USENIX Association

Proceedings of the
2001 USENIX Annud
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Interactive Simultaneous Editing of Multiple Text Regions

Robert C. Miller and Brad A. Myers
Carnegie Mellon University
http://www.cs.cmu.edu/"rcm/lapis/
{rcm,bam }@cs.cmu.edu

Abstract

Simultaneous editing is a new method for automating @E@E =N R

repetitive text editing. After describing a set of regions commans piniiava [l views s [Test_ =]
to edit (therecord9, the user can edit any one record and // Changing method interfeses. ¥| patterr: |50 | ciear |
see equivalent edits applied simultaneously to all other | uazy 7 e o m—
records. The essence of simultaneous editing is gener- Tor fine 5 = 07 ¢ < cirate. Lenguh: +e) | Srewions WG
alizing the user’s selection in one record to equivalent peins (EESEEER, » + 2, v+ 2) [—
selections in the other records. We describe a general- g Business B
ization method that is fast (suitable for interactive use), & Englizh =
domain-specific (capable of using high-level knowledge | recuack |

such as Java and HTML syntax), and under user control (@)
(generalizations can be corrected or overridden). Simul-

F=iLapis - paint.java

taneous editing is useful for source code editing, HTML fie et Go pattorns Scrints Tools Heln

editing, and scripting, as well as many other applica- @Fm@ IWF § e | FL smuEn |

it |

tlons Command: paintiava B\new ns:|Text - |

Just before MethodCalll

/4 Changing method interfaces.
7/ paint (ebject, %, ¥) ==> ohiect.paint (x, ¥}
void £ () {

rectangle.paint {, 0, 0j: [] [D

for (int i = 0; i < circle.length; ++i) { 3 regions highlighted

1 Introduction cineters] PO,

circle[i].center.paint (, x + 2, v + 2):

Names: Name.
@ Business (=
@ Characters =

@ English
Feedhack

Text editing is full of small repetitive tasks. Examples
include: —————

B L rThL

e Replace the string “Hashtable” with “Map” (0)
throughout a program.

o Reformat a list of phone numbers from “(xxx) yyy- (highlighted lightly) are calls to thpaint() function, which

Figure 1: Simultaneous editing on Java code. The records

2227”10 “+1 XXX Yy 2222 is belng“transform”ed into an object-oriented method. @ Us_er
selects “rectangle”, and the system generalizes the selection

Insert print statements to trace entry and exit from@cross all records. (b) User cuts the selection, pastes it before
each of a set of functions. paint , and inserts a dot. The same operation affects every

record.
Generate get/set methods for the instance variables
of a class.

Genergte a maiI.ing list from the From headers of a sequence of keystrokes (or editing commands) and
large file of email messages. binds the sequence to a single command for easy re-
execution. Most keyboard macro systems also support

Users have a rich basket of tools for automating tasksimple loops using tail recursion, where the last step in
like these.Search-and-replagen which the user spec- the macro reinvokes the macro. For more complicated
ifies a pattern to search for and replacement text to béasks, however, users may resort towstom program
substituted, is good enough for simple taskeyboard often written in a text-processing language such as Perl,
macrosare another technique, in which the user recordsawk, or Emacs Lisp.

This paper proposes a new technique to add to this bas- izations are consistent with the user’s selection, the
ket of repetitive text editing toolsimultaneous editing generalizer must make its best guess, which hope-
In simultaneous editing, the user first describes a set of fully will often be the description the user intended.
regions to edit, called theecords This record set can

be defined by a pattern, direct selection, or some com- ® Generalization should be correctabléthe gener-
bination of the two. After defining the records, the user ~ alizer's best guess is wrong, the user must have a
makes a selection in one record using the mouse or key- ~ Way to correct it. In our system, the user can se-
board. In response, the system makes an equivalent se- lect or deselect regions in other records, providing
lection in all other records. Subsequent editing opera- additional positive and negative examples that the
tions — such as typed text, deletions, or cut-and-paste — generalizer uses to improve its guess. The user can
affect all records simultaneously, as if the user had ap- @lso override the generalizer completely, making a
plied the operations to each record individually. Figure1 ~ Selection by hand or by a pattern.

shows simultaneous editing in action.

Simultaneous editing has several advantages over othdhe rest of this paper is organized as follows. Section 2
techniques for repetitive text editing. First, simultane-surveys related work. Section 3 describes the user in-
ous editing is interactive. No programming is required.terface to simultaneous editing, in the context of an ex-
Second, simultaneous editing uses familiar editing comiended example. Section 4 describes some more exam-
mands, including mouse selection. Macro recorderples of simultaneous editing. Section 5 delves into the
generally ignore or disable mouse selection. Third, thedetails of our implementation, and Section 6 evaluates
effect of a simultaneous editing operation on any recordts performance. Section 7 outlines some future direc-
is readily apparent from the selection. If there is a trickytions, and Section 8 makes some conclusions.

step in a transformation, the user can check it before-
hand by scanning through all records and verifying the
location of the selection. Finally, mistakes made in the
middle of a simultaneous editing transformation can be2

immediately detected and corrected with undo. Other

techniques may require undoing, debugging’ and reexéimultaneous ed|t|ng is similar in Concept to Visual Awk
Cuting the entire transformation. [6], a SyStem for deVelOping awk-like file transformers

))) interactively. Like awk, Visual Awk’s default structure
The greatest challenge to an implementation of simul¢qngists only of lines and words. When the user selects
taneous epﬂtmg is determmmg the equivalent se!ectlorbne or more words in a line, the system highlights the
where editing should occur in other records. Given a,rqs at the same position in all other lines. For other
cursor position or selection in one record, the systemjnqs of selections, the user must select the appropriate
must generalize it to a description which can be applied,,| For example, Visual Awk’s Cutter tool makes se-
to all other records. Simultaneous editing puts severajg tions by character offset, and its Matcher tool uses
demands on the generalization algorithm: regular expressions provided by the user. In contrast,
simultaneous editing is built into a conventional text ed-
e Generalization should be fast, so that the system istor, operates on arbitrary records (not just lines), uses
responsive enough for interactive editing. We solvestandard text editing operations, and automatically in-
this problem by preprocessing the records to dis-fers general, domain-specific descriptions from a user’s
cover useful features in advance, so that the genselections.

eralization search for each selection is relatively
cheap. Another closely-related approach to the problem of

repetitive text editing igprogramming by exampl@lso

¢ Generalization should be domain-specific. For ex-called programming by demonstratiqi?BD). In PBD,
ample, a user’s selection might best be described inhe user demonstrates one or more examples of the trans-
terms of Java syntax. Our solution to this problemformation in a text editor, and the system generalizes this
is a knowledge base, represented by a library of patdemonstration into a program that can be applied to the
terns and parsers that detect structure in text. Usergest of the examples. PBD systems for text editing have
can extend the library on the fly by specifying new included EBE [12], Tourmaline [11], TELS [13], Eager
patterns, which can be either regular expressions of1], Cima [7], and DEED [3].
high-level patterns callext constraint$9].

Related Work

Simultaneous editing is similar to PBD in many ways.
e Generalization should be able to guess accuratelBoth approaches allow the user to edit with familiar op-
from only one example. When multiple general- erations, including mouse selection. Both approaches

generalize the user’s actions on one example into a deMultiple selections make it easy to display the corre-
scription that can be applied to other examples. Botlsponding selection in every record. Second, LAPIS
approaches must be able to incorporate multiple examincludes an integrated text pattern languatget con-

ples into the generalization. straints Text constraint patterns are convenient not only
for the user to describe the record set, but also for the

However, simultaneous editing has a dramatically dif‘s stem to describe how it has generalized the user’s se-
ferent user interface from PBD. In simultaneous edit->)>. : 9 o
lection. Finally, LAPIS has a library of built-in parsers

ing, the user's demonstration affects all records Simm_and atterns for various kinds of text structure, includin
taneously. After demonstrating part of a transforma- P ' 9

tion, the user can scan through the file and see hovaTML and Java source code.. The domain knowledge
the other records were affected by the partial transfor—rePresented by this pattern library enables the system
mation. In PBD. on the other hand. each demonstral® Make its generalizations more accurate and domain-
tion affects only a single example. In order to see whatSpeC'f'C’ as we will see in the example to follow.
the inferred program will do to other examples, the user

must run the program on other examples. One conse3.1 Example: Get/Set Methods

uence of this is a lack of trust [1][3]. Users do not . .
d [L]3] The example is a common task in Java and C++ pro-

trust the inferred program to work correctly on other) . .
prog y gramming: for each fiela of a class (member variable

examples. Although simultaneous editing also does in Ct+ terminol i i of thod
ference, and thus is also susceptible to mistrust, the ad” erminology), create a pair oraccessor metnods
etX andsetX that respectively get and set the value

ditional feedback provided by simultaneous selections ; o
P y f X. Figure 2a shows the original Java class. We want to

across all records makes the system’s operation mort8 ¢ h field declarati that th =ble d
visible, hopefully inspiring more confidence. ranstorm each hie'd declaration so that tne variable dec-

laration is followed by its accessor methods, as shown in
The inference used in simultaneous editing is actuallyFigure 2g.
lesspowerful than in some PBD systems. TELS, for ex-

ample, can infer programs containing conditionals aano ter;;lerrmml;l(ljtarsegus gzitsllténg ?;Odri, Ittri]el uselr f'triStnSEX
loops. Simultaneous editing assumes just one implici ects the records to be edited, using multipie selection.

loop (over the records) and no conditionals (every edit-mum[.)Ie selection can .be made two ways in LAPIS: by
entering a pattern, which selects all regions that match

ing action must be applied to every record). These as; k .)
sumptions permit fast, predictable inference, and a||0V\}he pattern; or by holding down the Shift key and select-

inference to be applied only selectionsand not to the lnhg textsgeglor;is \I’é'th tf;re mc;rl:se. 'I[? :Elfibcra?e’ vtvk;ﬁ zser
sequence ddictionsperformed. chooses’ava.rie 0 € patte ary, c

runs a Java parser and highlights all field declarations in
Simultaneous editing also requires the user to describghe current file. If only some of these fields need acces-
the set of records. The record description is often sim-sor methods, then the user can either specialize the pat-
ple (e.g. lines, or paragraphs, or functions), but someern (e.g. Java.Field starting with "pub-

record sets may be hard to describe. By contrast, in mosic") or manually deselect the undesired fields.

PBD systems, and keyboard macros too, the record S(ﬂ . .
Lo T) : aving selected the records, the user enters simultane-
is implicit in the user’s demonstration. For example, the " ; ; .

. . ous editing mode by pressing the SimulEdit button on
demonstration may end with the cursor at the start of the; .
next record he toolbar. The system then does some preprocessing,

' which involves running all appropriate parsers (such as

the Java parser) and searching for interesting features in

the selected records. Preprocessing is described in Sec-
3 User Interface tion 5. The preprocessing delay depends on the num-

ber and length of the records. In this simple example,
This section describes the user interface of simultaneousreprocessing takes less than one second. After prepro-
editing implemented in our prototype system. Featuregessing, the editor shows that simultaneous editing is en-
of the user interface will be introduced by presenting anabled by highlighting the records in yellow.

example of the system in operation. The user now starts to edit. First, the user clicks at the

Our implementation of simultaneous editing is built into end of one of the records. The system immediately gen-
LAPIS, a text processing system which has been deeralizes this click to the other records, displaying an in-
scribed previously [9][10]. LAPIS has several unusualsertion point at the end of each record (Figure 2b). At
features that make it well-suited to this effort. First, the same time, the Pattern box displays a description of
LAPIS supports multiple simultaneous text selections;the generalization that was madmoint just af-

most text editors allow only one contiguous selection.ter Java.Field . In this case, the description is ac-

File Edit Go Patterns Scripts Tools Help

[- O[]

@@’E@ I?T“| £ simulEdit

Command: C.java

View As: | Text V‘

File Edit Go Patterns Scripts Tools Help

@@’E@| {7 Edit || £ simulEdit |

Command: Cjava

[=]view as:|Text |

public int count;
public String name;
public float[] values;

[

class C { =

: Pattern: Go | Clear |
|Java.F1&ld ‘
0 regions highlighted
Names: Hame...
] Expression =]
Field]
FarmalParametar 1= |
FormalParameterList
dentifier hd

Feedhack

class C {
public int counts
public String name;I
public floatf] values;I

N Pattern: Ga

#| 3 regions highlighte

| clesr |

|po1nt Just after Java,Field |

;| Names:

@ Characters
@= Englizh
- HTML

@ Intarmet

D Java

Feedback

@)

File Edit Go Patterns Scripts Tools Help

@ru:ﬁ, !E!i ,m E: SimulEdit

Command: C.java

View As: | Text "

File Edit Go Patterns Scripts Tools Help

(b)

i |l bt
Commani: Cjava

Sl le o] =

E\ﬂewns: Text '|

1]

class C { :: Pattern: Go | Clear
public int count; |pu1nt just after Java.Field ‘
public | - —
public String nawe: 3 regions highlighted
pupic | v
public float[] values: Names: MHame
public | Expression = |

FormalParameter :
FarmalParametarList

v]

dentifier

Feadback

class € {
public
public
public
public
public Eloat[l values:
public

.
ing count;

§tring naue:

N Pattern: Go
: ‘Java.Ty‘pE |
| 3 regions highlighted

o |

Names:
Expression -

FormalParameter
FarmalParameterList

ldentifier
Feedback

(©)

File Edit Go Patterns Scripts Tools Help

[- O[]

@@’E@ I?T“| £ simulEdit

Command: C.java

View As: | Text V‘

&;‘La

File Edit Go Patterns Scripts Tools Help

(d)

M=

2] o)

[EAER Forard)

Command: Gjava

E\flewns: Text v|

class € { :: Pattern: Go | clear |
public int count; |someuhaze in editlz ‘
public inf - -
F vl Srming por Jregions highlighted
public String ==
public float[] walues; Names: Hame...
public floac[]] [E] Expression =]
s Field L
| FormalParameter 1}
I "l FormalParameterList

class C {
public
public
public
public
public
public

int count;

int getCount]
String name;
String getlane]
float[] walues;
float[] getValuasI

v Pattern: Go
i ‘3:& Tord |
:| 3 regions highlighted

I clear |

[E Expression -
Field

FormalParametar
B

FormalParameterList
ldentifer

Feedback

Fle Edit Go Patterns Scripts Tools Help

[_[Ofx]

MSSEICES T

Command: C.java

[~ viow as:| Text = |

class C {

public int count;

public int getCount (] {
retum count:

i

public woid setfount (int _count) {
count = _count;

1

public String name;

public $tring getlName () {
return name:

+

public void setName (String namej {
name = _name;

public float[] walues;
public float[] wetValues () {
return walues;

i

| pattern: Go | clear |
‘somewhex:e in editgo |
3 regions highlighted
Mames: | MName.. |
= 3
Expression
Fiald

FormalParameter
FormalParameterList
Identifier

Import

Interface
Localvariable
Method

MethodBody

public woid setValues (Eloatl] _values) [vpe
values = _values;
I - @ Layout
) & Petbles
T o e
I Feedack

(9

Figure 2:Simultaneous editing used to transform Java field declarations into get/set methods.

tually a text constraint pattern, which could be evaluated [E[EETrR T ea
to select the same insertion points. The description is FHle Edit Go Patterns Scripts Tools Help

not always a valid pattern, because of some design deci- [|| o« | @& | @ : T

sions made in our prototype, discussed later. Regardless |sack|Forward|Reioad|stop F R S|

the description provides an additional cue for the userto ., 1 onenumbers bt [~ view as:|Text |
c_heck that the system is properly generalizing the selec- w21 bt =1 [patiom =T o
tion. Zgz%égf - point just before 2nd Number
Having placed the insertion point, the user starts to type | i7za) pz1-7358 205 regions highlighted

in thegetx method, first pressing Enter to insert a new- |421-oze (S
line, then indenting a few spaces, then typing “public ;Ei};ia'sm {[Hamess Home™>

" to start the method declaration. The typed characters |ss1sss: || o Susimess =
appear in every record (Figure 2c). If typos are made, |4L2-ss-s6st | & English

the user can back up and correct them, using all familiar 22 | & HTML ~|

editing operations. Maintaining the simultaneous inser- | | : Feedback

tion points during text entry is trivial, since all records
receive the same typed text. No generalization occurs ()

until the user makes a selection somewhere else. E=3 Lapis - phonenumbers.txt [_[O]x]
File Edit Go Patterns 3cripts Tools Help
Now the user is ready to enter the return type of the [= | @

getX method. The type is different for each variable |o I o inad ;Z. ‘ 7 Edit H I SimulEdit |

X, so the user can't simply enter it at the keyboard. In-

stead, copy-and-paste ig ﬁsed. The user se)I/ects the typ Commant:phonenumaers b [l view sz 1ot~ |
of one of the fields, in this case, the “int” of “public int ~ |42L-J43 2/} patter: Go | Glear
X". The system generalizes this selection into the de- ZE;%??T || |[poinc Just before last Muber
scriptionJava.Type , and selects the types of all the | i7za1 az1-frass | 205 regions highiighted

other fields (Figure 2d). Note that other generalizations |42L-Ho0zs e————————
of this selection are possibl&nt” ,2nd Word, 2nd ;E?ﬁssia{sm ames: e
from last Word , etc. Some of these generalizations |sa1-fas1 &gﬁj:;ifjs f
can be discarded immediately because of assumptions | 4:2-268-Fs1 = |
of simultaneous editing. For example, “int” does not =

appear in every record, and so it cannot be selected in | | Feedback

every record. Other generalizations are less preferable
because they are more complicated tdama.Type . (b)
In this case, the system’s best guess is the right one.

Figure 3: Correcting generalization by switching to a coun-

The user then copies the selection to the clipboardterexample.

places the insertion point back after “public “, and pastes

the clipboard. In response to the copy command, the sys3 o Correcting Generalizations

tem copies dist of strings to its clipboard, one for each

record. When the paste occurs, the system pastes théhe example above raises an important issue: what if

appropriate string back to each record (Figure 2e). the system’s generalization was incorrect at some point
in the simultaneous editing session? How can the user

Similarly, the user copies and pastes the name of varigorrect it? Several techniques are available in our sys-

able to create the method name. The lowercase varigm: switching to a counterexample, giving multiple ex-

able namex is converted into capitalized by applying amples, and naming landmarks. These techniques are
an editor command that capitalizes the current selectiogyp|ained next.

(Figure 2f). Any editor command that applies to a se-

lection or cursor position can be used in simultaneoud he first correction technique is illustrated in Figure 3.
editing mode. While editing a list of phone numbers, the user tries to

place the cursor just before the 4-digit component of
The rest ofgetX andsetX are defined by more typ- each phone number. The first attempt (Figure 3a) is
ing and copy-and-paste commands, until the desired rea click before “4843” in the first phone number. This
sultis achieved (Figure 2g). The user exits simultaneouslick is incorrectly generalized tpoint just be-
editing mode by clicking again on the SimulEdit toolbar fore 2nd Number . An easy way to correct the gen-
button, releasing it from the depressed state. eralization is to pick one of the records where the gen-

[EiLapis - filenames.txt |_ (O] x|
File Edit Go Patterns Scripts Tools Help

) w | & |® | § Edit || T2 simulkar |

Back | Forward || Reload | Stoy
Command: filenames bd E\new ns: | Text v|
io/Eeadue. txg Pattern: Go || Glear

-

io/Filetedl, javg
io/‘fempFile. javg
io/Eipm: chive.javg

|| |fron point 9ust after lat Pumctuation
to point just before Linebresk

io/EWg
i0/E¥8/Roog

| 70 regions highlighted

iU/EVSJ‘REpDSlt.UI}]

10/Evs/Entries | names:

[4]

ner FarulBL_qama

F @ Business

| L@ "harartar

Feedback

@)

E%Lapis - filenames.txt

File Edit Go Patterns Scripts Tools Help

Go | o

& |© | & Edit || £ simulEdit |

Back|Forward|Reload| Stop
Command: filenames [=]view as: | Text v|
1o/Eeadue. txg ! pattern: Go || Clear

io/Fileutil. javg
io/TempFile. javy
in;"EipAr chive.javs

from point just after last /"
to point just before Linebreak

ios/EVg
iosCvs/Roog

§| 70 regions highlighted

io}CVS/ﬁestltorg
io}CVS/Enttie;

“| Names:

P OO

vt/ ParmlRL_ 4 am:

=1 || @ Business
i| | @ rhararter

Feedhack

(b)

Figure 4:Correcting generalization by providing multiple ex-

amples.

in the first record instead of “readme.txt”. To get the de-
sired selection, the user must provide at least two exam-
ples of the selection. This is done by holding down the
Shift key while selecting the additional example. Alter-
natively, the user can specify a negative example by de-
selecting an incorrect selection in another record. Dese-
lecting is done by right-clicking on a selection and pick-
ing Unselect from the popup menu that appears. Any
number of positive or negative examples can be given.
After receiving a new positive or negative example, the
system searches for a generalization that selects exactly
one region in every record and is consistent with all pos-
itive and negative examples. In this case, two positive
examples suffice to select the last filename component
correctly (Figure 4b).

The user can also assist generalization by making a se-
lection some other way, either by hand or by a pattern,
and then assigning it a uniqgue name. The named selec-
tion becomes part of the pattern library, where the sys-
tem can use it aslandmarkfor generalizing other selec-
tions. For example, the user might specify a regular ex-
pression for the product codes used in his company, and
name it ProductCode. Subsequent selections of product
codes, or of regions adjacent to product codes, will be
generalized much faster and more accurately. This strat-
egy adds more domain knowledge to the system.

Generalization may sometimes fail. There may be in-
sufficient domain knowledge, or the selection may re-
quire a more complicated description than the gener-
alizer is designed to generate. For example, our gen-
eralizer does not form disjunctions, such either

"gif* or "jpg". If no generalization can be found

eralization failed — for example, a phone number withthat is consistent with the user’s positive and negative

an area code such as “(724) 421-7359" — and make thgxamples, then the system gives up, beeps, and leaves
selection in that record instead. This selection resultsnly the positive examples selected. No further gener-
in a satisfactory generalization (Figure 3b). This strat-gjization attempts are made until the user clears the se-
egy, which we calbwitching to a counterexampleor- |ection and starts a new selection. The user can finish
rects the system by providing a more generic examplghe desired selection by hand, either by selecting the ap-
of the desired selection. The System is still genera”z-propriate regions in the other recordsl or by entering a
ing from only one example; the more generic examplepattern.

replaces the earlier example. An expert user may even

avoid the incorrect generalization entirely by selecting

the most generic example first. .
4 Applications

Sometimes an incorrect generalization cannot be fixed

by switching to a counterexample. For example, in Fig-This section describes some applications of simultane-
ure 4, the user is trying to select just the filenamespus editing. Two common themes run through these ex-
without any directory prefix. Selecting “readme.txt” in amples. Firstis the power dbmain knowledgesuch as

the first record generalizes to an incorrect descriptiorHTML and Java syntax. Domain knowledge allows the
referring to thepoint just after 1st Punc- user to specify patterns more concisely and enables the
tuation (Figure 4a). Switching to a counterexam- generalizer to make more accurate generalizations with
ple doesn’'t work either. For example, selecting “Root” fewer examples. Most text editors either eschew domain
in the sixth record would generalize tast Word knowledge, understanding only low-level concepts like
which is also wrong, because it would select only “txt” words and characters, or else embed knowledge for only

one domain, such as C++. LAPIS strives for a middleto change their permissions fwivate . The pro-
ground by centralizing domain knowledge into a pat-grammer selects the relevant fields and methods (using,
tern library that simply generates region sets. Otheffor instance,(Field or Method) not start-

parts of LAPIS, such as the generalizer, are domaining with "public" or "private"), enters si-
independent, and new domain knowledge is easy to adthultaneous editing mode, and typesvate at the

by installing new patterns and parsers in the library. beginning of a field, changing all the others simultane-

The second important theme iigteractivity. Whereas ously.

other solutions to these tasks would involve specifying aChange a method interface. If a method's parame-
program and then running it in batch mode, simultaneters change, then simultaneous editing can be used to
ous editing allows the task to be performed interactively.rewrite all the calls to that method at once. For ex-
ample, suppose a methapy(src, dest) must

be changed tacopy(dest, src) for consistency
with similar interfaces in the program. The pro-

The following tasks take advantage of the HTML parserdrammer selects all calls teopy (perhaps using
included in the pattern library. The HTML parser definesthe patteriMethodCall starting with Iden-
named region sets for each kind of HTML object (e.g.tifier equal to "copy), enters simultaneous

Element, Tag, Attribute) as well as specific HTML tags €diting mode, selects the first argument (which general-
and attributes (e.gcb>, href). izes tofirst ActualParameter), copies it to the

i clipboard, and then pastes it after the second argument.
Change all elements into elements. A jittle more editing fixes the comma separators, and the
The user runs the patteBold to select all bold ele- change is done. This example demonstrates how simul-
ments (which look likebold text/b>), then enters taneous editing with domain knowledge can deliver the

simultaneous editing mode. The user selects the first Bower of syntax-directed editing inside a freeform text
with the mouse (which the system generalizeskt editor.

in " "), deletes it, and types in “strong”. The user .) ,
then selects the last b (which generalizestity in Wrap every method with entry and exit code. While

""), deletes it, and types in “strong” again. debugging a class, the programmer wants to run some

code whenever any method of the class is entered
Convert HTML to XHTML. One difference between or exited. This code might do tracing (printing the
HTML and XHTML (an XML format) is the treatment method name to a log), performance timing, or valida-
of tags with no content, such asimg>,
, or tjon (checking that the method preserves class invari-
<hr>. In XHTML, elements with no end tag should ants). To add this code, the programmer selects all the
be written as so that an XML parser can parse methods using the patteMethod and starts simulta-
them without access to the XHTML document type def-neous editing. Next, the programmer types in the en-
inition. Making this conversion with simultaneous edit- try code at the start of the method, wraps the rest of
ing is straightforward. To select the empty tags, the usefhe method body with &y-finally construct, and
runs the patterfag = Element , which matches all types the exit code inside thimally ~ clause. All the
regions that the HTML parser identified as both tagsmethods change identically. This kind of modification is
and complete elements. Entering simultaneous editingn example ofispect-oriented programmirg], where

mode, the user places the cursor at the end of the tagode is “woven” into a program at program locations de-
(which generalizes tgoint just before ">") scribed by a pattern.

and inserts a slash to finish the task.

41 HTML

4.3 Scripting
4.2 Source Code
To understand the next set of examples, the reader

Programming is full of tasks where simultaneous editingshould be aware that LAPIS is also a shell [10]. An ex-
is useful, particularly when given knowledge of the lan- ternal command can be executed in the LAPIS command
guage syntax. The examples below are in Java becaus®x, drawing its standard input from the current contents
LAPIS has a Java parser in its library. Other language®f the editor and sending its output back to the editor.
could be edited in similar fashion by adding an appro-

priate parser to the library, Disposable scripts. Suppose the user wants to make a

group of GIF files transparent usirgdftrans . Si-
Change access permissions.Suppose a class con- multaneous editing offers a solution based on the idea of
tains a number of fields or methods that currently havecreating a one-time script directly from data. The user
default access permission, and the programmer wanf#rst runsls *.gif to list the relevant filenames in the

editor. Using simultaneous editing, the user edits eacb.1 Region Sets

line into a command, such agftrans -T X.gif

> X-transparent.gif . Then the user runs the re- Before describing the generalizer, we first briefly de-
sulting script withsh. Disposable scripts are a more scribe the representations used for selections in a text

interactive way to achieve the effect of the Unix com- file. More detail can be found in an earlier paper about
mandsforeach orxargs . LAPIS [9] A region [S, 6] is a substring of a text file,

hi) ¢ h described by its start offsetand end offset relative to
Impedance matching. Data obtained from the output o siart of the text file. Aegion sefs a set of regions.
of one program must often be massaged before it can be

fed into another program. Simultaneous editing offersLAPIS has two novel representations for region sets.
the opportunity to perform this massaging interactively,First, afuzzy regionis a four-tuple[si, s2; e1, e2] that
which is particularly sensible for one-shot tasks. Forrepresents the set of all regiosse] such that; < s <
example, suppose a user is testing network connectivs; ande; < e < e,. Note that any regiofs, e] can be

ity with traceroute , and wants to pass the network represented as the fuzzy regiens; e, e]. Fuzzy regions
latencies computed dyaceroute intognuplot to are particularly useful for representing relations between
generate a graph. The user first rirsceroute to regions. For example, the set of all regions that are in-
generate a trace. Using simultaneous editing, the usegide [s,e] can be compactly represented by the fuzzy
edits each line of the trace, leaving only the hop num-egion[s,e; s, e]. Similar fuzzy region representations
ber (1, 2, ...) and the latency time. After exiting si- exist for other relations, includingontains, before, af-

multaneous editing mode, the user insergnaplot ter, just before, just after, startin@.e. having coincident
plot instruction before the first lingofot "-" with start points), anénding These relations are fundamen-
lines) and finally rungnuplot -persist toplot tal operators in the text constraints pattern language, and
the data. are also used in generalization.

The second novel representation is tegion tree a
union of fuzzy regions stored in an R-tree in lexico-
5 Implementation graphic order [9]. A region tree can represent an ar-
bitrary set of regions, even if the regions nest or over-
This section describes the algorithm used to generalizé&ap each other. A region tree containif\g fuzzy re-
the user’s selection to a description that can be applied tgions take) (N) space()(N log N) time to build, and
all records. The input to the generalizer is a set of posO(log N) time to test a region for membership in the set.

itive examples, a set of negative examples, and the s . .
of records. The output is a selection consistent with th:aalthese two representations are used by the preprocessing

i . hase to construct a list of features that the search phase
positive and negative examples that selects exactly on . e :

S . can use to quickly test positive and negative examples.
region in every record, plus a human-readable descri

. . p:rhe selection returned by the search phase is also repre-
tion of the selection. .
sented as a region set.
Like other PBD systems, the generalizer basically
searches through a space of hypotheses for a hypothe- .
sis consistent with the examples. The details of the im-%'2 Feature Generation

plementa_thn are novel, however. Our g_enerallzer IS aCPreprocessing takes the set of records and generates a
tually split into three parts: preprocessing, search, anﬁi

updating. Preprocessing takes the set of records as inpd%t of useful feature_s. A feature is a region set, contgm—
and generates a list of useful features as output. Preprc|>r-]g &.lt least one region n each record, where the regions
cessing takes place only once, when the user first enterare In some sense equivaleiror example., the feature
simultaneous editing mode T'he search phase takes tﬁ]';ava.Type represents the set of all regions that were
' rgcognlzed by the Java parser as type names. The pre-

e e it 9 rocessor generates b ks of et fs
sistent with the examples: Search happens whenever tt}]léresdenved from th(_a pattern library, afliteral features
. . iscovered by examining the text of the records.

user makes a selection with the mouse or keyboard, or

adds a new positive or negative example to the currenPattern features are found by applying every parser and
selection. Finally, updating occurs when the user edit®every named pattern in the pattern library. LAPIS has

the records by inserting, deleting, or copying and pasta considerable library of built-in parsers and patterns,

ing text. Updating takes the user’s edit action as inpuincluding Java, HTML, character classes (e.g. dig-

and modifies the feature list appropriately. Each of theséts, punctuation, letters), English structure (words, sen-

phases is described in more detail below. tences, paragraphs), and various codes (e.g., URLs,

email addresses, hostnames, IP addresses, phone nutine search phase simpler. The search can just scan down
bers). The user can readily add new named patterns arttie list of features and stop as soon as it finds the first
new parsers. The result of applying a pattern is the set dieature consistent with the examples, since this feature
all regions matching the pattern. The result of applyingis guaranteed to be the most preferred consistent feature.

a parser is a collection of named region sets. For exam-

ple, the Java parser generates region sets for Statemeﬁf?atures are classified into three groups for the purpose
Expression, Type, Method, and so on of preference orderingunique featureswhich occur ex-

actly once in each recordegular featureswhich occur
After applying all library patterns, the preprocessor dis-exactly . times in each record, for some > 1; and
cards any patterns that do not have at least one matGurying featureswhich occur a varying number of times
in every record. This is justified by two assumptionsin each record. A feature’s classification is not predeter-
made by the generalizer: first, that a generalization mustined. Instead, it is found by actually counting occur-
have at least one match in every record; and second, thaénces in the records being edited. For example, in Fig-
a generalization can be represented without diSjUnCtiomre 27Java_'|'ype is a unique feature, since it occurs
Given these two assumptions, only features that matclaxactly once in every variable declaration. Regular fea-
somewhere in every record will be useful for construct-tyres are commonly found as delimiters. For example,
ing generalizations. if the records are IP addresses like 127.0.0.1, then “.” is

By the same reasoning, the only useful literal featured regular feature. Varying features are typically tokens,
are common substrings, i.e. substrings that occur at leadke words and numbers, which are general enough to
once in every record. Common substrings can be foun@ccur in every record but do not necessarily follow any
efficiently using asuffix treef4]. A suffix tree is a path- regular pattern.

compressed trie if‘to which all suffixes of a string haVeUnique features are preferred over the other two kinds.
been inserted. With a suffix tree 'for a striagwe can - 5 unique feature has the simplest description: the fea-
test whe_ther a _substrmg oceurs ins In o_nIy O(|p)) ture name itself, such aava.Type . By contrast, us-

t!me. N_a|_ve suffix tree c;)ns_trucnon_ (ln_sertmg_ every Suf'ing a regular or varying feature in a generalization re-
fix explicitly) takesO(|s|®) time, which is sufficient for quires specifying the index of a particular occurrence,

our prototype since records tend to be short. Several aguch asth Word . Regular features are preferred over

Eorlthms exist fgr bwldldr!g a ﬁum)l(trgehln gnfzar time, varying features, because regularity of occurrence is a
oweve(; [4], f]m exter 'bng t € ahgforlt md elow to ac'strong indication that the feature is relevant to the inter-
commodate them would be straightforward. nal structure of a record.

The common substring algorithm works as follows. The
algorithm starts by building a suffix tree from the short-
est record, in order to minimize the size of the initial
suffix tree. This suffix tree represents the set of com
mon substrings of all records examined so far. For eac
of the remaining records, the suffixes of the record ar
matched against the suffix tree one by one. Each tre

node keeps a count of the number of times it was visite(j
during the processing of the current record. This coun

represents the number of occurrences (possibly overlapro summarize, the preprocessor orders the feature list in
ping) of the substring represented by the node. Afterthe following order, with most preferred features listed
processing each record, all unvisited nodes are prunegkst: unique patterns, unique literals, regular patterns,
from the tree, since the corresponding substrings nevefegular literals, varying patterns, varying literals. Within
occurred in the record. After processing every recordeach group of patterns, the order is arbitrary. Within

in this fashion, the Only SubStringS left in the suffix tree each group of |itera|s1 |Onger literals are preferred to
must be common to all the records. These common subshorter.

strings are used as literal features. The operation of the
common substring algorithm is illustrated in Figure 5.

Within each group, pattern features are preferred over
literal features. We also plan to let the user specify pref-
erences between pattern features, so that, for instance,
I,ilava features can be preferred over character-class fea-
ures. We are still designing the user interface for this,
owever, so the prototype currently leaves pattern fea-
ures in an arbitrary order. Among literal features, longer
iterals are preferred to shorter ones.

5.4 Search
5.3 Feature Ordering) "

The search algorithm takes the user’s positive and neg-
After generating useful features from the set of recordsative examples and the feature list generated by prepro-
the preprocessor sorts them into a list in order of pref-cessing, and attempts to generate a description consis-
erence. Placing the most-preferred features first makegnt with the examples.

rem@cmu.edu$ o

@cmu.edu$ o

u.edu$ a
@cmu.edu$ o

@cmu.edu$ @cmu.edu$

@ (b) ©

Figure 5: Finding common substrings using a suffix tree. (a) Suffix tree constructed from first recor@cmu.edu; $
represents a unique end-of-string character. (b) Suffix tree after matching against secondjm@ardu.edu . Each node
is labeled by its visit count. (c) Suffix tree after pruning nodes which are not foutjd@cmu.edu . The remaining nodes
represent the common substrings of the two records.

The basic search process works as follows. The systemegions for intersection with each feature in the feature
chooses the first positive example, calledgked exam- list, which is just as fast as a simple region membership
ple, and scans through the feature list, testing the seetest. Candidate descriptions generated by the search are
example for membership in each feature. Since each fedransformed into point descriptions by prefixipgint

ture is represented by a region tree, this membership tegist before or point just after , depending

is very fast. When a matching feature is found, the sys-on which fuzzy region matched the feature, and then
tem constructs one or more candidate descriptions repréhe descriptions are tested for consistency with the other
senting the particular occurrence that matched. For expositive and negative examples.

ample, if the seed example matches the (varying) fea-

tureWord, the system might construct the candidate de-TO search for a region description, the system first
scriptions5th Word and 2nd from last Word searches for the seed example using the basic search pro-
by counting words in the seed example’s record. Thes€€SS described above. If no matching feature is found —
candidate descriptions are tested against the other podfecause the seed example does not correspond precisely
tive and negative examples, if any. The first consistenfO a feature on the feature list — then the system splits the

description found is returned as the generalization. ~ Seed example into its start point and end point, and re-
cursively searches for point descriptions for each point.

The output of the search process depends on wheth&andidate descriptions for the start point and end point
the user is selecting an insertion point (e.g. by clickingare transformed into a description of the entire region
the mouse) or selecting a region (e.g. by dragging). Ifoy wrapping withfrom...to... , and then tested for
all the positive examples are zero-length regions, themronsistency with the other examples.

the system assumes that the user is placing an insertion

point, and searches for a point description. Otherwise]his search algorithm is capable of generalizing a selec-
the system searches for a region description. tion only if it starts and ends on a feature boundary. For

literal features, this is not constraining at all. Since a
To search for a point description, the system transforméiteral feature is a string that occurs in all records, every
the seed example, which is just a character offsgtto =~ substring of a literal feature &soa literal feature. Thus
two fuzzy regionsib, b; b, +o0], which represents all re- every position in a literal feature lies on a feature bound-
gions that start at, and[—o0, b; b, b], which represents ary. To save space, the preprocessor only stores maximal
all regions that end d. The search tests these fuzzy literal features in the feature list, and the search phase

gfer;ve{isle points of every feature to reflect the change. If the fea-
ture list is long, however, and some feature sets are large

4 (such as Word or Whitespace), the cost of updating ev-
e ery feature after every edit may be prohibitive. Our gen-

8 eralizer takes the opposite strategy: instead of translat-
" ing all features up to the present, we translate the user’s
N positive and negative examplésck to the past The

1 system maintains a global coordinate map representing
! the translation between original file coordinates (when

o i 2. S md o5y v. 7 o e simultaneous editing mode was entered and the feature

list generated) and the current file coordinates. When an
edit occurs, the updating algorithm computes a coordi-
nate map for the edit and composes it with this global
coordinate map. When the user provides positive and
negative examples to generalize into a selection, the ex-
amples are translated back to the original file coordinates
using the inverse of the global coordinate map. The
tests whether the seed example falls anywhere inside gearch algorithm generates a consistent description for

Figure 6:Coordinate map translating offsets between two ver-
sions of a file. The old version is the wotchmple . Two
regions are deleted to get the new versiame .

maximal literal feature. the translated examples. The generated description is
then translated forward to current file coordinates before
5.5 Updating being displayed as a selection.

In simultaneous editing, the user is not only making se An important design decision in a simultaneous editing
. L . . 'system that uses domain knowledge, such as Java syn-
lections, but also editing the file. Editing has two effects Y g y

. : : tax, is whether the system should attempt to reparse the
on generalization. First, every edit changes the start an Y P P

end offsets of regions. As a result, the region sets use le while the user is editing it. On one hand, reparsing
9 ' L 9 .. ~allows the generalizer to track all the user’s changes and
to represent features become invalid. Second, edltlng

changes the file content, so the precomputed featur%gﬂed those changes in its descriptions. On the other

. . and, reparsing is expensive and may fail if the file is in
may become incomplete or wrong. For example, if the P g P Y

an intermediate, syntactically incorrect state. Our gener-
user types some new words, then the precompivesd . : C .
. : : - alizer never reparses automatically in simultaneous edit-
feature becomes incomplete, since it doesn’t include th

. . ?ng mode. The user can explicitly request reparsing with
new words the user typed. The updating algorithm ad'a menu command, which effectively restarts simultane-
dresses these two problems. o . .

ous editing using the same set of records. Otherwise, the
From the locations and length of text inserted or deletedfeature list remains frozen in the original version of the
the updating algorithm computescaordinate mapa file. One consequence of this decision is that the gener-
relation that translates a file offset prior to the changealizer's human-readable descriptions may be misleading
into the equivalent file offset after the change. The coorbecause they refer to an earlier version.
dinate map can translate coordinates in either directio

. . nThis design decision raises an important question. If the
For example, Figure 6 shows the coordinate map for g P g

simple edit. Offset 3 iramole corresponds to offset a}eature listis frozen, how can the user make selections in
mp ' . P SP newly-inserted text, which didn’t exist when the feature
2 intame, and vice versa. Offsets with more than one

. o o .
possible mapping in the other version, such as offset 1 ir|1ISt was built? This problem is handled by the update

N X algorithm. Every typed insert in simultaneous editing
lt:gzs,te\l/raelurgsolved arbitrarily. Our prototype picks the mode adds a new literal feature to the feature list, since

the typed characters are guaranteed to be identical in all
Since the coordinate map for a group of insertions orthe records. Similarly, pasting text from the clipboard
deletions is always piecewise linear, it can be reprecreates a special feature that translates coordinates back
sented as a sorted list of the (x,y) endpoints of each lingo the source of the paste and tries to find a description
segment. If a single edit consistsmfinsertions or dele- there. When the generalizer uses one of these features
tions (one for each record), then this representation takesreated by editing, the feature is described as “some-
O(m) space. Evaluating the coordinate map function forwhere in editv”, which can be seen in Figures 2e and

a single offset take®(log m) time using binary search. 2g.

A straightforward way to use the coordinate map is toA disadvantage of this scheme is that the housekeep-
scan down the feature list and update the start and enithg structures — the global coordinate map and the new

features added for edits — grow steadily as the user ed- 3. Reformat a list of baseball scores into a tagged for-

its. This growth can be slowed significantly by coalesc- ~ mat (7 records).

. . . . ; Before:

ing adjacent insertions and deletions, although we have c,dinals 5, Pirates 2.

not yet implemented this. Another solution might be to RegSOX 1)Z Orioles 4.
more) ...

reparse when the number of edits reaches some thresh- Aser:

old, doing the reparsing in the background on a copy of GameScore[winner :Cardinalﬁ’; Ioser"P@rate?’; scores[5, 2]].

the file in order to avoid interfering with the user’s edit- e ryetuinner e Sox: loser-Orioles; scores{i2 4]l

ing. In practice, however, we don’t expect space growth

to be a serious problem. In all the applications we have .

imagined, the user spends only a few minutes in a simul£\! tasks were obtained from other authors (tasks 1 and
taneous editing session, not the hours that are typical of ToM Fujishima [3] and task 3 from Nix[12]). Af-
general text editing. After leaving simultaneous editing€" Performing a task with simultaneous editing, users

mode, the global coordinate map and the feature list cafePeated the task with manual editing, but only on the
be discarded. first three records to avoid unnecessary tedium. Users

were instructed to work carefully and accurately at their
own pace. All users were satisfied that they had com-
pleted all tasks, although the finished product sometimes
6 Evaluation contained undetected errors, a problem discussed further
below. No performance differences were seen between

Simultaneous editing was evaluated by a small useProgrammersand nonprogrammers. Aggregate times for
study. Eight users were found by soliciting campus€ach task are shown in Table 1.

newsgroups. All were college undergraduates with SUbFoIIowing the analysis used by Fujishima [3], we es-
stantial text-editing experience and varying levels of pro-jmate the leverage obtained with simultaneous editing
gramming experience (5 described their programmingyy gividing the time to edit all records with simultane-
experience as “little” or “none,” and 3 as “some” or gys editing by the time to edit just one record manu-
“lots”). Users were paid for participation. Users first 41y This ratio, which we calequivalent task sizeep-
learned about simultaneous editing by reading a tutoriafesents the number of records for which simultaneous
and trying the examples. The tutorial took less than 1%diting time would be equal to manual editing time for
minutes for all but one user (who spent 30 minutes exy given user. Since manual editing time increases lin-
ploring the system). After the tutorial, each user per-early with record number and simultaneous editing time
formed the following three tasks: is roughly constant (or only slowly increasing), simul-
taneous editing will be faster whenever the number of
1. Put the author name and publication year in frontrecords is greater than the equivalent task size. (Note
of each citation. that the average equivalent task size is not necessarily
?.efr::, D.W. and Kibler, D. Noise-tolerant instance-based learning algo—equaI to the ratio of the average editing times, since

rithms. In Proceedings of the Eleventh International Joint Conference on E[S /M| # E[S]/E[M].)
Artificial Intelligence. Morgan Kaufmann, 1989, pp. 794-799

2. Hayes-Roth, B. Pfleger, K. Morignot, P. and Lalanda, P. Plans and i H
Behavior in Intelligent Agents, Technical Report KSL-95-35, Stanford As Table 1 ShOWS’ the average equwalent task sizes are

University, 1995. small. In other words, the average novice user works
o (e7rmore) faster with simultaneous editing if there are more than

[Aha 89] Aha, D.W. and Kibler, D. Noise-tolerant instance-based learning 8.4 records in the first task, more than 3.6 records in the
algorit_h_m_s. In Prpceedings of the Eleventh International JointConferencesecond task, or more than 4 records in the third fask.
on Artificial Intelligence. Morgan Kaufmann, 1989, pp. 794-799.) . X .

[Hayes-Roth 95] Hayes-Roth, B. Pfleger, K. Morignot, P. and Lalanda, P. Thus simultaneous editing is an improvement over man-
g'tgﬂiofg‘ﬂjﬁsgf‘s‘gf igs'ge”'gem Agents, Technical Report KSL-95-35, 5] editing even for very small repetitive editing tasks,
. (7more)... and even for users with as little as 10 minutes of expe-

> Ref list of mail ali ¢ HTML rience. Some users were so slow at manual editing that
- Reformat a list of mail aliases from O text. heir equivalent task size is smaller than the expert's, so

<DT><A HREF="mailto:cg@cs.umn.edu” NICKNAME="congra& Simultaneous editing benefits them even more. Simulta-

Conceptual Graphs/A> L.
ZDT> <A HREF="mailto:kif@cs.stanford.edu” NICKNAME="kit. "€ous editing also compares favorably to another PBD

KIF system, DEED [3]. When DEED was evaluated with
... (5 more) ...

{‘.\ﬁefi 1These estimates are actually conservative. Simultaneous editing
Eocr:lo?;'er%t;ﬁltlogcra%)h:s umn.edu always preceded manual editing for each task, so the measured time
- K|?= ' ©9 o for simultaneous editing includes time spent thinking about and un-
kif: mailto-kif@cs.stanford.edu derstanding the task. For the manual editing part, users had already

... (5 more) ... learned the task, and were able to edit at full speed.

Records Equivalent task size
Task | intask | Simultaneous editing Manual editing novices expert
1 9 142.9s[63-236 s] | 21.6 s/rec[7.7-65 s/req] 8.4 recs [2.1-12.2 recq] 4.5 recs
2 7 119.1s[64-209s] | 32.3 s/rec [19-40 s/red] 3.6 recs[1.9-5.8recs] 1.6 recs
3 7 159.6 s [84-370s] | 41.3 s/rec [16-77 s/red] 4.0 recs[1.9-6.2recs] 2.4 recs

Table 1: Time taken by users to perform each task (mean [min-m&kultaneous editing the time to do the
entire task with simultaneous editinlylanual editingis the time to edit 3 records of the task by hand, divided by 3
to get a per-record estimatBquivalent task sizes the ratio between simultaneous editing time and manual editing
time for each usemovicesare users in the user study, agxpertis one of the authors, provided for comparison. A
task with more records thaquivalent task size/ould be faster with simultaneous editing than manual editing.

novice users on tasks 1 and 2, the reported equivalerwe have many ideas for future work. First and perhaps
task sizes averaged 42 and ranged from 5 to 200, whichost challenging is the problem of scaling up to large
is worse on average and considerably more variable thatasks. Although our prototype is far from a toy, since it

simultaneous editing. can handle 100KB files with relative ease, many interest-

Another important part of system performance is generlng tasks involve megabytes of data spread across mul-

alization accuracy. Each incorrect generalization forcediPle files. Largg data SEtS, pose severgl problems for si-
the user to make at least one additional action, such aglultaneous editing. The first problem is system respon-
selecting a counterexample or providing an additionaf>'VEN€sS: Making a million edits with every keyst_roke
positive or negative example. In the user study, userS1@Y Slow the system down to a crawl, particularly if the
made a total of 188 selections that were used for edit:Xt editor uses gap bufferto store the text [2]. Gap

ing. Of these, 158 selections (84%) were correct imme-bUﬁerS are used by many editors, among them Emacs

diately, requiring no further examples. The remainingand JEditorPane, the Java class on which our prototype

selections needed either 1 or 2 extra examples to gener based. With a gap buffer and a record set that spans

ap based. b . : :
ize correctly. On average, only 0.26 additional examplegﬁe entire file, typing a smgle character forces the editor
move nearly every byte in the buffer. One way to ad-

were needed per selection. Unfortunately, users tende) .))
b Y ress this problem is to delay edits to the rest of the file

to overlook slightly-incorrect generalizations, particu- = =)
larly generalizations that selected only half of the hy_unnl the user scrolls. Another solution would be to have

phenated author “Hayes-Roth” or the two-word basebalMU!tiPle gaps in the buffer, one for each record.

team “Red Sox". As a result, the overall error rate for Another problem with large files is checking for incor-
simultaneous editing was slightly worse than for manuakect generalizations. When editing a small file, the user
editing: 8 of the 24 simultaneous editing sessions endedan just scan through the entire file to ensure that a se-
with at least one uncorrected error, whereas 5 of 24 maniection has been generalized properly. With a large file,
ual editing sessions ended with uncorrected errors. If thgcanning becomes infeasible. We have several ideas for
two most common selection errors had been noticed bgecondary visualizations that might help with this prob-
users, the error rate for simultaneous editing would havéem. One is a “bird’'s-eye view” showing the entire file
dropped to only 2 of 24. We are currently studying ways(in greeked text), so that deviations in an otherwise regu-
to call the user’s attention to possible selection errors [8]lar highlight can be noticed at a glance. Another is an ab-

After doing the tasks, users were asked to evaluate thBreviated context view, showing only the selected lines
system’s ease-of-use, trustworthiness, and usefulness §pm each record. A third view is an “unusual matches
a 5-point Likert scale. These questions were also borYi€W, showing only the most unusual examples of the
rowed from Fujishima [3]. The results, shown in Fig- generalization, found by clustering the matches [8].

ure 7, are generally positive. A third problem with large data sets is where the data re-
sides. For interactive simultaneous editing, the data must
fit in RAM, with some additional overhead for parsing
and storing feature lists. For large data sets, this is im-
practical. However, it is easy to imagine interactively
Simultaneous editing has been implemented in LAPISgditing a small sample of the data to record a macro
a browser/editor designed for processing structured texiwhich is applied in batch mode to the rest of the data.
LAPIS is written in Java 1.1, extending the JFC text ed-The batch mode could minimize its memory require-
itor component JEditorPane. Directions for obtainingments by reading and processing one record at a time
LAPIS are found at the end of this paper. (or one translation unit at a time, if it depends on a Java

7 Status and Future Work

How much did you trust it to do the right thing?

How easy was it to use?

Would you use it for your own tasks?

B | very :l 9 | |
very easy trustworthy | very likely
B | somewhat B
somewhat trustworth somewhat
easy ustwortny | likely
neutral neutral neutral
somewhat | somewhat somewhat |
hard untrustworthy | unlikely
very)
very hard untrustworthy very unlikely
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Figure 7:User responses to questions about simultaneous editing.

or HTML parser). Macros recorded from simultaneous [2]
editing would most likely be more reliable than key-
board macros recorded from single-cursor editing, since
simultaneous editing finds general patterns representingds!
each selection. The larger and more representative the
sample used to demonstrate the macro, the more correglgl]
the patterns would be. The macro could also be save
for later reuse.

(5]

8 Conclusions [6]
Simultaneous editing is an effective way for users to per-
form repetitive text editing tasks interactively, using fa-
miliar editing commands. Its combination of interactiv- [7]
ity and domain specificity makes simultaneous editing a
useful addition to our basket of tools for text process- [8l
ing, which is practical for inclusion in a wide variety of

editors. [l

The LAPIS browser/editor, which includes an imple-
mentation of simultaneous editing with Java sourcef10]
code, may be downloaded from

http://www.cs.cmu.edu/"rcm/lapis/ [11]

Acknowledgements [12]

The authors are indebted to Yuzo Fujishima for provid-
ing the materials to reproduce the DEED user study. Wé13!
would also like to thank Laura Cassenti, Sarit Sotangkur,
Dorothy Zaborowski, Brice Cassenti, and Jean Cassenti
for enduring early versions of simultaneous editing, and
Sheila Harnett and the anonymous referees for their
helpful comments. This research was funded in part by
USENIX Student Research Grants.

References

[1] A. Cypher. Eager: Programming repetitive tasks by demonstra-
tion. In A. Cypher, editorwatch What | Do: Programming by
Demonstrationpages 205-218. MIT Press, 1993.

C. A. Finseth. Theory and practice of text editors, or, a cookbook
for an EMACS. Technical Memo 165, MIT Lab for Computer
Science, May 1980.

Y. Fujishima. Demonstrational automation of text editing tasks
involving multiple focus points and conversions.Rroceedings
of Intelligent User Interfaces '9%ages 101-108, 1998.

D. Gusfield.Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational BiologZambridge Univer-
sity Press, 1997.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. IBuropean Confer-
ence on Object-Oriented Programming (ECOQE)01.

J. Landauer and M. Hirakawa. Visual AWK: a model for text
processing by demonstration. Rroceedings of the 11th Inter-
national IEEE Symposium on Visual Languages, '98ptember
1995.

D. Maulsby. Instructible AgentsPhD thesis, University of Cal-
gary, 1994,

R. C. Miller. Lightweight Structured Text ProcessirighD thesis,
Carnegie Mellon University, 2001. In preparation.

R. C. Miller and B. A. Myers. Lightweight structured text pro-
cessing. INUSENIX 1999 Annual Technical Conferenpages
131-144, June 1999.

R. C. Miller and B. A. Myers. Integrating a command shell into
a web browser. IRJSENIX 2000 Annual Technical Conference
pages 171-182, June 2000.

B. A. Myers. Tourmaline: Text formatting by demonstration. In
A. Cypher, editorWatch What | Do: Programming by Demon-
stration, pages 309-322. MIT Press, 1993.

R. Nix. Editing by exampleACM Transactions on Programming
Languages and Systen¥®4):600-621, October 1985.

I. H. Witten and D. Mo.TELS: Learning text eiting tasks from
examples. In A. Cypher, editowatch What | Do: Programming
by Demonstrationpages 183-204. MIT Press, 1993.

