radix sorting is most advanta-
geous for large arrays. When the piles get small, we may profitably
divert to a simple low-overhead comparison-based sorting method
such as insertion sort or Shell sort. Diversion thresholds between 10

and 50 work well; the exact value is not critical. Program B in the ap-
pendix is such a hybrid two-array sort. It is competitive with list-based
sort; which of the two methods wins depends on what computer, com-
piler, and test data one measures. For library purposes, an array inter-
face is more natural than a list interface. But two-array sort dilutes that
advantage by using O(n) working space and dynamic storage alloca-
tion. Our next variant overcomes this drawback.

4. American Flag Sort

Instead of copying data to an auxiliary array and back, we can per-
mute the data in place. The central problem, a nice exercise in practi-
cal algorithmics, is to rearrange into ascending order an array of n
integer values in the range 0 to m - 1. Here m is a value of moderate
size, fixed in our case at 256, andn is arbitrary. Special cases are the
partition step of quicksort (m : 2) and the Dutch national flag prob-
lem (m : -3). By analogy with the latter, we call the general problem
the American flag problem. (The many stripes are understood to be

labeled distinctly, as if with the names of the several states in the
original American union.)

American flag sort differs from the two-array sort mainly in its
final phase. The effect of the "move to temp" and "move home"
phases of Program 3.1 is attained by the "permute home" phase shown
in Program 4.1 and Figures 4.1-4.4. This phase fills piles from the

top, making room by cyclically displacing elements from pile to pile.x

*A similar algorithm in Knuth chapter 5.2, exercise 13, does without the array count, bnt in-
volves more case analysis and visits O(n) elements more than once. The speed and simplicity of
Program 4. I justify the cost of the extra array.
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Program 4.1. In-place permutation to substitute in Program 3.1.

#def ine swap (p, 9,
string t,
int k,

T:P' P:9' Q:rr)
t;
c;

Figure 4.2

Figure 4.3

/* Figiure 4.4 */

Let alkf be the first element of the first pile not yet known to be

completely in place. Displace this element out of line to r (Figure 4.2).
Let c be the number of the pile the displaced element belongs to. Find
in the c- pile the next unfilled location, just below pílelc] (Figure
4.3). This location is the home of the displaced element. Swap the
displaced element home after updating pilelcl to account for it.

Repeat the operation of Figure 4.3 on the newly displaced element,
following a cycle of the permutation until finally the home of the dis-
placed element is where the cycle started, at alk]. Move the displaced

element to ølk].Its pile, the current c- pile, is now filled (Figure
a.a). Skip to the beginning of the next pile by incrementing ft. (Values

in the count array must be retained from the "find places" phase.)

Clear the count of the just-completed pile, and begin another permuta-
tion cycle. It is easy to check that the code works right when a * k :
pilelc] initially, that is, when the pile is already in place.

When all piles but one are in place, the last pile must necessarily

be in place, too. Progrum 4.2, otherwise a condensed Program 4.1,
exploits this fact. Program 4.2 and Program B form the the basis of
Program C in the appendix.

for(k:0; k<n; ) {
r : alkl;
for(;;) {

c : rlbl ;

if (--piIe Ic] <: a*k)
break;

swap (xpi1e Ic] , T, t)
Ì
alkl : r;
k +: count [c] ;

count[c] : 0;

16 Peter M. Mcllroy, Keith Bostic and M. Douglas Mcllroy



pile[255]=a+n

Figure 4.1. Array ¿ before permuting home.

r

Figure 4.2. After first displacement. Arrow shows completed action.

r

Figure 4.3. During displacement cycle. The bth byte of the string
pointed to by r is c. Arrows show actions to do, except no swap

happens in last iteration.

Figure 4.4. Last move.

Program 4.2. lmproved in-place permutation.

cmax : /* index of last occupied pile *7'
n -: countlcmax];
count lcnax] - O;

for (ak : a; ak < a*n; ak +: count [c] , count [c] : 0) {
r : *ak;
while(--pile[s : r[b]l > ak)

swap (xpile [c] , T, t) ;
*ak : T;

Ì

T7

a+k + count
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4.1. Stack Growth

In the programs so far, the stack potentially grows linearly with run-
ning time. We can bound the growth logarithmically by arranging to
split the largest pile at each level last-a trick well known from quick-
sort. This biggest-pile-last strategy is easy to install in array-based
sorts, but inconvenient for list-based, where stack order matters and
pile sizes are not automatically available.

Even with a logarithmic bound, the stack can be sizable. In the
worst case, a split produces no 0- piles, 253 little (size 2) piles, and
two big piles of equal size for the rest of the data. One of the big
piles is immediately popped from the stack and split similarþ. For
n : 1,000,000, the worst-case stack has 2800 entries (33,000 bytes
on a 32-bit machine). By contrast, a stack of about 254logrru n en-
tries (only 630 when n : I,000,000) suffices for uniform data. Still
smaller stacks work for realistic data. Instead of a worst-case stack,
we may allocate a short stack, say enough for two levels of full 256-
way splitting, and call the routine recursively in the rare case of
overflow.

For completeness, both stacking tactics are shown in program C,
though they will almost surely never be needed in practice. Stack con-
trol adds one-third to the executable code, but only about one percent
to the running time.

4.2 . Tricks for Tallying

The pile-span heuristic for coping with empty piles presupposes a not
unfavorably distributed aþabet. Other ways to avoid looking at empty
piles may be found in the literature. One is to keep a list of occupied
piles. Each time a string goes into an empty pile, record that pile in
the list. After the deal, sort the list of occupied piles by pile number.
If the list is too long, ignore it and scan all the piles.tTJ A version of
Program C with this strategy instead of pile-span ran slightly faster on
adverse data, but slower on reasonable data.

Alternatively, an occupancy tree may be superimposed on the ar-
ray of piles. Then the amount of work to locate occupied piles will di-
minish with diminishing occupancy. The best of several tree-tallying
schemes that we have tried is quite insensitive to the distribution of

18 Peter M. Mcllroy, Keith Bostic and M. Douglas Mcllroy



strings and beats pile-span decisively on adverse data, but normally
runs about one-third to one-half slower than pile-span.

Noting that only the identity and not the order of the piles matters
in splitting, Paige and Tarjan propose to scan piles in one combined
pass after all splits are done.[8] Their method favors large radixes; it
runs faster with radix 64K than with radix 256, Unfortunately, over-
head-from 4n to 8n extra words of memory-swamps the theoretical
advantage.

Little-endian (last-letter first) sorting mitigates the problem of
scanning empty piles. In little-endian sorts the number of splits is
equal to the number of letters in the longest key, whereas in big-
endian sorts like ours the number of splits typically exceeds the num-
ber of keys. Aho, Hopcroft, and Ullman show how to eliminate pile
scanning at each deal of a little-endian sort by using a O ("total size")
presort of all letters from all keys to predict what piles will occur.le] A
little-endian radix sort, however, must visit all letters of all keys in-
stead ofjust the letters of distinguishing prefixes.

In practice, exotic tricks for tallying are rendered moot by divert-
ing to an alternate algorithm for small r. For it is only when n is
small that the time to scan piles is noticeable in comparison to the
time to deal and permute. Nevertheless, we still like the extremely
cheap pile-span heuristic as a supplemental strategy, for it can improve
running times as much as IOVo beyond diversion alone.

5. Perþrmance

The merits of the several programs must be judged on preponderant,
not decisive, evidence. In theory, all have the same worst-case asymp-
totic running time, O(S), where .S is the size of the data measured in
bytes. None is clearly dominant in practical terms, either. The relative
behaviors vary with data, hardware, and compiler.

In assessing performance, we shall consider only large data sets,

where radix sorting is most attractive. Just how attractive is indicated
by comparison with quicksort. The tested quicksort program, which
compares strings in line, chooses a random splitting element, and di-
verts to a simple sort for small arrays, was specialized from a model
by Bentley and Mcllroy. The routine is not best possible, but probably

Engineering Radix Sort I9



Timeln
psec/key

within l/3 of the ultimate speed for C code. (We recoiled from adapt-
ing their fastest model, which would require 23 in-line string compari-
sons.)

Figure 5.1 shows the variation with size for 15 tests of each of
four routines on one computer for two kinds of random key: (1) strings
of 8 random decimal digits and (2) strings of random bytes, exponen-
tially distributed in length with mean 9. The range of this experiment
is too narrow to reveal quicksort's nlog2 n depafture from linearity,
or to fully smooth quantizing effects. (Across this range the expected

10000 20000 50000 100000

Number of keys, n

Figure 5.1. Leasrsquares fits to sorting time per key versus log n for
a DEC VAX 8550. Representative t I cr eÍÍor bars are shown; other
curves fit comparably.
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QS quicksort
LB list-based (Program A)
TA two-array (Program B)
AF American-flag (Program C)
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---- randomdigits

TA-----
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Machine Compiler

DEC Vax 8850

MIPS 6280

Sun Sparcstation

Cray XMP

Table 5.1. Machines and compilers tested.

length of comparisons varies by only one digit for the decimal data

and half a byte for the byte data.) Nevertheless the figure clearly

shows that the radix sorts run markedly faster than quicksort. This
observation is robust. No comparable generalization can be drawn
about the relative performance of the three radix sorts. As the figure
shows, the rank order depends on the kind of data. Other experiments
show similar variation with hardware.

The sensitivity of the pile-span heuristic to key distribution shows

up in Figure 5.1 as a large variation of slope for list-based sort. In the
other two routines, diversion almost completely damps the variation.
The sensitivity is even greater on sparse random data. In the extreme
case of random keys strings containing just two byte values, the list-
based Program A took about 5 times as long to sort keys with distant
byte values as with adjacent values. The hybrid Programs B and C
varied by a factor of 1.2 or less. Quicksort was unaffected.

Realistic sorting problems are usually far from random. We sorted
the 73,000 words of the Merriam-Webster Collegiate Dictionary, Tth
edition, using the machines and compilers listed in Thble 5. 1. The
word list consists mainly of two interleaved alphabetical lists, of capi-
talized and uncapitalized words. We sorted, into strict ASCII order,
three input configurations: (1) as is, (2) two copies of the list concate-

nated, and (3) ordered by reversed spelling, which mixes the data

well. The running times of programs A, B, and C were usually within
a factor of 1.2 of each other, with no clear winner. American-flag sort

lcc
gcc

gcc -O

cc

cc -O4
lcc

lcc
gcc -O

scc

Fraser and Hansonro

Gnu

same, with optimization

MIPS
same, with optimization
Fraser and Hanson

Fraser and Hanson

Gnu

Cray
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won consistently on the MIPS, two-array sort on the Cray, and list-
based on the Vax, a result roughly consonant with the degree of
pipelining on the several machines. The list-based program was the
most erratic. It lost consistently on the MIPS, and decisively-by a

factor of 1.6-on some Cray and MIPS runs. As in Figure 5.1, quick-
sort fell far behind the radix sorts, usually by a factor of two or more.

6. Discussion

Our programs synopsize experiments that we have made jointly and
severally over the past few years. Bostic wrote a two-array radix sort
similar to Program B for the Berkeley BSD library, based in part on a
routine by Dan Bernstein. P. Mcllroy adapted that routine for use in
the BSD version of the Posix standardll sort utility.12 P. Mcllroy also
conceived American flag sort as a replacement for the two-array li-
brary routine. Independently, D. Mcllroy wrote a Posix utility around
a list-based radix sort, and installed it on research systems at AT&T.
Both the Berkeley and the AT&T utilities typically run twice as fast
overall as the venerable quicksort-based programsl3 that they replace.

Although radix sorts have unbeatable asymptotic performance,
they present problems for practical implementation: (1) managing scat-

tered piles of unpredictable size and (2) handling complex keys. W'e

have shown that the piles can be handled comfortably. Our utilities
cope with complex keys by preconverting them into strings. Although
it costs memory roughly proportional to the volume of keys, this strat-
egy is simple and effective for sorting records after the fashion of the
proposed Posix standard.

List-based radix sort is faster than pure array-based radix sorts.
The speed disparity is overcome by hybrid routines that divert from
radix sorting to simple comparison-based sorting for small arrays. The
natural array-argument interface makes them attractive for library pur-
poses. Both list-based and two-array sorts entail O(n) space overhead.
That overhead shrinks to O(log n) in American flag sort, which, like
quicksort, trades off stability for space efficiency.

We recommend American flag sort as an all-round algorithm for
sorting strings.

We have profited, even to the wording of our title, from the advice
and exemplary style of Jon Bentley.
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Appendix

Program A. Søble list-based sort.

typedef strucÈ list {

struct list *next,'
unsigned char *data,'

l list,'
list *rsort (list *a)

t
#define push(a, t, b) sp->sa - ar sP-)st: tr (sP++)-)sb = b
#define pop(a, t, b) a = (--sp)-)sa, t = 5p-)st' b: sp->sb
#define stackernptyO (sp <= stack)
#define singleton (a) (a->next :: Q)

#define ended(a, b) b>0 && a-)datatb-Ll=:O
struct { list *sa, *st,'int sb; } stackISIZE], *sp = stacki
static list *pile [256] . *tail 12561;
list *atail, *sequel = 0,'

int b, c, cmin, nc : 0,'

if (a ee ! singleton (a) )

Push (a, 0. 0) ,'

while(!stackenPtYO) {

pop(a, atai1, b);
if(singleton(a) | | ended(a, b)) { /* pile finished */

atail-)next : sequel,'
sequel = a,'
continuei

)

cmin : 255,' /* sPlit */
for(;a;a-a->next) {

c - a->datalbl;
if(Pileicl =: 0) {

tsai1[c] =PileIc]:a;
if (c :: 0) continue,.
if(c < cmin) cmin = c;
nc++,'

) else
taillcl - tail[c]-)next : a;

Ì

if(pifet0l) { / * stack the pieces */
push (pile [0] , tail- [0] , b+1) ,'

tail [0]->next = PiIe[0] = 0,'

)

for(c = cmin; nc > 0t c++)
if (pile Ic] ) i

Push (Pile Ic ] , tail Ic] ' b+L) ;
tail[c]->next : Pilelcl = 0;
nc--;

)

i
relurn sequeli
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Program B. Hybrid two-anay sort.

lypedef unsigned char *strinq,'

void sinrplesort (string*, int, inÈ) i
void rsort (strj.ng *a, int n)
{

#define push(a, n, i) sp->sa = a, sp->sr = i, (sp++)->si: i
*define pop(a, n, i) a: (--sp)->sa, n = sp->6n, i = sp->si
#define stackempty$ (sp <= stack)

strucÈ { string *sa; int sn, si; } stackISIZE], *sp = stack;
string *pileÍ2561, *aí, *ak, *ta;
static int count 12561;
int b, c, cmin, *cp, nc = 0;

ta = malloc (n*sizeof (string) ) ,'

push (a' n, 0) ;
while(!s¿ackemptyO) {

pop(a, n' b);
if(n < THRESHOLD) I /* divert */

simplesort (a, n, b) ,'

continue;
)

cmin = 255,. /* LaLLy */
for (ak - a*ni --ak >= a; ) {

c : (*ak) [b];
if(+*counllcl == 1 && c > 0) {

if (c < cmin) cmin = c,:
nc++,'

)

)

pilelo] - ak = a + countlo]; ,/* find places */
counttol : 0;
for(cp = count+cmin,' nc > 0,' cp++' nc--) {

while (*cP == 0) cP++"
if 1*"n t t,

push(ak, *cp' b+1);
Pile[cP-count] : ak += *cP;
*cP : o"

)

for(ak = ta*n, ai = a+n; ak ) ta,' ) /* move to temp */
*--ak = *--ai;

for(ak = ta*n,' ak-- ) ta,' ) /* move home */
*--pile [ (*ak) [b]l = *"¡,'

)
f¡ee (t.a) ,'
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Program C. Hybrid American flag sort; optional stack control in fine print.

enum { SIZE = 5L0, THRESHOLD = 16 i;
typedef unsigned char *string;
typedef struct { string *sa,' int sn, si; } stack_t;
void simplesort (string*' int, int),'
static void rsorta(strj-ng *a, int n ,int b)

{

*define push(a, n, i) sp-)sa: a, sp->sn = n, (sp++)->si = i
*define pop(a, n, i) a: (--sp)->sa, n = sp->sn' i = sp->si
*define stackemptyQ (sp <= stack)
#define swap (p, q' r) x = p, P : Q' g = r

stack_t stack[SIZE], *sp = stack, stmp, *oldsp, *biqsp;

stri-ng *pile 12561 , *ak, *an, r, t,'
static int count 1256) , cmin, nc,'
int *cp, c, cmax,/*' b = O*/;

push (a, n, b) ;
while(!stackemPtYO) {

pop(a, n, b);
if(n < THRESHOLD) { /* diver! */

simplesort (a, n ' b) ,'

continue,'
Ì
an=a+n,'
if (nc == 0) ( ,/* untallied? */

cmin = 255,. /* LaLLy x/
for(ak = a; ak < an,' ) {

c : (*ak++) [b];
if (++count [c] =: I && c > 0) {

if (c < cmin) cmin = c,'
nc++;

Ì
Ì
if (sp+nc > stack+sizE) I / * stâck overflow i,/

rsorta (4, n, b) ;
cont inue;

Ì

I

oldsp = bigsp = sp, c = 2, ,/* logarithmic stack */
piletol = ak = a+count[cmax-0¡; /* fínd places */
for(cp : counÈ*cmin,' nc ) 0,' cp**, nc--) {

while (*cP == 0) cP++;
if(*cp > 1) {

if(*cp > c) c = *cP, bj.gsP = sP;

push(ak' *cP, b+1);
)

Pile[cmax : cp-count] : ak += *cP;

Ì
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swap(roldsp, *bigsp, stmpli
an -- countlcmax] ì /* permute home */
count[cmax] - 0,'
for(ak : a,' ak ( an; ak += count[c], count[c] = 0) {

r : *ak,'
while(--pile[c = rtb] I > ak)

swap(*pi1eIc] , r, t),'
*ak : r,'

I /* here nc = countL...l : a */
Ì

l
void rsort (string ia, 1nt n) { rsorta (å, n, 0); }

7. Addendum

While this paper was in press, another radix sort appeared, recursive
like Program 3.1, with diversion and in-place permutation. [. J.

Davis, A fast radix sort, Computer J. 35 (1992) 636-642.1Although
wasteful of storage, that program can be easily modified to run as fast

as Program C, which stands as a good benchmark for radix sorting.
IVe are grateful to Peter McCauley for critical reading of our

progfams.
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