
; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 81

2009 USENIX Annual Technical Conference
San Diego, CA
June 14–19, 2009

opening rem arks

Summarized by Rik Farrow

After thanking the program committee and the USENIX
staff, co-chairs Geoffrey M. Voelker and Alec Wolman
announced the Best Paper awards: “Satori, Enlightened
Page Sharing” by Grzegorz Miłoś, Derek G. Murray,
Steven Hand, and Michael A. Fetterman, and “Tolerat-
ing File-System Mistakes with EnvyFS,” by Lakshmi N.
Bairavasundaram, Swaminathan Sundararaman, Andrea
C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Next,
Alva Couch, Secretary of the USENIX Board of Directors,
presented the Software Tools User Group Award to Jean-
Loup Gailly and Mark Adler for their work on file com-
pression (see http://www.usenix.org/about/stug.html for
details). Gailly said, “I feel I have received more from the
OS community than I gave,” and Adler then said “Ditto,”
in a couple of the shortest acceptance speeches ever.

Couch then presented the Lifetime Achievement Award
to the late Professor Gerald J. Popek (you can read more
at http://www.usenix.org/about/flame.html). Two of
his past students, Bruce Waller of HP Labs and Geoff
Kuenning of Harvey Mudd College, described Popek’s
long history in CS research, with many contributions in
systems, including the first mention of clusters. Both men
also spoke of Popek’s dedication to his students. Kuen-
ning explained that Popek had taken a long leave from
academia to start Locus Computing, which is why his
name disappeared from publications sometime during
the ’90s.

keynote address

Where Does the Power Go in High-Scale Data Centers?■■

James Hamilton, VP & Distinguished Engineer, Amazon Web
Services

Summarized by Stephen P. Tarzia
(starzia@northwestern.edu)

James Hamilton gave a fresh appraisal of electrical
power’s role as a primary design consideration in data
centers. The fundamental issue is that high-scale data
centers such as those managed by Amazon and Google
are very different from conventional enterprise data
centers. Due to management complexity introduced by
heterogeneity, people costs dominate the total enterprise
datacenter costs. By contrast, a high-scale data center
typically has more than 1000 servers per administrator,
so people costs are almost negligible. In this keynote,
Hamilton outlined the true costs of such data centers as
well as their engineering implications.

conference reports

thaNks tO Our summarIzers

2009 USENIX Annual Technical
Conference . 81
Xu Chen
Rik Farrow
Chris Frost
Ragib Hasan
John McCullough
Kiran-Kumar Muniswamy-Reddy
Abhishek Rajimwale
Alex Rasmussen
Matthew Renzelmann
Stephen P. Tarzia
Michael von Tessin
Wei Zheng

Workshop on Hot Topics in Cloud Computing
(HotCloud ’09) .100
Alva Couch
Kiran-Kumar Muniswamy-Reddy

BSDCan 2009: The Technical BSD
Conference . 107
Royce Williams

82 ; LO G I N : VO L . 3 4 , N O. 5

Hamilton gave a total cost analysis for operating a theoreti-
cal 15 megawatt high-scale data center. He showed that
servers accounted for 53% of costs, power and cooling infra-
structure for 23%, and power usage for 19%. Since server
prices are falling, he forecast power-related costs account-
ing for over half of total costs in the future. However, it is
important to note that the majority of power-related costs
are due to infrastructure, not utility charges.

To drive cost-cutting efforts, Hamilton advocated measur-
ing Total Power Usage Efficiency (tPUE), the ratio of total
facility power to power delivered to server components. His
blog, in particular the entry at http://perspectives.mvdirona.
com/2009/06/15/PUEAndTotalPowerUsageEfficiencyTPUE.
aspx, has more details on tPUE. This measure differs from
the traditional metric, PUE, in that it includes energy waste
within IT equipment. In particular, motherboard voltage
regulation circuits and case fans are often unnecessarily
inefficient. He showed all of the steps in the power distribu-
tion chain, which has over 90% end-to-end efficiency.

To get the maximum return from the data center’s power
and cooling infrastructure investment, the operator must
run as many servers on top of that infrastructure as pos-
sible without overloading it during peak periods. To achieve
that, Hamilton suggested a combination of both cooling and
server-utilization optimizations.

Regarding cooling, Hamilton first promoted isolating
hot and cool air flows and running data centers at much
higher temperatures. Hamilton showed that popular server
warranties typically cover equipment that is run at up to
95°F, much hotter than a typical data center. Based on this
observation, Hamilton proposed using outdoor air instead
of AC for cooling. Some worry that airborne particles from
outdoors might damage IT equipment, so detailed studies
are needed to test this and to evaluate filtration techniques.

Finally, Hamilton discussed resource consumption shaping.
This means reducing peak load at the expense of increased
trough load. In other words, smooth out the load curve by
pushing some of the peak workload into idle times. He sug-
gested following the airline industry’s model of overbooking
and then shedding excess load when necessary to maximize
capacity utilization. Hamilton also suggested using the same
load-smoothing approach with links. Further gains can be
had by increasing average server utilization, a figure that is
typically only around 15%.

Rik Farrow asked why datacenter operators don’t have serv-
ers custom-built to work most efficiently in their facility.
Hamilton responded that the big datacenter operators do
work closely with custom design groups in computer manu-
facturing companies. He also mentioned that big-impeller
fans and shared power supplies are typical requests. Can
server traffic can be pushed by hours, since this is what
would be needed to smooth out daily user cycles? There is
lots of work to be done at night, in particular data analysis
and data mining. Still, Hamilton acknowledged that opera-
tors will have to pay for peak-time responsiveness.

Is humidity an issue in the data center at higher tempera-
tures? Everyone fears humidity, but concrete data is lack-
ing. How do networking costs figure into the total and will
ISPs change their pricing model if link utilization increases?
WAN costs were not included in Hamilton’s analysis, but
they are minor: only a few percent. Hamilton was not
prepared to comment on ISP pricing. David Petrow asked
about the role of server water cooling now and in the future.
Hamilton observed that the industry loves density, while
floor space costs are negligible, so water cooling is unneces-
sary. When asked by Dan Klein how to shed light on the
right people to promote his agenda, Hamilton suggested
focusing on those with the biggest R&D budget.

The final two questions returned to server utilization. When
asked for an example of software inefficiency, Hamilton
noted that some software inefficiency must be tolerated,
such as using high-level languages to increase developer
productivity and thus drive innovation. Someone asked how
tPUE included the actual work done. Hamilton acknowl-
edged that it does not, but it is valuable since it is generaliz-
able across different applications and industries. He recom-
mended additional industry-specific calculation of work
done per dollar.

virtualization

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Satori: Enlightened Page Sharing■■

Grzegorz Miłoś, Derek G. Murray, and Steven Hand, University
of Cambridge Computer Laboratory; Michael A. Fetterman,
NVIDIA Corporation

Awarded Best Paper!

Miłoś described a system to leverage page sharing without
the overheads of VMM page scanning. Memory can be one
of the most limited resources in virtual machines, and in
the common situation of homogeneous virtual machines
there can be a large amount of redundant data. Typical
approaches involve the VMM scanning all pages, creat-
ing fingerprints, and then initiating page sharing. This is a
heavyweight operation whose periodicity is limited. Miłoś
observed that many shared pieces of data arise from I/O de-
vices and that by instrumenting the virtual I/O devices we
can capture that page sharing and avoid periodic scanning.
An additional benefit of this approach is that when using
copy-on-write disk images, VMs can bypass the disk read
and share the data if it is resident in memory elsewhere.
Satori implements I/O-based page sharing behavior in the
Xen hypervisor.

While typical page sharing approaches release pages into a
global pool, Satori credits fractions of the freed pages to the
VMs participating in the sharing. These credits can be taken
from a type of inverted-balloon driver, but to prepare for
share-breaking the VM must maintain a list of volatile pages
that can be evicted at any time. These pages can typically be

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 83

used for additional page cache. The system performs well in
general, with less than 1% overhead for random reads and
meta-benchmarks. However, for sequential reads there is a
35% slowdown due to hypercall overheads. Miłoś believes
this overhead can be alleviated through a shared memory
approach. Satori outperforms VMware’s fastest—yet still
infrequent—similarity scans, even though Satori cannot
perform sharing for pages not loaded through I/O, including
the kernel, which is pre-loaded by the hypervisor.

An audience member asked whether the VMs can steal
memory from other machines by reading extra shared
data. Miłoś responded that the machines cannot gain any
additional memory this way. Do the costs of sharing and
detection outweigh the potentially short duration of the
potential sharing? The aggregate of the short-lived sharing
opportunities can still provide a great benefit. Does it make
more sense to explicitly share the page cache? The goal is to
provide the benefits of page sharing with minimal modifica-
tion to the guest operating system. Transcendent memory
implements the shared page-cache behavior.

vNUMA: A Virtual Shared-Memory Multiprocessor■■

Matthew Chapman, The University of New South Wales and
NICTA; Gernot Heiser, The University of New South Wales,
NICTA, and Open Kernel Labs

Chapman observed that when you need more computa-
tional power than a single processor, you typically turn to a
shared memory multiprocessor or a cluster of workstations.
Large shared memory multiprocessing systems are often
very expensive, and workstation clusters are often awkward
to program. Typical approaches that join a workstation
cluster into a single machine image use language-specific
middleware or narrowly supported distributed operat-
ing systems. Chapman proposed vNUMA, where a virtual
machine monitor presents an unmodified operating system
with a single machine image spanning a workstation cluster.

vNUMA addresses a number of challenges in faithfully
reproducing the SMP programming environment. Unlike
many distributed shared memory systems, all data in an
SMP system is shared, including locks, and read-modify-
write and memory-fence behavior must be respected.
Because no particular write invalidation technique is
performant across all access patterns, vNUMA uses an
adaptive protocol selecting among three approaches for par-
ticular memory pages. In one update case, trap-emulation
is required, but a simple write-invalidate is used in most
cases. Chapman showed that vNUMA can out-perform
the distributed shared memory library, Treadmarks, across
compute-intensive HPC benchmarks and that vNUMA
performs comparably to distcc for compilation. However, for
I/O intensive database workloads, vNUMA performs poorly.
Overall, vNUMA provides a single system image for free
with good computation performance.

An audience member asked how devices are handled. Chap-
man responded that the work focused primarily on memory

behavior rather than devices. In the current implementa-
tion, network and disk I/O are routed through node zero.
Future work could introduce striping across nodes and
improve performance.

ShadowNet: A Platform for Rapid and Safe Network ■■

 Evolution
Xu Chen and Z. Morley Mao, University of Michigan; Jacobus
Van der Merwe, AT&T Labs—Research

Chen observed that alternative configurations on carrier-
grade networks can have negative effects. However, exist-
ing modeling and emulation testbeds cannot get the same
fidelity and hardware implementation as the production
network. Chen proposed ShadowNet, a system that provides
a network that is connected to but separate from the pro-
duction network. This provides an environment in between
the lab and the production environment and allows multiple
service trials to run simultaneously, sharing the same physi-
cal resources but in isolation.

ShadowNet is implemented on top of Juniper-based virtual
routers, which are, in turn, attached to a ShadowNet node
hosting virtual machines. Each virtual router provides the
full functionality of the original routers, while connected
to each other and VM instances via a variety of connectiv-
ity options, keeping traffic isolated and routing updates
regulated. At the experimental level, ShadowNet provides
configuration management across experimental configura-
tions. Chen demonstrated that ShadowNet is able to get the
desired bandwidth allocations, although the virtual rout-
ers have some interaction with the other routing elements
under high load. Chen also demonstrated that ShadowNet
can achieve failover to an alternate configuration.

An audience member observed that in PlanetLab-style
deployments it is very easy to add nodes and asked how
feasible it is to add new nodes in ShadowNet. Chen noted
that the controller takes care of adding the nodes and that
they should be easy to add. Do any cloud vendors provide
similar systems? Most cloud infrastructures only provide
the virtual hosts, and ShadowNet has richer networking
support.

invited talk

Teaching Computer Science in the Cloud■■

David J. Malan, Harvard University

Summarized by Matthew Renzelmann (mjr@cs.wisc.edu)

Professor David Malan presented his work on reinvigorating
Harvard’s introductory computer science course, CS 50, in
an effort to increase enrollment in the university’s computer
science program. Enrollment figures for the last decade
and a half showed a significant decline after the dot-com
bubble burst in early 2000. Malan suspects that this decline
stemmed from misconceptions about computer science
and the relatively uninteresting nature of many introduc-

84 ; LO G I N : VO L . 3 4, N O. 5

tory programming projects (e.g., writing programs with a
command-line interface vs. a GUI).

To make the course more interesting, Malan discussed
using more languages than just C (e.g., PHP) and provid-
ing students with frameworks to write more sophisticated
programs. These frameworks also serve to acquaint students
with reading code. In addition, Malan emphasized the
importance of assigning programming projects that solve
more interesting problems, such as implementing a Vigenère
cipher with arrays or a competition to come up with the
fastest spelling checker.

After outlining his approach to teaching the course, Malan
began discussing the role of cloud computing. Malan’s
goal was to acquire a set of machines with unfettered root
access, which he could then configure for the students in
the course. Although his group examined the possibility of
operating their own cluster, they concluded that because of
limited space, power, and cooling, it would be easier to off-
load everything to Amazon’s EC2 service. In Malan’s experi-
ence, launching a group of virtual machines on EC2 was
much easier than setting up the infrastructure themselves.

Observed benefits of using Amazon’s EC2 cloud infrastruc-
ture for course work were numerous. The number of virtual
machines assigned to the cloud was scalable, and it was
easy to start additional virtual machines during periods
of high activity, such as the night before an assignment
was due. The students found that using the virtual ma-
chines was straightforward because access was available
through the host name cloud.cs50.net. This single host
would pseudo-randomly assign each user to one of the
cloud’s virtual machines.

Using Amazon’s EC2 also involved some costs. Malan esti-
mated a cost of $15/student for the semester, or $5000 in
all, but believed that additional work on his part could
drive this cost down to $2000–$2500. Bandwidth was a
particular concern, because it can be expensive. Learn-
ing EC2’s idiosyncrasies was also troublesome; in the past,
the department’s IT staff took care of infrastructure issues,
but with EC2, the onus was on Malan and his staff to keep
things running smoothly.

One audience member asked whether the term “sprites”
was a spoof or pun after Osterhout’s Sprite research. The
question was in reference to Malan’s use of MIT’s Scratch
programming environment, which used objects called
sprites. Malan replied that the name was entirely courtesy
of MIT’s Media Lab. Someone else pointed out that Malan’s
results showed an increase in course enrollment during the
first week, but it wasn’t clear whether these students were
doing any better later in the course. Malan responded that
there was not yet enough data to answer definitively, but
that there has been an uptick in the number of students
selecting computer science as a major.

net working

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Design and Implementation of TCP Data Probes for ■■

 Reliable and Metric-Rich Network Path Monitoring
Xiapu Luo, Edmond W.W. Chan, and Rocky K.C. Chang, The
Hong Kong Polytechnic University, Hong Kong

Luo observed that Internet measurement can be very chal-
lenging. ICMP packets frequently have different behavior
and can only measure limited metrics. He introduced One-
Probe, which enables the measurement of TCP-based appli-
cations’ specific behavior and can capture RTT, directional
packet loss, and packet reordering. The current incarnation
operates over HTTP, and the approach should be extensible
to additional TCP-based applications.

OneProbe operates using a pair of probing packets. By
observing the sequence and acknowledgment numbers in
TCP packets and distinguishing TCP data packets and TCP
control packets through packets’ payload size, the responses
can be classified into one of 18 cases to determine reorder-
ing and loss on both forward path and reverse path. Thus,
OneProbe is able to achieve more expressive measurements
against almost any Web server and provide more accurate
results than httping. Luo showed results of latency measure-
ments for the Web servers of the 2008 Olympic Games:
they were able to observe diurnal RTT and loss behavior,
and a significant difference between OneProbe and ICMP
echo result on some paths. See http://www.oneprobe.org for
more information.

An audience member asked how the RTT tests can be accu-
rate for forward and reverse paths while using TCP. Another
audience member inquired about the requirements on the
application protocol. Luo answered that servers must send
back some data packets and that clients need to be able to
send data back to the server.

StrobeLight: Lightweight Availability Mapping and ■■

 Anomaly Detection
James W. Mickens, John R. Douceur, and William J. Bolosky,
Microsoft Research; Brian D. Noble, University of Michigan

Mickens observed that we typically like to know the status
of hosts in our networks. This can sometimes be achieved
using distributed systems or other monitoring mechanisms,
but it requires host modifications and can sometimes lead
to scalability concerns. Mickens introduced StrobeLight, a
system targeted to measuring networks of a few hundred
thousand hosts. StrobeLight simply sends ICMP probes
to every host on the network every 30 seconds, providing
fine-grained fingerprints for availability data. This data can
be used to guide choices in building multicast trees, task
allocation, or identifying misbehaving networks or network
hosts.

StrobeLight was designed to be simple and unintrusive
without requiring infinite scaling. It operates by extracting
the list of hosts from the DNS server and pinging each of
them. The availability data is used to construct a per-subnet

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 85

bit-vector where each position represents the availability of
each host. Using a similarity metric, Mickens shows that
most subnets do not change in character over time unless
there is an anomaly. In one case, this assisted in identifying
subnets that lost connectivity, and it can be used in general
to identify routing anomalies such as BGP hijacking. Using
an external wide-area prober, Mickens demonstrates that
the fingerprints are generally similar and that in simulation
they were effective in identifying hijacking attempts.

An audience member asked whether the hijacker could
prevent detection by mimicking the host availability of the
target network. Mickens replied that you’d be relatively
powerless if the attacker could duplicate the availability
profile, but that access to the network availability can be
restricted to designated probers. Overall, the task is chal-
lenging, but StrobeLight is a simple first cut.

Hashing Round-down Prefixes for Rapid Packet ■■

 Classification
Fong Pong, Broadcom Corp.; Nian-Feng Tzeng, Center for Ad-
vanced Computer Studies, University of Louisiana at Lafayette

Pong established the need for fast packet classification that
is both dynamic and compact. Typical approaches use
either decision trees or hash tables. Decision trees can be
tall and take a while to traverse, and the addition or dele-
tion of a rule can necessitate a reconstruction of the entire
tree. Hash-table approaches often require many probes to
determine the correct prefix length and, in some cases, use
supplementary decision trees to select the correct prefix
length. Instead of storing a single address and mask pair at
each entry in the hash table, HaRP (hashing round-down
prefixes) lumps groups of prefixes into sets that can be
searched in parallel. This reduces the number of hash look-
ups and reduces memory requirements.

Because HaRP probes all prefix-group buckets and because
prefixes are transitive, it is possible to load-balance the hash
table by placing shorter prefixes in longer buckets. HaRP
also allows for either source IP hashing or destination IP
hashing. Pong demonstrated results for six rule sets: three
from practice and three artificially enlarged. Although HaRP
does not hash-load-balance quite as well with many short
prefixes, it enables a compact representation that can fit
in cache and overall achieves approximately a 5x speedup.
Data structure updates are much quicker than the several
minutes that can be required for a large decision tree.

An audience member questioned the applicability of rapidly
changing firewall rules. Pong pointed out that in VPN set-
tings there can be frequent creation and deletion of firewall
rules as clients enter and leave the system. Does the order
of rule insertion affect the layout and hash-table load? Their
first cut of choosing the first fit has worked well, and he
also notes that finding the optimal fit is an NP problem.

file and stor age systems

Summarized by Alex Rasmussen (alexras@acm.org)

Tolerating File-System Mistakes with EnvyFS■■

Lakshmi N. Bairavasundaram, NetApp, Inc.; Swaminathan Sun-
dararaman, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin—Madison

Awarded Best Paper!

Swaminathan Sundararaman presented EnvyFS, a file
system based on N-version programming that is designed
to tolerate silent file system failures. Sundararaman argued
that modern file systems are very complex and that this
complexity, combined with the increasing depth of the stack
between the file system and the disk (imposed by virtual-
ization, networked file systems, etc.), admits the possibility
of a wide range of failures, including so-called “fail-silent”
failures in which the file system doesn’t detect an error and
continues to work on the wrong data, causing data corrup-
tion and returning bad data to the user. EnvyFS copes with
fail-silent failures through N-version programming, which
involves executing several different functionally equivalent
programs (in this case, file systems) and using majority
consensus to agree on the federated program’s output. To
reduce the storage and performance overheads imposed by
using several child file systems at once, the authors created
a single-instance store called SubSIST that de-duplicates
data while retaining most of the reliability benefits the N-
version file system provides.

Sundararaman presented several examples of individual
fail-silent errors that resulted in corruption in the ext3 file
system, but that EnvyFS (using ext3, JFS, and ReiserFS as
its child file systems) is able to tolerate. In one case, EnvyFS
masked an ext3 error that would otherwise have caused a
kernel panic.

One audience member wondered whether EnvyFS assumes
that all file systems have the same block size and how En-
vyFS would deal with an extent-oriented file system. Sunda-
raraman replied that EnvyFS assumes 4 KB blocks and that,
if extent-oriented file systems wrote at non-block-aligned
offsets, a more sophisticated scheme such as fingerprinting
would have to be used to identify duplicate blocks. Had the
file system authors had been informed of the bugs uncov-
ered during the evaluation? Yes, they had. Did correlated
failures relate to file systems having copied code from one
another? They had not noticed any instances of code copy-
ing, but different file systems can be chosen to minimize
the presence of duplicate code if such code is observed.

Decentralized Deduplication in SAN Cluster File Systems■■

Austin T. Clements, MIT CSAIL; Irfan Ahmad, Murali Vilayan-
nur, and Jinyuan Li, VMware, Inc.

Austin Clements presented a new method of de-duplication
in storage area networks (SANs). De-duplication prevents
duplicate data from being stored on disk by tracking the
locations of written blocks in an index and bypassing writes

86 ; LO G I N : VO L . 3 4 , N O. 5

to disk if the block to be written is already in the index.
Clements asserted that classical methods of de-duplication
do not work well in a decentralized setting due to cache
coherence problems, the need for coordinated allocation of
disk space for new blocks, loss of disk locality on individual
disks, and a shared index structure to which access must be
coordinated using locks.

To solve these problems, the authors have developed DeDe,
which breaks de-duplication into three stages: write moni-
toring, local de-duplication, and cross-host de-duplication.
DeDe can de-duplicate live storage devices out-of-band and
in large batches. The system is designed to minimize con-
tention on the shared index and communication between
hosts, is resilient to stale index information, and improves
access to unique blocks by allowing them to be mutable and
to remain sequential on disk.

The authors evaluated DeDe on a corporate virtual desktop
infrastructure and found that it was able to compress 1.3 TB
of non-zero data to 237 GB while using only 2.7 GB of disk
space for its data structures and causing no additional I/O
overhead.

An audience member wanted to know how effective DeDe
would be if de-duplication were done at the file level as
opposed to the block level. DeDe (and de-duplication in
general) would not be as effective in this case, since the
opportunity for savings decreases as the size of the unit of
replication increases. Might DeDe cause fragmentation and
interfere with linear read-ahead? While any de-duplication
system has these issues to some extent, DeDe suffers less
from these problems, because it keeps blocks in their
sequential location on disk whenever possible and per-
mits in-place updates to blocks without duplicates. Would
certain kinds of access patterns lead to poor performance
with a de-duplication system that uses fixed-size chunking,
as DeDe does? Many systems in this space use variable-size
Rabin fingerprinting to overcome this issue, but Clements
speculated that such fingerprinting is unlikely to be worth
the performance penalty of managing variable-size blocks
in a live, shared file system. What might happen when a lot
of duplicate data is injected into the system suddenly, such
as when all VMs in the network are patched in rapid suc-
cession? Increased duplication would trigger de-duplication
more frequently, but such temporary increases in duplicate
data are hard to deal with in general and some extra storage
space must be allocated to deal with this eventuality.

FlexFS: A Flexible Flash File System for MLC NAND Flash ■■

Memory
Sungjin Lee, Keonsoo Ha, Kangwon Zhang, and Jihong Kim,
Seoul National University, Korea; Junghwan Kim, Samsung
Electronics, Korea

Today’s NAND flash memory comes in two main varieties:
SLC (single-level cell) and MLC (multi-level cell). SLC has
higher performance and lasts longer than MLC, but MLC
has higher capacity. However, MLC flash memory can be

programmed dynamically as either MLC or SLC through
use of a special writing method. Sungjin Lee described
FlexFS, a new file system that combines the performance
of SLC flash with the capacity of MLC flash. It does this
by managing disk blocks as three separate pools for SLC,
MLC, and free blocks. Blocks are dynamically allocated and
migrated between regions in the background. New data is
written to the SLC region and blocks are migrated to the
MLC region in the background as the SLC region becomes
full. FlexFS also takes advantage of idle time to generate
free blocks for the SLC region and avoids migrating “hot”
(recently referenced) pages. In addition, FlexFS’s wear man-
ager controls the rate at which erase operations occur, to
maximize the device’s lifetime.

An audience member wanted to know if FlexFS, which was
targeted at mobile systems, could be applied to large disks,
where capacity is less of an issue, and to environments
where the system could take advantage of write caching.
Lee responded that FlexFS could certainly be extended to
support such environments.

Layering in Provenance Systems■■

Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland,
Peter Macko, Diana Maclean, Daniel Margo, Margo Seltzer,
and Robin Smogor, Harvard School of Engineering and Applied
Sciences

Provenance is metadata that describes the history of an
object. Such data is useful for scientific reproducibility,
business compliance, and security. Previously, the authors
constructed PASS, which observes file system calls to infer
relationships between objects. However, if an application
such as a Web browser also tracks provenance, no method
exists to link the provenance tracked by the application
with that tracked by the kernel. Kiran-Kumar Muniswamy-
Reddy discussed the Disclosed Provenance API (DPAPI),
through which software that tracks provenance can disclose
that provenance to lower layers of the software stack in a
secure, modular way. DPAPI can pass abstract provenance-
containing objects between programs through use of
opaque handles and has functions to associate provenance
with reads and writes, thus ensuring that provenance is
consistent with the data it describes. Muniswamy-Reddy
then described the use of DPAPI in Kepler (a provenance-
aware workflow engine) that links the Web browser and
the Python interpreter. He concluded with some lessons
learned by the authors in writing DPAPI. Among these
lessons learned are that it is not easy to make applications
provenance-aware and that making platforms provenance-
aware does not necessarily provide provenance awareness to
all applications running on that platform.

One audience member wondered whether there was some
notion of nested provenance, where, for example, each tab
tracks its provenance and the browser tracks the “meta-
provenance” of the collection of tabs. Muniswamy-Reddy
replied that the browser knows where each URL came from
and the chain of URLs the user viewed in the past and so

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 87

can do some logical separation within itself, but that the
clarity of the separation isn’t clear. He mentioned that they
are looking at Google Chrome as a better target for DPAPI
than Firefox, due to Chrome’s use of a separate process per
tab. Why is the file system the right location at which to
focus provenance tracking, since the application is so much
more aware of what is actually being done at a high level?
The file system is a single point with which all processes
must eventually interact and, while its provenance is in-
complete, is a piece of the larger provenance puzzle; DPAPI
helps to integrate it with the rest of the software stack.

invited talk

Project SunSPOT■■

Roger Meike, Sun Microsystems

Summarized by Alex Rasmussen (arasmuss@cs.ucsd.edu)

Roger Meike from Sun Labs provided an overview of Sun-
SPOT, Sun’s research and development platform for study-
ing the entire embedded systems software and hardware
stack as part of its Internet of Things Actualized initiative.
SunSPOTs run Java, come equipped with a variety of sen-
sors and affectors, and can communicate with one another
wirelessly. Additionally, the SunSPOT platform comes with
a large number of libraries, and the device itself is modular,
allowing users to install custom or preconfigured sensor
boards to fit their application.

The majority of the talk focused on projects that have used
SunSPOTs. Meike gave examples ranging over several do-
mains, including toys, research-oriented sensor networks for
environmental monitoring, autonomous robots, and art in-
stallations. He also discussed some work that has been done
to build a community around the SunSPOT platform; Meike
believes that allowing the SunSPOT community to largely
integrate itself into existing social networks (through use of
the #spaught Twitter tag, for example), rather than creating
a domain-specific social network, has helped the commu-
nity grow beyond a core group of SunSPOT enthusiasts.

When asked about the weirdest thing anyone has ever done
with a SunSPOT, Meike replied that they once taught a
SunSPOT Morse code and created a translator that would
receive Morse code sent wirelessly by one SunSPOT and
translate it into semaphore.

Meike provided a number of pointers to more information
about the SunSPOT platform. sensor.network.com provides
information about various SunSPOT installations. See http://
sunspotworld.com and http://spots.dev.java.net for more
information about the platform and existing applications.

poster session

Summarized by Chris Frost (chris@frostnet.net) and Rik
 Farrow (rik@usenix.org)

SPROV: A Library for Secure Provenance■■

Ragib Hasan, University of Illinois at Urbana-Champaign; Radu
Sion, Stony Brook University; Marianne Winslett, University of
Illinois at Urbana-Champaign

SPROV, an application-layer library for secure provenance,
intercepts file-system system calls and logs file modifica-
tions and other lineage information. Cryptographic com-
ponents of the provenance chain allow verification of the
integrity of these provenance records at any point in the fu-
ture. This capability allows one to verify the edit history of
a document. For most common real-life workloads, SPROV
imposes runtime overheads of 1–13%. For more informa-
tion see http://www.usenix.org/publications/login/2009-06/
openpdfs/hasan.pdf and http://tinyurl.com/secprov.

Towards a Formally Verifiable Multiprocessor Microkernel■■

Michael von Tessin, NICTA, University of New South Wales

Michael von Tessin presented his work on formal verifica-
tion of the seL4 microkernel. He is working to extend the
completed proofs for the uniprocessor version and make
them work in a multiprocessor setup. To reduce complexity
introduced by concurrency, he identified two orthogonal ap-
proaches: The first is to use one big lock around the kernel
to reduce parallelism. The second is to reduce sharing by
having a multikernel architecture.

Sonar-Based Measurement of User Attention■■

Stephen P. Tarzia, Northwestern University; Robert P. Dick,
University of Michigan/Northwestern University; Peter A. Dinda
and Gokhan Memik, Northwestern University

Stephen Tarzia explained how they are using sonar to moni-
tor user activity. Unlike typical activity monitors, such as
mouse or keyboard event monitoring, sonar can detect if
there is a person sitting in front of a keyboard. The sonar
data is easy to analyze and will be used in power manage-
ment, such as screen dimming.

Including the Network View in Application Response Time ■■

Diagnostics using Netflow
Jochen Kögel, University of Stuttgart

Jochen Kögel presented a use of router-provided flow-level
data, Netflow, to diagnose network issues and their impact
on application response time in global enterprise networks.
Today Netflow data is only used for reporting, accounting,
and security, in part because of its incompleteness caused
by hardware logging limitations. However, Jochen showed
how network round-trip times can be separated from server
response times, how packet loss can be traced to particular
network segments, and how one-way network delays can be
measured with Netflow data.

88 ; LO G I N : VO L . 3 4 , N O. 5

Dynamic Resource Management Through Transparent ■■

Interaction Monitoring
Igor Crk, Mingsong Bi, and Chris Gniady, University of Arizona

In this work, the presenters include context while moni-
toring user behavior. Simply monitoring user events, such
as mouse and keyboard events, doesn’t provide enough
information to predict when a hard drive or network inter-
face should be suspended or awakened, or the CPU run at
a slower clock rate. Using the mouse to open a File dialog
suggests that the hard disk should be spun up in anticipa-
tion of a read or write. This work builds on their 2008
USENIX Annual Technical Conference paper (http://www
.usenix.org/event/usenix08/tech/full_papers/crk/crk_html/
index.html).

Software Configuration by the Masses■■

Wei Zheng, Ricardo Bianchini, and Thu D. Nguyen, Rutgers
University

This poster focused on early research trying to help new
users configure our increasingly flexible software systems.
They plan to collect existing users’ configurations and the
corresponding effects (i.e., performance metrics) to auto-
matically recommend configurations for new deployments.
They hope this will help new deployments by determining
the sequence of configurations to try whose values are most
likely to achieve the target performance on the new deploy-
ment in a descending order. They also estimate the number
of experiments for a target performance to enable explicit
tradeoff between performance target and configuration tun-
ing. Open questions include how to obtain existing con-
figurations, how varied configurations are, how to combine
existing configurations with expert data, and how to deal
with software evolution. For more information see http://
vivo.cs.rutgers.edu/.

FlexFS: A Flexible Flash File System for MLC NAND Flash ■■

Memory
Sungjin Lee, Keonsoo Ha, Kangwon Zhang, and Jihong Kim,
Seoul National University; Junghwan Kim, Samsung Electronics

There exist two types of NAND flash in today’s products:
SLC is fast and supports a large number of block erases,
and MLC supports large capacities. FlexFS is a file system
for embedded mobile systems that can use MLC hardware
to provide the benefits of both MLC and SLC flash by
treating the hardware as MLC or SLC on a per flash-block
basis. FlexFS provides the larger capacity of MLC flash to
end users, but strives to write as much data as possible to
SLC flash blocks to maximize I/O performance. FlexFS also
provides a mechanism that mitigates the poor wear char-
acteristics of MLC flash. Their paper was presented during
USENIX Annual Tech ’09 (see above).

Zephyr: Efficient Incremental Reprogramming of Sensor ■■

Nodes using Function Call Indirections and Difference
Computation
Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff,
Purdue University

Zephyr reduces the size of software updates for sensor
nodes with a goal of improving battery life. By updating
using a modified rsync to reduce the amount of program
data required for patching, and using function call indirec-
tion, Zephyr requires much less energy for both network
and flash storage. Panta also presented on Zephyr during
the conference.

distributed systems

Summarized by Kiran-Kumar Muniswamy-Reddy
(kiran@eecs.harvard.edu)

Object Storage on CRAQ: High-Throughput Chain ■■

 Replication for Read-Mostly Workloads
Jeff Terrace and Michael J. Freedman, Princeton University

Internet storage providers have started providing object
storage with eventual consistency semantics. Eventual con-
sistency, said Jeff Terrace, is difficult to program, as it can
return stale data on reads to users. The traditional strong
consistency is easy to program but hard to scale. This work
introduces CRAQ (chain replication with apportioned
queries), a storage system that provides strong consistency
while also ensuring high scale and availability. CRAQ is an
improvement over the chain replication (CR) method. CR
organizes all nodes storing an object in a chain, with the
head of the chain processing writes and the tail of the chain
processing reads. On a write, the head propagates modifica-
tions along the chain and acknowledges the write to users
once the write has propagated to the tail. On a read, the tail
returns the value it has stored for the object, thus ensur-
ing strong consistency. Since all reads are served by the
tail node in CR, the tail can be a potential hotspot. CRAQ
improves on CR by taking advantage of the fact that all the
nodes on the chain have replicas of the data and can serve
read requests. CRAQ uses the following scheme to ensure
strong consistency in the event that reads are issued while
an update is propagating through the chain. Each node that
has dirty data (i.e., data that has not yet been propagated to
the tail) queries the tail for the current version number of
the data and returns that version of the data to the user. The
overhead on the tail in CRAQ is smaller than in CR, due to
the fact that the tail has to reply with metadata, as opposed
to the whole object in CR.

CRAQ can also provide eventual consistency if it is suf-
ficient for the applications, reducing the number of opera-
tions across data centers compared to CR. Since one can
look up objects from any node in the chain in CRAQ, one
can look up objects from the nodes in the local data center,
whereas in CR, one has to send the request to the data cen-
ter that has the tail node. Users can also configure CRAQ in

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 89

a variety of ways. For example, to ensure datacenter diver-
sity, users can specify the data centers to be used for a chain
and the chain size in each data center. Terrace presented
evaluation results comparing CRAQ and CR on Emulab: the
results confirm that CRAQ scales better than CR.

One audience member commented that Hadoop could
really use this scheme for appends and requested that the
authors consider contributing this to the Hadoop project.
Sourav Bagchi asked what happens if two separate writes
originated for the same object in two data centers. Terrace
replied that there is a statically defined master data center
that coordinates the writes. How might the system change if
the operations were persistent as opposed to in-memory (as
it is now)? The system would change but the protocol would
still be effective.

Census: Location-Aware Membership Management for ■■

Large-Scale Distributed Systems
James Cowling, Dan R.K. Ports, Barbara Liskov, and Raluca Ada
Popa, MIT CSAIL; Abhijeet Gaikwad, École Centrale Paris

Dan Ports presented Census, a membership service de-
signed to work in wide area locality-aware large-scale
systems—hence, a platform for building large-scale distrib-
uted systems that have to deal with constant churn. Census
divides time into epochs and provides consistent mem-
bership views to all nodes in a single epoch. Many of the
previous membership services were restrictive in that they
provided only partial views of system membership, whereas
Census provides stronger consistent semantics, thus making
applications easier to develop. The basic approach of Census
is to designate one node as a leader. The other nodes then
report any membership changes to the leader, and the
leader aggregates these changes and multicasts the updated
membership to members. In the next epoch, members up-
date their membership views.

In order to reduce load on the leader, Census divides the
nodes into a hierarchical structure based on network coor-
dinate locality of the nodes. The hierarchical structure is
constructed by exploiting the membership knowledge of the
system. Since there is a consistent membership view, nodes
can reconstruct the tree on the fly, and there is no proto-
col overhead even during churn. For very large networks,
nodes are grouped into regions according to their network
coordinates. For such networks, Census makes an excep-
tion, and the membership knowledge of nodes is restricted
to the nodes in their region. Each node has a summary of
membership in other regions. Census uses standard state
replication techniques for fault tolerance and can optionally
deal with Byzantine faults. An evaluation of Census shows
that it imposes low bandwidth overhead per node, reacts
quickly to churn, and scales well.

One audience member questioned whether it is possible for
branches to occur due to two nodes having different views
of the membership tree. Ports replied that there can be
temporal inconsistencies, but the nodes can use the ver-

sion number in each epoch to resolve inconsistencies. Does
Census require nodes to store old versions of the views? It
helps to have a few recent membership views. How does
Virtual Synchrony compare with Census? Ports replied that
Virtual Synchrony was more rigorous, but it is similar to
their scheme. Does the duration of the epoch affect the scal-
ability? If the epoch is small, their scheme can have slightly
higher overhead, but it does not affect scale.

Veracity: Practical Secure Network Coordinates via ■■

 Vote-based Agreements
Micah Sherr, Matt Blaze, and Boon Thau Loo, University of
Pennsylvania

Network coordinates (NC) are a decentralized mechanism
to estimate approximate network distances between hosts
without performing a pairwise measurement. However, NC
systems are easy to manipulate. If 10% of the nodes are
malicious, there is a 4.9x decrease in accuracy, and if 30%
of the nodes are malicious, there is an 11x decrease. Micah
Sherr presented Veracity, a security protection layer for NC
systems. It differs from existing solutions in that it assumes
no triangular invariants, is fully distributed (other schemes
assume a priori trusted nodes), supports dynamic neighbor-
sets, and does not assume temporal locality.

Participants in Veracity are either publishers or investiga-
tors. An investigator is a node that wants to use the pub-
lisher’s coordinate to update its own. When a publisher
returns its coordinate to the investigator, the coordinate is
verified by a set of verification nodes (a deterministic set of
peers of the node) before the investigator uses it. A mali-
cious node that tries to publish incorrect coordinates will
fail this step. After verification, the investigator updates
its own coordinate based on the publisher coordinate and
the RTT between it and the publisher. The publisher can
delay its response to the investigator’s probe and induce an
error in the investigator’s coordinate computation. In the
second step, the investigator updates its coordinate only if
the new coordinate results in an error below a threshold
when computed against a random set of peers. Veracity is
implemented by modifying the Vivaldi implementation that
is packaged with Bamboo. The authors demonstrated the
effectiveness of Veracity under a variety of attacks.

John Dunagan commended Sherr for the thoroughness of
their evaluation, but wondered if random delay is the worst
an attacker can do. Sherr replied that they looked up all at-
tacks in the literature and came up with some of their own
attacks. Further, Sherr agreed that it is hard to assert that
Veracity is resilient against all attacks, so they are trying to
formalize and verify their system. Could jitter on the WAN
affect Veracity? NC systems handle many of these issues.
Veracity doesn’t distinguish between malice and temporary
effects. Veracity does allow users to tweak knobs so that
they can handle corner cases in network behavior.

90 ; LO G I N : VO L . 3 4 , N O. 5

kernel de velopment

Summarized by Ragib Hasan (rhasan@uiuc.edu)

Decaf: Moving Device Drivers to a Modern Language■■

Matthew J. Renzelmann and Michael M. Swift, University of
Wisconsin—Madison

Matthew Renzelmann presented Decaf, a tool for moving
device drivers from the kernel to user space. Driver pro-
gramming and debugging are difficult tasks, and complica-
tions can lead to driver unreliability. Renzelmann argued
that writing drivers in type-safe high-level languages such
as Java can alleviate these problems, but may introduce per-
formance degradation. Decaf solves this by moving most of
the driver functionality to user-mode code written in Java,
with a only small amount of code running inside the kernel.
Decaf provides a migration path for porting existing kernel
drivers to user mode. This also makes writing patches easy,
to evolve drivers over time.

Decaf builds on the authors’ previous work on microdrivers,
allowing one to write drivers from scratch and migrate ex-
isting drivers. The programmer annotates legacy drivers and
then uses the tool DriverSlicer to split the driver code into
a nucleus (which runs in kernel mode) and a user-mode li-
brary. The developer can then migrate code from the driver
library to the Java Decaf driver one function at a time. For
example, in porting the ENS1371 sound card driver, Decaf
uses Jeannie to allow C and Java code to be mixed in the
same file. Complex Java/C transfers are handled using
XPC. The authors evaluated Decaf by migrating five exist-
ing drivers, showing that porting most of the functionality
to user-mode Java code can still provide reasonably good
performance.

A member of the audience asked if the authors had stud-
ied the memory overhead. Renzelmann replied that there
is roughly a 3x memory overhead. Since there was no Java
code invoked during the benchmarks, how can the au-
thors be sure that Decaf will correctly handle bugs in the
driver? The Java code did run during driver initialization,
and the only code left in the kernel mode in C is for faster
performance. To a question about refactoring, Renzelmann
mentioned that the object-oriented features of Java allowed
reduction of the code size for the e1000 driver by 6.5 KB.
To a question about the observed bug distributions, Ren-
zelmann referred to their earlier microdrivers study, where
they found bugs to be uniformly distributed between kernel
and user mode. Alan Thai inquired about performance op-
timization, and Renzelmann said that they did not use any
multi-threading or other optimizations. An audience mem-
ber who recently discovered a bug in the e1000 driver asked
if the authors performed any detailed bug analysis. They
had not. How much performance degradation occurred by
rewriting the C driver code into Java? Performance loss was
not substantial, largely because most of the overhead is in
control and in data transfer between user and kernel modes.

Rump File Systems: Kernel Code Reborn■■

Antti Kantee, Helsinki University of Technology

Antti Kantee presented his work on reusing kernel code in
user space. A large portion of the kernel code can be run in
the user mode with no modifications. Reusing kernel code
in user-space applications saves reimplementation time. The
Rump File system runs on NetBSD, where it allows differ-
ent file system codes as user-space processes. The author
defined a Rump as a “runnable userspace meta program,”
i.e., a user-space program which runs kernel code, and a
framework that allows this. The Rump kernel runs inside
the host OS kernel. The author’s goal was to make kernel
development simpler. Currently, kernel developers need
to use user-mode OS, virtual machines, or emulators to
develop and debug kernel code. By allowing unmodified
kernel code to be run from user space, debugging and de-
velopment become easier.

Rump works by using as much kernel code directly as
possible. Rump has two modes: a mounted server mode,
which is transparent to the applications but where mount
privileges are required, and an application library mode,
where the application needs explicit modifications but can
run with no special privileges. Kantee gave an example
scenario in which a corrupt file system on a USB stick can
cause a system crash or have exploits. This can be avoided
by mounting the device as a Rump file system in user space,
thereby isolating the damage to a user-mode process. Rump
also makes kernel debugging easier, as various debuggers
can be used to give even non-experts control over the de-
bugging process. Kantee talked about a Google Summer of
Code project that implemented an application suite provid-
ing mtools-like functionality for all file systems supported
by Rump. He also showed that Rump is maintainable, with
only a small number of Rump breakage commits in the
NetBSD repository.

Is the buffer management layer still kept inside the kernel?
Kantee answered that Rump uses double buffering, with
both the kernel and the application maintaining its own
buffer. However, the double buffering is a temporary work-
around, which Kantee plans to fix. Is it obvious which part
of the interface to port and which one to rewrite? It is not
obvious—it’s mostly gut feeling.

CiAO: An Aspect-Oriented Operating-System Family for ■■

Resource-Constrained Embedded Systems
Daniel Lohmann, Wanja Hofer, and Wolfgang Schröder-
Preikschat, FAU Erlangen—Nuremberg; Jochen Streicher and
Olaf Spinczyk, TU Dortmund

Wolfgang Schröder-Preikschat presented their paper on
using aspect-oriented programming in embedded operating
systems. Embedded operating systems are widely used in
different devices, but to handle different architectures, the
code becomes very complex with the use of #ifdef. In the
eCos operating system, for example, only two lines of fun-
damental code requires 34 lines of ifdef blocks, spread over

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 91

seventeen functions and data structures in four implementa-
tion units. This problem, also known as “ifdef hell,” makes
software complex and difficult to maintain. Schröder-
Preikschat argued that aspect-oriented programming (AOP)
can solve this by modularizing cross-cutting concerns.
After a brief introduction to AOP, the presenter showed how
they used AspectC++ (an extension to C++) along with the
source-to-source weaver tools to generate normal C++ code
from a given aspect specification.

AOP can help here by eliminating the ifdefs. They used this
approach in the CiAO system to design configurable embed-
ded-system software. CiAO has loose coupling, visible tran-
sitions, and minimal extensions. Important state transitions
are captured by a point-cut expression in the aspect. The
resulting base system is designed with classes, and most
functionality is provided by optional aspects—extension
aspects, policy aspects, and upcall aspects. Schröder-Preik-
schat gave an example of an extension aspect that uses task
scheduling. For evaluation, he mentioned their collaboration
with Audi and Elektrobit, where they showed that CiAO
runs on a number of microcontroller-based systems. He also
compared CiAO with OSEK. Finally, Schröder-Preikschat
talked about how using aspects for low-level code can break
fragile join points and about other issues related to aspect-
aspect interdependencies, such as join point traceability and
granularity.

Remzi Arpaci-Dusseau from the University of Wisconsin
asked whether the ordering of advice procedures has to be
considered in the structure definitions. Schröder-Preikschat
replied that advice ordering tells in what order the aspects
are going to be intermixed in the source code, and so the
use of a C pointer may cause some problems. Can aspects
be applied at the level of statements? Fine-grained aspect-
oriented programming would require using empty functions
around statements, but there are not very many cases like
that. Sourabh Bagchi from Purdue asked whether using this
will be cost-effective, in terms of the effort spent in defining
aspects, in real-life scenarios. Configurability of a system
will forever be a problem, for example, in the auto industry,
which needs very deterministic behavior from their embed-
ded systems.

invited talk

Towards Designing Usable Languages■■

Matthew Jadud, Allegheny College in Meadville, PA, and
 Christian L. Jacobsen, Untyped Ltd.

Summarized by Michael von Tessin (mtvt@cse.unsw.edu.au)

Edit, compile . . . edit, compile. This tireless cycle dates
back to the 1960s, when the cost of editing and compiling
was substantial.

Despite this by now long-standing interaction between
human and computer, the observable behavior of novice
programmers has only recently been linked with negative

affective states. That’s a fancy way of saying, “We can detect
when students are frustrated.” The short-term goal in this
study is to support the learner with sensible interventions
based on automated observation of their interactions with
the compiler and their environment. The longer-term goal is
to help provide a human-centered foundation for the design
of languages and their environments.

To this end, the language design target is ambitious: paral-
lel languages for robotic control. The authors have built a
small virtual machine to support message-passing parallel
languages (the Transterpreter) and have begun exploring
its use on small, microcontroller-based mobile robotics
platforms. They felt this was good engineering: begin by
exploring, understanding, and reusing well-tested and for-
mally verified languages with a rich 20-year history. They
also thought more people might use the tools if they could
play with them on robots made out of shiny yellow plastic.
In short, this is a story about people trying to do some cool
stuff at the intersection of usability research and the design
and implementation of parallel-programming languages.

BlueJ is a development environment used at the University
of Kent to teach novice students OO programming in Java.
It allows classes, object instances, and invocations to be cre-
ated/executed via a graphical interface. Skeleton code is au-
tomatically created and helps students to start writing code
instead of just presenting them with a blank page. BlueJ
can be used to trace all compiler invocations, i.e., record
the time of invocations and their results (warnings, errors).
Their study covers about 42,000 programs in 2000 sessions
of 120 students over two years. Overall, 56% of all compiler
invocations resulted in a syntax error. The top errors were:
unknown variable, missing semicolon, missing bracket,
unknown method, app. error, illegal start of expression.
They were able to spot compiler error messages that can
completely confuse students and frustrate them.

Midway through the talk, the speakers opened the floor to
questions. If students know their activities are monitored,
does it affect their behavior? They haven’t explicitly looked
at that, but if monitoring makes them think harder before
they hit “compile,” that would be an interesting outcome.
Someone else asked about variation in traces over the
course of a semester. They did see error rates vary and in
the types of errors change as students’ skills evolved.

When teaching parallelism to students, the speakers contin-
ued, they don’t want to use an existing sequential language,
because the compiler doesn’t know how to help students (or
even confuses them). Thus, they have chosen occam, which
is used a lot at the University of Kent. They want learn-
ing parallelism to be fun, but also authentic. “Authentic” in
robotics means that although there is a basic sequence—
sense → think → act—this is never a strict sequence; you
can have multiple inputs (sense), multiple outputs (act), and
multiple tasks/calculations (think phases) running in paral-
lel and interconnected.

92 ; LO G I N : VO L . 3 4, N O. 5

The authors want the ability to reach out to a community
of tinkerers and explorers and the hardware they use in the
classroom to be affordable. A good choice is Arduino (http://
arduino.cc), which only costs $20 and allows you to buy,
download, or build your own software and has a large com-
munity behind it. The authors know that designing a new
language is hard to do well and to get right. On the other
hand, Java was not designed for novice programmers. There
were some good examples (Logo and Lego Mindstorms), but
they eventually want to get rid of the standard edit/compile
cycle.

One speaker said, “In 10 years from now, I don’t want my
son (now 13 weeks) to learn how to program embedded
systems in C. I want tools to be designed for him. So please
engage and have a look at baseplate.org and transterpreter.org.”

There were some concluding questions. Have you contacted
psychologists or other experts in child development? Not
yet. That would be future work and very interesting. What
motivated you to choose occam? Occam has a long British
tradition (Tony Hoare, Bristol) and Kent has a long tradition
in that space. Erlang (which is heavily used in telco) has a
huge runtime, so we moved away from Lego Mindstorms
and started to use occam, which has a very small runtime
and memory footprint.

autom ated m anagement

Summarized by Xu Chen (chenxu@umich.edu)

Automatically Generating Predicates and Solutions for ■■

Configuration Troubleshooting
Ya-Yunn Su, NEC Laboratories America; Jason Flinn, University
of Michigan

Su observed that troubleshooting computing systems is
hard. There have been automated troubleshooting tools
proposed, but they rely on a given set of predicates that
can be used to determine good or bad system states. In this
talk, Su proposed methodologies for automatically generat-
ing predicates. Existing approaches analyze source code
or configuration files, but Su showed that predicates can
be extracted from previous user or expert troubleshooting
behaviors.

A modified shell is used to record human troubleshoot-
ing behavior, including commands executed and resulting
kernel-object modifications, while being unobtrusive to
the users. The basic assumption is that users usually use
repeated commands as predicates, one for recreating the
failure and one for evaluating the troubleshooting outcome.
The results of these repeated commands should be differ-
ent, in terms of exit code, screen output, or kernel objects
modified. Causal dependencies of different commands are
tracked by the modified shell such that the command that
solved the problem can be identified, while pruning unre-
lated commands. To sanitize the user-submitted predicates,

they are ranked according to popularity and merged based
on the associated state delta.

Su demonstrated through a user study with 12 participants
solving four configuration problems that the proposed
method can extract correct predicates, with very few false
positives (wrong predicates). The false positives are intro-
duced because the users did not perform repeated predi-
cates or did not solve the problem.

The audience raised questions regarding how to pinpoint
the exact solution when the user changes a lot of different
things. Su emphasized that their methodology currently
works at kernel object level (e.g., a file). So the exact change
made, such as which line in the file, cannot be determined.
How are generated predicates applied to other environ-
ments? The generated predicates and solutions are canoni-
calized so that they can be applied to different users, as
shown in their prior work, AutoBash.

JustRunIt: Experiment-Based Management of Virtualized ■■

Data Centers
Wei Zheng and Ricardo Bianchini, Rutgers University; G. John
Janakiraman, Jose Renato Santos, and Yoshio Turner, HP Labs

Managing a data center is hard. To predict system behavior
resulting from configuration changes, Zheng proposed an
experiment-based approach called JustRunIt. The assump-
tion is that data centers usually run services in tiers, with
many instances of VMs for each tier. The basic idea is to
create sandboxed VMs to run alongside production VMs
so that different parameters can be explored in the sand-
box without affecting production services. The sandboxed
VMs will be running clones of production VMs. For each
tier, an in-proxy and an out-proxy are used to hand over
to sandboxed VMs the traffic from production VMs. The
management entities usually specify the ranges for different
parameters and some time limit for experiments. JustRunIt
will try to search the parameter space as much as pos-
sible within the time limit. Since the search space is large,
interpolation is used if not all combinations are tested. As
a simple heuristic, JustRunIt prioritizes the combination of
the upper and lower bounds of different parameters.

JustRunIt is implemented in Xen and has been tested on
a cluster of machines running multi-tiered Internet ser-
vices. Evaluation results demonstrate that the overhead of
JustRunIt is small. The accuracy of JustRunIt is very good:
it can accurately predicate production service behavior in
terms of mean response time and throughput.

Zheng presented two usage scenarios in which JustRunIt
was used to estimate the impact of hardware upgrades and
to derive a better resource allocation strategy in the context
of an SLA violation.

Audience members raised several questions. How practi-
cal is JustRunIt when the parameter search space is very
large? Even though JustRunIt can give an accurate estimate
on mean response time, would the variance or exhibited
distribution of response time be accurate as well? How does

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 93

JustRunIt compare to some greedy approaches in resource
management, which, for example, just allocate more VMs if
SLA is violated?

vPath: Precise Discovery of Request Processing Paths from ■■

Black-Box Observations of Thread and Network Activities
Byung Chul Tak, Pennsylvania State University; Chunqiang Tang
and Chun Zhang, IBM T.J. Watson Research Center; Sriram
Govindan and Bhuvan Urgaonkar, Pennsylvania State University;
Rong N. Chang, IBM T.J. Watson Research Center

Tak observed that enterprise services are usually multi-
tiered, and a user request usually traverses the system after
being processed by a variety of threads that communicate
with each other. How each request moves through the
system can be characterized by request-processing paths,
which Tak tried to discover in his work. There are two
types of existing approaches: statistical inference, which is
flexible but may not be as accurate; and instrumentation-
based, which is accurate but requires source code.

Tak proposed vPath, which resides in a virtual machine
monitor and thus is transparent to the application running,
yet does not impose too much overhead. vPath identifies the
request-processing path by tracking internal and exter-
nal causality between thread activities within and across
machines. The VMM identifies threads and tracks their TCP
behavior to identify causalities. This is possible because
most commercial applications follow a multi-threaded struc-
ture and synchronous communication patterns. vPath seeks
to demonstrate that the application model can be exploited
to solve the problem of path discovery, presenting a new
direction and paradigm.

Implementation-wise, vPath modifies the Xen VMM to
intercept some system calls made within each VM. For the
related system calls, threads are identified by inspecting the
EBP register, while network socket information is delivered
by hypercalls. For current support, a guest VM needs to be
modified to invoke hypercalls, but in the future such func-
tionality will be merged into the VMM, as Tak pointed out.
While delivering accurate processing-path results, vPath
exhibited about 6% overhead in increased response time
and throughput reduction in a TPC-W test.

There were concerns from the audience about how appli-
cable vPath is to complicated applications whose workload
model deviates from vPath’s assumptions, and about the
benefits vPath could deliver compared to existing inference-
based approaches.

short papers

Summarized by Stephen P. Tarzia (starzia@northwestern.edu)

The Restoration of Early UNIX Artifacts■■

Warren Toomey, Bond University

Warren Toomey described efforts by himself and others
at the UNIX Heritage Society to restore the first edition of
UNIX from 1971. In addition to its historical interest, this

case study serves as a lesson in preserving code for use in
the distant future. Toomey’s story began with the discov-
ery of a printed assembly code listing for the first edition
of UNIX. However, much more than the source code was
needed. Running the code required several reconstructions,
including correcting lines of code, adding peripheral hard-
ware devices to the PDP-11 emulator, and rewriting system
utility binaries.

Toomey observed that although software does not physi-
cally decay like hardware, it cannot run in a vacuum. The
software and hardware environment that it requires is,
of course, constantly evolving. This phenomenon is often
called “bit rot.” The key to preserving code is to preserve
the environment as well. This includes keeping contempo-
rary libraries, compilers, configuration files, hardware (or,
preferably, a hardware emulator), documentation, anecdotes,
and publications.

Toomey reported that a few first-edition UNIX bugs had
been discovered during the restoration and had been jok-
ingly posted as security advisories. An attendee asked how
to best preserve this kind of restoration work. Toomey
encouraged thorough documentation and replication.

Block Management in Solid-State Devices■■

Abhishek Rajimwale, University of Wisconsin, Madison; Vijayan
Prabhakaran and John D. Davis, Microsoft Research, Silicon
Valley

Abhishek Rajimwale presented an analysis of how Solid
State Drive (SSD) characteristics break file systems’ long-
standing assumptions, and he prescribed appropriate
storage-stack changes aimed at improving SSD performance
and longevity. In contrast with conventional, spinning mag-
netic disks, SSDs have low random-access latency, signifi-
cant background activity (for cleaning and wear-leveling),
significant media wear-down, and no seek delay. Addition-
ally, they exhibit write amplification, meaning a small write
results in the entire, much larger, block being rewritten.

Rajimwale and colleagues measured characteristics of sev-
eral different SSD samples, gathered real file-system traces,
and modified the SSD module extension for the DiskSim
(PDL) simulator. He showed results quantifying the above
characteristics and presented three optimizations based on
these results. First, the device should merge write requests
when possible; second, background maintenance opera-
tions should be stalled during high-priority I/O; finally, the
SSD should be prevented from cleaning free disk blocks. To
implement the above performance and longevity optimiza-
tions, Rajimwale called for a richer storage device interface.
In particular, he proposed a higher-level interface such as
object-based storage, to allow the SSD to manage block-level
details itself.

Were there cases when the SSD should provide dynamic
status information to the OS? If cells are being switched be-
tween multi-level (MLC) and single-level (SLC) modes, that
information could be shared with the OS. Do conventional

94 ; LO G I N : VO L . 3 4 , N O. 5

RAID disk arrays share the same issues? Rajimwale agreed
that write amplification has also existed in RAID, but
said that the background activity found in RAID (namely,
rebuilding) is relatively infrequent; SSD background activ-
ity may be continuous. Another attendee suggested letting
the OS control low-level block management on the SSD.
Rajimwale agreed that OS control is a viable alternative, but
suggested that, as SSD devices get more complex, internal
control is desired.

Linux Kernel Developer Responses to Static Analysis Bug ■■

Reports
Philip J. Guo and Dawson Engler, Stanford University

Philip J. Guo presented an analysis of Linux kernel develop-
er responses to bug reports generated by the Coverity static
code analysis tool. Their basic goal is to evaluate such tools
and to make them more useful by automatically prioritizing
the thousands of generated bug reports by correlating bug
reports from a single source snapshot to subsequent devel-
oper actions in the bug tracker and repository. Such bugs
are either ignored or triaged, and the assumption was that
developers ignored bugs because they were identified as less
important or meaningful. They found correlations between
triage rate and several factors such as error type, other static
bugs, user-reported bugs, and file age, size, and location.

Guo argued that static analysis is indeed useful. Although
static bugs are shallow in nature, he believes that their cor-
relation results show that developers can be led by static
bugs to deeper bugs. Quoted reactions from kernel develop-
ers support this hypothesis.

The first audience question was whether static-code-analysis
tool use results in fewer bugs over time. Guo responded
that, since the kernel source is growing, it is difficult to de-
termine such trends. Can a code-complexity metric be used
to find deep bugs? Guo supported this idea and pointed out
that static analysis bugs often result from code complexity,
so these ideas are actually complementary. Had the authors
contacted lead kernel developers? Although their developer
quotes were anonymized, some were from veterans.

Hardware Execution Throttling for Multi-core Resource ■■

Management
Xiao Zhang, Sandhya Dwarkadas, and Kai Shen, University of
Rochester

Xiao Zhang presented a new software-based multicore
resource management mechanism called Hardware Execu-
tion Throttling. The general problem is core performance
isolation. Adjacent cores typically share a last-level cache,
so one core can slow down other cores by overusing the
cache. Hardware Execution Throttling cleverly uses two
features of Intel Core-series processors: duty cycle modula-
tion (DCM) and cache prefetcher disabling. These settings
can be quickly adjusted (within a few hundred CPU cycles)
to reduce a core’s shared-cache access rate. This fine-grained
control is their primary contribution relative to previous

mechanisms. Of course, core performance control policy is
a separate problem which this work does not address.

Zhang described a fairness metric for concurrent applica-
tions. This measures the extent to which all applications
are running at the same level of performance. They used a
set of standard benchmark applications to favorably com-
pare Hardware Execution Throttling’s fairness to previous
mechanisms.

An attendee noted that hyper-threading would cause pairs
of threads to be throttled together. Zhang agreed and sug-
gested pressuring CPU vendors for more flexible control.
Would kernel activity on a throttled core be affected? The
kernel could quickly de-throttle that core. Were there
cases in which one of the two CPU features worked better
for throttling? Zhang didn’t have a concrete example, but
reported that DCM has a more predictable effect than dis-
abling prefetching. Responding to another question, Zhang
said performance was not very sensitive to the particular
choice of DCM setting used. Finally, an attendee pointed
out that the throttling policy would have to follow a process
as it migrated to different cores.

invited talk

The Antikythera Mechanism: Hacking with Gears■■

Diomidis Spinellis, Athens University of Economics and Business

Summarized by Ragib Hasan (rhasan@uiuc.edu)

Diomidis Spinellis presented the history and the functional-
ity of the Antikythera Mechanism, an ancient mechanical
computer used for astronomy. Spinellis started with the
history of the discovery of the mechanism. In 1900, Greek
sponge divers on a fishing trip took shelter from a storm
on the island of Antikythera, between the Peloponnese and
Crete. One of the divers found some relics when he dived
near the island. Subsequent archaeological expeditions
found a large number of ancient artifacts, the result of a
shipwreck almost 2000 years ago.

Among these was a heavily corroded bronze object consist-
ing of multiple gears. Initially it was thought to be an as-
tronomical toy. Later, in the 1950s, Derek J. de Solla Price,
a Yale professor, presented a theory that this mechanism
was used to compute the motions of celestial objects. By
studying an X-ray of the object, he created a model of how
it worked using a combination of many intertwined gears.
Price’s model was later found to be incorrect, but it formed
the basis of more thorough studies published in the journal
Nature in 2006 and 2008 (see http://www.antikythera-
mechanism.gr).

A total of 82 fragments of the mechanism are available.
Recently, researchers studied the mechanism using digital
radiographs, X-ray tomography, and a 3D lighting model.
Inscriptions on the mechanism serve as a user manual.
The researchers found that it could calculate days in the
Egyptian calendar. The device could also compute the mo-

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 95

tion and phases of the moon and predict solar and lunar
eclipses. As a comparison, Spinellis showed that the equiva-
lent code in BSD’s moon phase program is very complex.
The Antikythera Mechanism used the Metonic calendar and
computed complex astronomical predictions, as well as the
year of the Olympic games.

Spinellis created a complete Squeak EToys emulator for
showing how the mechanism worked. The emulator is
available at http://spinellis.gr/sw/ameso. He demonstrated
the working of the mechanism with animations from his
emulator. Finally, Spinellis pondered the purpose of the
device. He said that we may never know the real purpose of
the tool, but it might have had some political and strategic
value, since prediction of eclipses was important at that
time. This mechanism was too delicate to carry on a ship to
aid in navigation. This could also have been an educational
tool, or simply something someone (possibly an ancient
hacker) built for fun.

A member of the audience asked what was the complexity
of the mechanism compared to other machines. Spinellis
said that no other such mechanism from that time has been
found. Another person remarked that there was a clock
built during the Renaissance to simulate the motion of the
planets, and asked if this could have done the same thing.
Spinellis said experts have posited that, with some gears, it
could have calculated planetary positions too. The mecha-
nism was expensive to build just for moon positions, so it
probably also computed the paths of others celestial bodies.
Did the device have any bugs? The device was designed in
a very clever manner, and there are no bugs in the mecha-
nism.

system op timization

Summarized by Abhishek Rajimwale (abhi@cs.wisc.edu)

Reducing Seek Overhead with Application-Directed ■■

Prefetching
Steve VanDeBogart, Christopher Frost, and Eddie Kohler, UCLA

Steve VanDeBogart addressed the problem in prefetch-
ing arising from non-sequential accesses by applications
in systems using disks. He introduced a new prefetching
algorithm which uses applications’ knowledge of future
accesses and is implemented in the form of a user-space
library called “libprefetch.” libprefetch provides a convenient
application interface, needs little modification to the kernel,
and handles resource sharing.

Steve then presented the details of the intuition behind
libprefetch. He showed that for seeks above 1 MB there is a
very gradual increase in cost; however, reducing seeks larger
than 1 MB to less than 32 KB (on average) can result in sig-
nificant performance gain. He also showed that using larger
reorder buffers greatly helps to reduce average seek cost
as well as number of disk passes. Next, he explained the
libprefetch’s interface, which uses a callback mechanism,

and also talked about how libprefetch solves the problem
of contention in memory by using a TCP-like mechanism
(i.e., additive increase and multiplicative decrease). Finally,
libprefetch showed an up to 20x improvement in some
benchmarks using real applications.

Someone in the audience asked about whether applications
need to use “pread” only to be able to use libprefetch. Steve
clarified that they intercept read, pread, and other vari-
ants. How much gain do the authors expect if they don’t
use spinning disk and use SSDs (or RAID arrays) on these
benchmarks with libprefetch? Disks will still exist as long as
SSDs are expensive; for RAID arrays, it’s possible to extend
this work by pushing information up from RAID arrays
about the layout; as far as direct performance gains on SSDs
are concerned, there may be some gains. What is the gener-
ality of the non-linear relation between seek time and seek
distance, and what are the reasons behind it? Although they
had limited samples of disks in their results, similar results
have been shown in previous works. The reason is due to
rotational latency and seeks. Had they tried to use selec-
tive joins (queries) to see gains? As long as access patterns
are known, performance will improve with libprefetch. For
more information see http://libprefetch.cs.ucla.edu.

Fido: Fast Inter-Virtual-Machine Communication for ■■

 Enterprise Appliances
Anton Burtsev, University of Utah; Kiran Srinivasan, Prashanth
Radhakrishnan, Lakshmi N. Bairavasundaram, Kaladhar
 Voruganti, and Garth R. Goodson, NetApp, Inc.

Fido is targeted to enterprise-class server appliances such as
NAS, with the aim of addressing the main problem of per-
formance in virtualizing NAS in order to exploit the natural
benefits of virtualization. The main insight, Anton Burtsev
said, was to use the relaxed trust model in these appliances
to design fast inter-VM communication by sharing memory
read-only across VMs in the same appliance.

He then detailed how their fast inter-VM communication
works using a large pseudo-global virtual address space and
mapping the address of all VMs in one single large address
space. Transitive zero copy is achieved by mapping the
communicated read-only data into this global virtual ad-
dress space; a shared memory ring is used to pass pointers.
Two interfaces are used to access Fido: MMNet (network
device interface) and MMBlk (block device interface). Anton
then presented some evaluation figures demonstrating that
MMNet outperforms XenLoop and Netfront, sometimes also
outperforming the monolithic kernel due to inefficiencies
in the TCP stack. Further, MMBlk outperforms XenBlk and
also the monolithic kernel due to contention in tmpfs and
ext3. Finally, Anton presented the case study with NAS in
order to give a more realistic performance evaluation. He
showed that with Fido, NAS can be virtualized with little
performance overhead on micro-benchmarks and TPC-C
macro-benchmarks by exploiting pipelined parallelism
between VMs and by eliminating copy and page-mapping
overheads in the critical path.

96 ; LO G I N : VO L . 3 4, N O. 5

An audience member asked what mechanism was used to
reclaim memory that is shared read-only with other VMs.
Anton replied that they didn’t have any special mechanism
to reclaim memory; for TCP they reclaim memory volun-
tarily when the other VM frees it, but for file systems they
have to copy out memory in the other VM. He had already
acknowledged this limitation in his conclusions. Someone
from VMware also expressed concern about using this
relaxed trust model in the face of users pushing malicious
content into servers. Anton suggested that this model is
a required assumption for this work and, at least for the
networking stack, is a reasonable assumption. What are
the benefits of virtualizing NAS if there is no fault isolation
because of the relaxed trust model? VMs are a pragmatic
approach with benefits of migration, cleaner hardware
support, and better isolation with very little performance
overhead. Future work might include implementing some
micro-rebooting technique to provide fault isolation.

STOW: A Spatially and Temporally Optimized Write ■■

 Caching Algorithm
Binny S. Gill and Michael Ko, IBM Almaden Research Center;
Biplob Debnath, University of Minnesota; Wendy Belluomini,
IBM Almaden Research Center

Binny Gill presented a new writ-caching algorithm called
STOW. He explained the need for the algorithm by showing
that the destaging rate from write caches is important apart
from just destaging order. He pointed out that earlier work,
including his own WOW algorithm, had only focused on
destaging order.

Binny presented the intuition behind the new algorithm
in steps. He first pointed out problems with simplistic
techniques for destaging, such as destaging as quickly as
possible or having a fixed destage threshold. He suggested
that destaging with linear thresholding (high and low) is
required to control the destage rate, but even with linear
thresholding, the destaging occurs in spikes due to the long
time spent in sequential and random regions. With this, he
introduced the notion of separating random and sequen-
tial data streams. However, this leads to low throughputs
because mixing sequential and random streams hurts disk
throughput by forcing the disk head to service two separate
regions instead of one. He further explained that this can
be controlled by adding hysteresis to the destages. The last
important thing in the algorithm is to adapt the sizes of
the sequential and random queues to be responsive to the
workload. He then presented a thorough evaluation of his
algorithm, comparing it with CSCAN, LRW, and WOW.
STOW outperforms all the other algorithms in throughput
and response time for both full back-end and partial back-
end experiments. STOW gives an average of 18% improve-
ment over the previous best algorithm (WOW), which is
substantial because of the slow nature of disk I/O improve-
ments in hardware.

Someone asked why adaptation was required with sequen-
tial queues, particularly because there is little temporal

locality with sequential writes. Binny replied that this
adaptation was required for multiple streams. In order to
get maximum throughput, each stream must have some
amount of data to say it’s sequential, for at least a stripe
or two stripes worth of data. So we need to adapt the size
of the sequential queue according to the number of con-
current sequential streams. Why did he choose a simple
hysteresis rather than some more complex mechanism? He
likes to keep things simple so that they are actually used.
He acknowledged that there could be some further gain in
throughput (around 5% more) by using more complicated
mechanisms, but he wouldn’t worry about that more than
the real applications of his work. Could the technique of
using separate queues with hysteresis be used to dynami-
cally adjust the sizes of read and write caches? This was an
open and complex problem he hadn’t dealt with.

web, internet, data center

Summarized by Wei Zheng (wzheng@cs.rutgers.edu)

Black-Box Performance Control for High-Volume ■■

 Non-Interactive Systems
Chunqiang Tang, IBM T.J. Watson Research Center; Sunjit Tara,
IBM Software Group, Tivoli; Rong N. Chang and Chun Zhang,
IBM T.J. Watson Research Center

Chunqiang Tang provided examples of systems that process
requests generated by automated software tools, in addi-
tion to requests generated by interactive users, e.g., Twitter,
Web Crawler, and IT monitoring and management systems.
Systems that have non-interactive workloads generally ben-
efit more from high throughput than from short response
time.

Tang proposed a general black-box performance control
named TCC (throughput-guided concurrency control),
which varies the number of event-processing threads to
maximize throughput. TCC keeps adding more threads and
observes whether throughput increases. After finding peak
throughput, TCC decreases the number of threads so long
as throughput does not decrease significantly. Tang also
described how to measure throughput accurately and ef-
ficiently through sampling and noise removal.

TCC was demonstrated to maximize throughput and control
resource to near-saturate level by analyzing different event-
processing queue models. The control is also evaluated in a
real implementation to demonstrate the scalability of TCC
and its effectiveness under various bottleneck scenarios.
Tang said future work might include applying TCP-style
flow control to general distributed systems. Emphasizing
that performance control for non-interactive systems is an
interesting problem.

Someone asked whether the time to measure throughput
is deterministic. Tang said it is dynamically adjusted. Is
the increase and decrease of thread number by percentage?
Tang said yes. Can TCC deal with multiple pools of threads?

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 97

That is a limitation of this approach and should be studied
for future work.

Server Workload Analysis for Power Minimization using ■■

Consolidation
Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta
De, and Ravi Kothari, IBM India Research Lab

Akshat Verma described the characteristics of the workloads
collected from the Fortune Global 500 over a period of 90
days in 2007. Based on the observation, Verma proposed
two new consolidation methodologies, Correlation-Based
Placement (CBP) and Peak Clustering-Based Placement
(PCP).

The idea behind CBP is to separate positively correlated
applications across servers. However, it cannot capture
both the body and the tail of the workload distribution.
PCP addresses this problem by using two parameters to
decide collocation. The first can be mean or percentile for
body and the second can be a tail-based metric. All corre-
lated peaks will be separated across active servers, and the
off-peak reservation can be equal to the body value. CBP
and PCP are compared against peak-based and mode-based
sizing approaches. The results show PCP consuming as little
power as the mode-based approach while having very few
capacity violations across different application suites.

Someone asked how the power is measured in this work.
Verma responded that the power was calculated from a
model instead of by measurement. Given that dynamic load
balancing/consolidation is popular in industry, how much
room is left for static consolidation? Even in that situation,
PCP will help to decrease the number of migrations. Chun-
qiang Tang from IBM Research asked if other resources are
considered. Verma said no, but believed that PCP can be
extended to deal with other resources.

RCB: A Simple and Practical Framework for Real-time Col-■■

laborative Browsing
Chuan Yue, Zi Chu, and Haining Wang, The College of William
and Mary

Chuan Yue presented RCB, a pure browser-based collabora-
tive browsing framework. A co-browsing host starts RCB-
Agent, a Web browser extension. Later, co-browsing partici-
pants connect to the host using regular Web browsers. Any
of them can visit a Web page and interact there, with all
Web page contents automatically synchronized between the
host and participants.

The authors implemented RCB as a Firefox extension
and evaluated it with real-time performance in LAN and
WAN settings. The results showed that a Web page can be
synchronized between a host and a participant in a reason-
able amount of time. RCB worked with Google Maps and
Amazon Checkout. User studies indicated that most people
like it and tend to continue using it.

The audience responded actively. One person wondered
why RCB is better than screen sharing. Yue pointed out

that RCB puts less stress on bandwidth and secure assur-
ance. Would a password be transmitted to others? RCB can
enforce a policy on the host side. If multiple participants
submit changes simultaneously, what will happen to a Web
page? The host can write a policy to control what action to
perform if multiple changes are received. Will RCB work if
one has limited access to the Internet? As long as a partici-
pant can connect to the host, RCB should work.

invited talk

A Computer Scientist Looks at the Energy Problem■■

Randy H. Katz, University of California, Berkeley

Summarized by Stephen P. Tarzia (starzia@northwestern.edu)

Randy Katz described how his group and others are apply-
ing computing-inspired solutions to the electrical power
piece of the global energy problem. First, he described
computing’s role as a major energy consumer and proposed
strategies increasing efficiency. Second, he addressed electri-
cal generation and distribution. He used the Internet as a
model for how the power grid might be re-engineered as a
more efficient and robust distributed system.

Katz presented an overview of energy sources and sinks in
the US. Currently, most electricity is generated from coal.
Renewable energy sources have severe limitations, so limit-
ing demand is important. For example, the country with
the highest percentage of electricity from renewables is Den-
mark, with only 28%. Looking at IT energy consumption,
Katz referred to the Smart 2020 report, available at http://
smart2020.org. Despite the anticipated invention of new
efficiency technologies, IT power drain is projected to reach
4% of total energy consumption by the year 2020.

Katz also touched on some of the same themes as the key-
note, showing the energy demand breakdown in Internet
data centers and describing some possible optimizations. He
suggested that containerized data centers (racks of servers
built into shipping containers) may be more efficient, since
their internal layout and airflow can be highly optimized.

Power Usage Efficiency (PUE) optimization at the data
center is already approaching optimality, so future optimi-
zations will be within IT equipment. One of Katz’s slogans
is that computers must be made to “do nothing well.” This
goal, also called energy proportionality, means that idle
computers should drain nearly zero current; this is cur-
rently not common. However, Katz showed that low-power
CPUs such as Intel’s Atom are more energy proportional.
Since average server utilization tends to be low, one might
replace each high-power CPU with several slower Atom
CPUs. However, other system components such as RAM,
disk, etc., currently have high idle power consumption, so
optimizing the CPU is not enough.

In the second part of the talk, Katz described his plan for
upgrading the power grid. He drew an extended analogy
with the telephone network’s evolution in the Internet era.

98 ; LO G I N : VO L . 3 4, N O. 5

Because weather variations make renewable energy sources
such as wind and solar both unreliable and distributed in
nature, the need for a power grid upgrade is essential. Like
the Internet, an effective renewable-source grid must have
local buffers (energy stores) and adaptive routing. Energy
storage is tricky. On large scales, one can pump water uphill
or compress gasses. On the small scale, for example in
homes, batteries would work but are expensive. Anticipa-
tory work such as cooling a building earlier in the day can
actually be thought of as a type of energy storage.

Katz proposed building a smart power grid by augmenting
the existing grid with Internet-connected Intelligent Power
Switches (IPSes). He also emphasized that an intelligent
power grid with open access would bring “power to the
people” in both senses of the word; it would allow enter-
prising individuals to contribute excess generated electricity
to the grid.

Rik Farrow asked about energy storage, and Katz noted
that there are many innovative options for energy stor-
age, including using water temperature differentials. He
described storage as an information management problem.
Responding to a question about laptop versus desktop
computer power usage, Katz noted that power management
policies are currently lacking. He would like to see faster
transitions from low-power to operating states and back
again. Alan Thal suggested cooling data centers by building
them underground. Katz responded that people are look-
ing at innovative data center locations and that architects
do have a role to play in the optimization process. Another
attendee noted that room cooling is often overlooked when
calculating the power drain of computers. Katz replied that
PUE measurements in data centers include this and that
significant energy savings can be had by allowing server
rooms to reach higher temperatures (but monitoring them
more carefully). As a follow-up, another attendee noted that
much hardware lacks good air flow, so we may have to lean
on vendors to improve this aspect of their products. Katz
agreed that systems packaging is an issue and mentioned
that the containerized design brings airflow to the forefront
of design.

An attendee asked whether the next optimization step
is choosing what we are willing to compute at all. Katz
acknowledged this as the ultimate goal and a broader chal-
lenge, although it is rarely mentioned. He suggested model-
ing user desires and behavior and then structuring the
entire system to meet those demands.

bugs and soft ware updates

Summarized by Michael von Tessin (mtvt@cse.unsw.edu.au)

The Beauty and the Beast: Vulnerabilities in Red Hat’s ■■

Packages
Stephan Neuhaus, Universita degli Studi di Trento, and Thomas
Zimmermann, Microsoft Research

Stephan Neuhaus explained that they used Red Hat Se-
curity Advisories to determine which Red Hat packages
had vulnerabilities reported. The distribution shows that
two-thirds of all packages didn’t have any vulnerabilities,
whereas the kernel had the highest number of vulnerabili-
ties. They asked if there are package properties that corre-
late with vulnerabilities and found that there were.

If A → B (A depends on B), then A is vulnerable if: (1) A
is in an “insecure domain” (“domain” characterized by de-
pendencies, e.g., “Internet browsers,” “image manipulation
programs”); (2) B is difficult to use securely (e.g., SSL); (3) a
fix in B spills over to A (e.g., a change in the API).

Next they created a dependency subtree of packages, with
each node having an attached risk equal to the number of
packages that depend on this package. They could then find
the “beauties” and the “beasts” by comparing this risk be-
tween a parent and a child in the dependency subtree. If the
risk of the child is significantly higher (p < 0.01) than the
parent’s, that means that the child is the “beast,” and vice
versa. They then used machine learning (Support Vector
Machine, SVM) to predict the future vulnerability of a pack-
age. Their model correctly predicted 10 of the 25 packages
found to have vulnerabilities over the next eight months.
Programmers can use this research to help choose less risky
packages to depend on.

An audience member observed that they looked at binary
packages instead of source packages, which could give them
some strange anomalies when multiple binary packages
are generated from one source package (e.g., OpenOffice).
Stephen admitted that looking at source packages would
make sense as well. Someone wondered whether there was
a correlation vs. causation problem here; instead of imply-
ing vulnerability, might the correlation instead say some-
thing about the carefulness of the programmers in choosing
which packages to use? Neuhaus responded that this was
a good question, but that they tested the model on real
data and were able to successfully predict the future. So
there has to be some truth in it. But even if it came down
to choice of packages, it would still be a useful outcome,
because a programmer would now know which packages a
clever programmer prefers to use. For more information see
http://research.microsoft.com/projects/esm and http://www.
artdecode.de.

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 99

Immediate Multi-Threaded Dynamic Software Updates ■■

Using Stack Reconstruction
Kristis Makris and Rida A. Bazzi, Arizona State University

Kristis Makris said that software updates to patch critical
security holes are arriving with increasing frequency and
need to be applied as soon as possible. In a live system,
downtime should be as limited as possible (milliseconds
instead of minutes). This means that the system needs to
be updated dynamically while it is running. In order to do
DSU (Dynamic Software Update), we need to know when a
system is in a state that allows updating and the mapping
that maps old data structures to new data structures. But
this problem is undecidable, i.e., there is no algorithm that
can always find a correct solution.

Many DSU systems allow old and new code to be executed
at the same time (and to use adaptors for accessing data
structures), making it very difficult for users to determine
valid update points. The authors’ work had three design
goals:

1. Atomic update: The entire state of an application has to
be transferred (from old to new representation) in a single
step, before which only old code was running and after
which only new code is running.

2. Transaction safety: In certain cases, you need to execute
a transaction (critical section of code) without allowing up-
dates in between. This means that such code is either fully
executed as old code or as new code, but not mixed.

3. Thread safety: If there are multiple threads sharing a state
(e.g., in a Web server), an “immediate update” is needed.
Immediate means atomic and with bounded delay (no
blocking).

UpStare consists of a compiler, a patch generator, and a
runtime. UpStare saves stack frames, updates global state,
then reconstructs stack frames. Update points can be auto-
matically set or set manually by the user. Thread safety is
implemented by forcing all threads to block in case of an
update request, safely detecting that they are blocked, and
only then performing the update. Overheads during evalu-
ation ranged from 38% to 97% with throughput decreases
of none to 26%. Future work involves moving cold code to
the end of image (improves cache locality), adding runtime
safety checking, using semantic analysis, and updating in-
transit data.

The session chair, John Dunagan, asked the only ques-
tion, wondering about future work that aims to reduce
the amount of user involvement. Couldn’t the opposite be
useful, i.e., to force programmers to annotate their programs
sufficiently? Kristis said that would be a very good idea. It
would help to automatically generate the patches fully, with-
out user involvement (except for the annotations, of course).

Zephyr: Efficient Incremental Reprogramming of Sensor ■■

Nodes using Function Call Indirections and Difference
Computation
Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff,
Purdue University

Rajesh Krishna Panta explained that the goal of this work
is to enable software updates on wireless sensors on the fly
and “in situ.” Because these devices are battery-powered,
reprogramming must be fast and energy-efficient. Their ap-
proach achieves energy efficiency by sending as small a diff
(delta script) as possible to the sensor, which then applies
it to the current code to get the updated code. The compu-
tationally intensive part of this setup is done on the host
(finding the delta script), whereas applying it is straightfor-
ward. They used rsync to calculate a delta script between
the old and the new binary (on byte-level). Because of some
shortcomings, they had to improve rsync quite a lot (e.g.,
merging superblocks).

This approach only works fine if functions in the new bina-
ry have the same addresses as in the old binary; otherwise,
all jump addresses will change, making it very difficult
to find a small binary diff (delta script). Solutions to this
problem include: (1) leaving space after each function to
avoid having to shift parts of the image if functions grow, or
(2) using position-independent code, which is available only
on certain architectures. Their solution uses function call
indirections. All calls are performed into a fixed indirection
table, with each function having its predefined slot which
doesn’t change on updates. Thus, only the contents of the
table change, but all jump addresses in the binary stay the
same. In all benchmarks, Zephyr is multiple times smaller/
faster/more efficient than Deluge or Stream. Future work
is to remove function-call latency (due to indirection table)
by having the loader relocate the binary according to the
indirection table.

Someone pointed out that this is very similar to what a dy-
namic linker has to do (e.g., indirection table). John Duna-
gan asked how often updates are typically needed in a wire-
less sensor environment. Rajesh didn’t have numbers, but
his experience told him that updates occur quite frequently.
Most updates are quite small, e.g., because the environment
changes and sensors might have to be reprogrammed to
behave a little bit differently. Very small bug fixes or very
large updates are rare.

closing session

Third Millennium Problem-Solving: Can New Visualization ■■

and Collaboration Tools Make a Difference?
David Brin, Hugo Award-winning author

Summarized by Rik Farrow (rik@usenix.org)

David Brin introduced himself as an astrophysicist by train-
ing who is also a book author and futurist. Brin headed off

100 ; LO G I N : VO L . 3 4, N O. 5

into his title theme, but quickly took off in several intrigu-
ing directions.

Brin explained that the horns depicted on Moses’ head in
Renaissance paintings weren’t really horns but “lamps on
his brow.” These lamps are, in turn, a metaphor for the
frontal lobes of the human brain that allow us to plan for
the future and “discover the troubles in front of you before
you stumble into the pit.” As a futurist, I have no doubt that
Brin uses his horns a lot.

Brin, like other futurists, is very interested in the singu-
larity, the point when humans have computer-enhanced
intelligence, or strong AI exists. Brin believes that the singu-
larity is approaching within the current generation, due to
the acceleration in technological and social advances that
started in the 15th century with the development of print-
ing presses and glass lenses. Printing presses democratized
knowledge, while glass lenses made it possible to study the
solar system—incidentally uncovering the fact that Earth is
not the center of the universe.

The 18th century brought with it mass literacy, printed
illustrations, and science, or Brin’s memory, vision, and
attention. The 19th-century version of these three themes
were mass education and public libraries, photography and
cinema, and global communication. In the 20th century, we
got computers and databases, television and mass media,
and abstraction and immersion. By sometime in the 21st, we
will have a knowledge mesh, omniveillance (stick-on cam-
eras with IPv6 and one-year batteries) and super immersion.
The acceleration of technology, including Moore’s Law, will
bring about the merger and/or replacement of humans with
post-humans and/or AI.

Brin told us that Internet millionaires, like his distant
cousin Sergey Brin (Google), believe in positive sum games.
The world of the future should not rely on scarcity for worth
but be a world where everyone gains.

Brin spoke on many other topics, one of the strongest being
a plea for CERTs: Community Emergency Response Teams.
Brin pointed out that the many of the most effective re-
sponders during 911 were members of the local community,
and that we need to support training for CERT members as
well as develop P2P communication that will stand up dur-
ing emergencies such as Katrina.

Eventually, Brin slowed down and opened the floor to ques-
tions. Matt Blaze strode to the mike and picked out just one
of the many controversial points Brin had made, that no
online argument has ever been settled. Matt said that he can
count “zillions of times I’ve been personally informed by an
online discussion that I never participated in that prevented
me from spreading wrong information.” Hey, me too, Matt.
Brin feinted by suggesting that we should turn portions of
the Internet into arenas for ideas with rankings by reputa-
tion for the posters. Blaze countered by suggesting that the
Internet may have evolved a generation with better bullshit

detectors. Brin agreed, saying that he still wanted better
tools for discourse.

Stephan Neuhaus disagreed with Brin’s point that gradu-
ate school has forced many people into very narrow and
focused interests and that this was actually harmful. Neu-
haus contended that poor countries really needed to build a
professional class. Brin said that he thinks the Third World
will quickly pass through their own over-professionalization
curve.

You can learn more about David Brin and his thoughts on
his Web site: http://davidbrin.com/.

Workshop on Hot Topics in Cloud Computing
(HotCloud ’09)

San Diego, CA
June 15, 2009

Summarized by Alva Couch (couch@eecs.tufts.edu) and Kiran-
Kumar Muniswamy-Reddy (kiran@eecs.harvard.edu)

Cloud computing remains a “cloudy concept” for many
people. The first USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’09) brought together academic and
industry researchers to discuss late-breaking results and
current trends in cloud computing. As in other “hot topics”
conferences, HotCloud papers defined a problem and dis-
cussed a possible solution and preliminary results. Results
ranged from performance of specific management strategies
to designs for new components of cloud infrastructures. Full
papers discussed upcoming research plans in detail, while
short papers described an interesting idea worthy of further
study. HotCloud ’09 included 13 full papers and eight short
papers, resulting in a day packed with new ideas and future
challenges.

The workshop discussed several distinct kinds of clouds
that are distinguished by the kinds of services that they
provide to clients:

Software as a Service (SaaS): clients gain access to specific ■■

software functions (e.g., gmail, Google Maps).
Platform as a Service (PaaS): clients gain access to indi-■■

vidual virtual machines: (e.g., Amazon Web Services,
Eucalyptus).
Infrastructure as a Service (IaaS): clients gain access to ■■

networks of (perhaps physical) machines (e.g., virtual data
centers).

The kind of cloud determines the boundaries between a cli-
ent’s responsibility and the cloud provider’s responsibility.
In SaaS the client uses the application as an exterior entity.
In PaaS the client must load an operating system instance
into a virtual machine, while in IaaS the client might have
to choose, deploy, and manage provisioning software that in
PaaS is part of the service.

Clouds and cloud applications can exhibit (or lack) elasticity,
the ability to dynamically adapt to changing use patterns
by provisioning and decommissioning resources and virtual

