
CONTROVERSY

United We Fall, or Killing the
Goose that Laid the Golden Egg

Steve Johnson

Melismatic Software

From time to time it is useful to step back from the day to day pres-

sures and try to get some vision of the larger trends in the industry. A
particularly good time to do this is when changing jobs, in a (some-

times vain) attempt to avoid becoming a big fish in a dry pond.

One of the biggest changes in the computer industry over the last

twenty years has been the growth of application portability. Twenty
years ago, most computing was done on mainframes, and applications

that ran on those mainframes had rental fees sufficent to buy one of to-
day's workstations each month! The assumption was that people were

willing to pay from 2OVo to 50Vo of the yearly hardware rental to get

the application software and associated tools. This led to some very
crude line-oriented text editors being rented for thousands of dollars a

month, for example.

At the same time, manufacturers produced systems so idiosyncratic
that even standard languages could not always be run compatibly (I re-
member with particular fondness that the IBM mainframe system

would crash if you had more than 50 comment cards at the start of
your Fortran program-small is beautiful!).

Well, we software folks changed all that. The invention of highly
portable languages, and, with Unix, highly portable operating systems,

meant that we could move applications from larger to smaller (and

cheaper) machines, or, conversely, write applications on small ma-
chines and run them on big ones. At the same time, with the advent

of minicomputers, microcomputers, and supercomputers, we started

seeing computer prices (which used to lie in a rather narrow range of

@ Computing Systems, Vol. 6 . No. 1 . Winter 1993 29

$l-10 million) expand outwards to over five orders of magnitude ($5
thousand to $50 million). The traditional pricing algorithms in the in-
dustry were put under great stress by this situation. In the old days,
you charged $50 thousand for your application, and that was the end of
it; a few percent of the annual rental of the machine. If you try that
with a $5 thousand machine, you get $125.

But, suppose you could port that $125 low-end program and run it
on the high-end machine. You have just saved $49,875. What a busi-
ness! Needless to say, the computer manufacturers and software ven-
dors didn't like the sound of money leaking out of their cash registers.
In the old days, the application would be written in assembler and de-
pend so heavily on the manufacturer's operating system that there was
no hope of moving it; in our brave new world, both the OS and lan-
guage are portable, so the barriers are a lot lower.

The first thing the manufacturers did to prevent the erosion of their
income was to distribute in binary only. This re-established the tradi-
tional tie between the application and the hardware, and put a finger in
the hole in the fiscal dike. There has been a slow and steady rise of
emulators, both hardware and software, that have eaten away at these
market barriers, but by and large this strategy has been successful.

Competition is usually good for the consumers, who find that in
heavily competitive environments the price drops. And changing from
source to binary distribution only postponed the problem of competi-
tion, because now the real competition was coming from other hard-
ware boxes. As systems and languages became more portable, and as

standards groups became more powerful, machine cycles became more
and more interchangable; instead of Apples and Oranges, we had as-
pirin and aspirin.

Now, economists tell us that when two things look identical to a
consumer, the consumer will want to pay the same price for them. The
way to get a higher price for something is first to make it look differ-
ent, then make it look better. This is where marketing comes in; the
point of slogans such as "System V: consider it standard" and "The
network is the computer" is to persuade you ultimately to pay more for
System V cycles or for Sun cycles than you might pay for OSF cycles
or HP cycles. This is not to say that there are not real differences in
these products that in fact make them worth more to some people than

30 Steve Johnson

to others. And there is a thin line between pointing out legitimate dif-
ferences between products (a service to customers) and puffing and

hyping a product (a disservice to customers). But on the whole, when
one manufacturer has a good idea today, it isn't long before the others
have a pretty good copy.

The other effect rocking the industry is the incredible decrease in
the cost of computer cycles. Things can get cheaper without becoming
a commodity, or (more rarely) vice versa, but cycles have done both;
to a degree that is almost without parallel in history. In 1910, a Stein-
way grand piano cost about the same as a luxury automobile. In 1990,

a Steinway grand piano still cost about the same as a luxury automo-
bile. In 1960, a medium-sized computer cost about a hundred Stein-
ways. In 1990, a computer of equivalent power cost a hundredth of a
Steinway. If house prices had dropped as much over the same period,
you could buy your parents' four bedroom ranch house today for about

the cost of a Big Mac, fries, and a shake. V/hile the underþing hard-

ware technology has provided for most of the cost drop, the role of
portable software in being able to exploit new hardware quickly should
not be minimized. It we hadn't built it, they wouldn't have come.

The whole point of this excursion into the past is to try to under-
stand the future. And every trend suggests that by the year 2000,

across a very large set of customers, the cost of software will dominate

the hardware cost of computer systems. More strikingly, it is already

true, and will become more true, that the cost of using and maintain-
ing a system will dominate the cost of buying it; that is, the salaries
paid to the people using the hardware will dominate the hardware
costs. In fact, in many situations the improvement in user productivity
in moving from old fashioned character oriented interfaces to modern
mouse/menu/icon interfaces can pay the total cost of the new hard-
ware.

On the face of it, this is a wonderful situation for software. A few
years back, people would routinely pay, say, $6 thousand for a PC sys-

tem, and their productivity improvement was so great that tens of mil-
lions of people bought them. This investment was roughly 75Vo hañ-
ware, and 25Vo software cost. In a few years, the same, or even more
powerful, hardware will cost $500. Since the job done by the PC is
still worth roughly $6 thousand to the customer, it would seem that the

Controversy: lJnited We FaII, or Kitling the Goose that Laid the Golden Egg 31

software should be able to charge several thousand at least, give the
customer more power for one third the money, and the software ven-
dors can at least retain, and possibly increase their revenues.

Now, this is not what most customers believe will happen. Most ex-
pect that the software packages that cost $1500 a few years ago will
soon be available for a hundred or two hundred dollars. In fact, some
early signs of this are starting to appear. It sure puzzles me why this
should be the case. Hardware and software are very different disci-
plines, with very different tools and development cycles. If hardware
costs drop an order of magnitude, there is no more a priori reason to
think that the price of software should drop than to think that the price
of a Steinway should drop.

Now, historically software has been both overpriced and under-
priced. It has been overpriced because the cost of manufacturing the
thousandth or millionth copy of a piece of software is only a few per-
cent of the price to the end user. It has been underpriced because his-
torically (especially with system software) the development costs have
been so high that these costs have been difficult to recover in pure soft-
ware pricing alone. Typically this software was sold bundled, and
some of the profit on the hardware was used to fund the system soft-
ware development.

In this situation, system software becomes a natural monopoly.
The first successful product in the field sells enough at a high price to
recover the development cost, and then the price drops quickly down
to an amount that is only slightly higher than the cost of manufacture.
The second company in this field must sell near this low cost, and so

cannot make enough money to recover their development costs. If they
have any sense, they don't try. If there are several people in this mar-
ket they compete like mad with each other, the price to the consumer
is very low, and the companies in the field have trouble remaining
healthy. All this tends to encourage a single supplier in each market
who gets filthy rich and still makes it difficult for anyone else to enter
the market and make any money at all. Microsoft has this kind of
edge in several markets, and has done very well for itself; a few years
back, IBM made itself top dog with a similar strategy.

So, what is a rational software supplier to do? In this situation, you
win by being first into a market, and, lacking that, to make people

32 Steve Johnson

think you have a better product (in effect, move the market over to
your product, so you can be first again). At the very least, you should
try to be different enough that at least some people see you as having
the product of choice.

What have the computer makers done? They have joined organiza-
tions like OSF and uNIx International that seem dedicated to reducing
the differences between their members' products! The smaller the dif-
ference between the products, the more directly they compete, the
lower the prices, and the sicker the vendors become. Joining together
preserves the illusion of control, important in a battered industry (it
appears that people would rather have their hands on the wheel and

drive off the cliff than be thrown over naked). In the short term, it is
good for the customer, since software prices drop to irrationally low
levels. In the longer term, the natural monopoly that results is bad for
the customer, since the customer pays higher prices than if there were
competition, and is likely to find slower and less responsive technical
deveþment as well.

To recapitulate this argument, we software folks have developed
and refined a portability technology that has made computer cycles
into a commodity, made software applications into a natural
monopoly, is clobbering a lot of computer makers, and will soon drive
a lot of software makers out of business, making a lot of us lose our
jobs. We have killed the goose that laid the golden egg. Gloomy, no?

I think a lot of software people will experience some wrenching
changes between now and the year 2000, but I also think it will be

very possible to have a successful software career in the next decade.
First and foremost, keep your eyes open. Things are changing, and
you will have to change too. Stay flexible and willing to learn. Keep
up with the latest technology. Another tip is to look for companies in a

niche-stock trading, gene splicing, etc. Both hardware and software
companies exploiting vigorous niches have done well right through the
current recession. Another tip is to insulate yourself from hardware;
the hardware industry is crashing and burning badly, and it is far from
clear who the survivors will be. Maybe you want to be on the sidelines
for the titanic battles ahead.

Also, notice that the independent software vendors have been
much less enthusiastic about OSF and UI than the hardware vendors.

Controversy: UnitedWe Fall, or Killing the Goose that Laid the Golden Egg JJ

The most successful such companies recognize that, while they need to
be aware of the industry trends and to be able to play in that game,

their real future lies in the ways in which they are different from, and
better than, their peers. As programmers, we would do well to re-
member that as well.

[submitted Nov. 25, I992;revised Jan. 4, 1993; accepted Jan. 14, lgg3]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission ofthe Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

34 Steve Johnson

